
Loadstar: Load Shedding in Data Stream Mining

Yun Chi† Haixun Wang‡ Philip S. Yu‡

†Computer Science Dept, UCLA
ychi@cs.ucla.edu

‡IBM T. J. Watson Research Center
{haixun,psyu}@us.ibm.com

Abstract

In this demo, we show that intelligent load
shedding is essential in achieving optimum re-
sults in mining data streams under various re-
source constraints. The Loadstar system in-
troduces load shedding techniques to classi-
fying multiple data streams of large volume
and high speed. Loadstar uses a novel met-
ric known as the quality of decision (QoD)
to measure the level of uncertainty in clas-
sification. Resources are then allocated to
sources where uncertainty is high. To make
optimum classification decisions and accurate
QoD measurement, Loadstar relies on fea-
ture prediction to model the data dropped by
the load shedding mechanism. Furthermore,
Loadstar is able to adapt to the changing data
characteristics in data streams. The system
thus offers a nice solution to data mining with
resource constraints.

1 Motivation

Consider the following scenario. Two cameras A and
B set up on highways transmit streams of snapshots to
a central server. One snapshot is taken by each camera
in each time unit. But the central server is only able
to investigate one snapshot in each time unit. How do
we design a load shedding scheme to catch as many
speeding cars as possible in real time?

Naive Approaches

We assume: i) during a certain time period, snapshots
from camera A contain speeding cars with probability
pA and snapshots from camera B with probability pB ;

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

and ii) the classifier deployed on the central server to
capture speeding cars from snapshots is 100% accurate
(without false negatives or false positives). We now
consider the following two load shedding schemes.

Scheme 1

The probabilities pA and pB are unknown to the load
shedding mechanism. At each time unit, we randomly
select one stream to investigate (i.e., each stream has a
probability of 1

2 to be selected). The expected number
of speeding cars caught in one time unit is

E1 =
pA + pB

2
Note that this scheme gives the same result as a de-
terministic round-robin scheme.

Scheme 2

At each time unit, we select streams based on previous
investigation results. We always choose the stream
whose last snapshot was investigated and classified as
positive (i.e., it contains a speeding car). If none or
both streams qualify, we choose one of them randomly.
We derive E2, the expected number of speeding cars
caught in each time unit, using a Markov model:

E2 =
pA + pB − 2pApB

2− pA − pB

Unless pA = pB , we find that Scheme 2 is always
better than Scheme 1 as E2 − E1 = (pA−pB)2

2(2−pA−pB) ≥ 0.

Analysis

Scheme 2 is not necessarily the best load shedding
scheme, but it provides some intuition behind the goal
of load shedding. When we have limitted resources,
we shall allocate them to tasks that are most likely
to provide the best results. Scheme 2 contemplates
that past results are indications of future performance.
Based on this belief, it gives priority to the task that
was successful last time. Furthermore, it does not as-
sume prior knowledge about the distribution (pA and
pB are unknown), and therefore if data characteristics
change with time, the scheme will adapt to the new
environment.

1302



2 Challenges

Our motivating example made many simplified as-
sumptions. For example, in real applications, includ-
ing network monitoring, credit-card fraud detection,
and biosurveillance, we typically monitor hundreds
and thousands of data streams simultaneously. Also,
the data characteristics of a stream is often changing
with time, and it is not enough to model them using
simple parameters such as probabilites (pA or pB).

State of the Art

Load shedding in mining data streams is a new topic
and it raises many challenges. Many approaches as-
sume that a set of Quality-of-Service (QoS) specifica-
tions are available [1, 2, 4]. A load shedding scheme
decides when and where to discard data and how much
data to discard according to the QoS specification. In
other words, the assumption is that the impact of load
shedding on performance is known a priori through
the QoS specifications.

This assumption might be valid for simple queries
(e.g., aggregation) on data streams. It is often safe to
assume that the quality of the query result depends
only on the sample size. In contrast, in mining data
streams, sample size itself cannot guarantee good min-
ing result, because the quality of mining often depends
on specific feature values in a non-monotonic way. For
example, within certain regions of the feature space, a
classifier may have very high confidence in its classifi-
cation decision, even if the feature value is only known
approximately. But in other regions, a small variation
in a feature value may change the decision. In this
case, resources (i.e., CPU cycles to compute the exact
feature values) should be allocated to a data source if
its classification is more sensitive to the exact feature
value.

Furthermore, data mining applications are often
more sensitive to changes in data characteristics [5].
It means feature value prediction is important to load
shedding design for mining data streams. Fortunately,
many feature values (e.g, the readings of temperature
sensors, the water level of a river, or the feature val-
ues extracted from consecutive satellite images) have
strong time-correlation and we can build models to
take advantage of such correlation. Thus, the chal-
lenge lies in building a feature predictor that is able
to capture the time-correlation and adapt to the time-
variance of the feature values.

Our Contributions

To the best knowledge of the authors, Loadstar is
the first system for load shedding in mining data
streams [3]. The system is advantage in several as-
pects. (1) It employs a novel quality of decision (QoD)
measure for classification based on the predicted dis-
tribution of the feature values in the next time unit.

(2) It consists of a feature value prediction model us-
ing Markov chain whose parameters can be updated
in real time to reflect data distribution changes. (3)
Experiments on both synthetic data and real-life data
show that Loadstar is effective in improving the ac-
curacy of data stream classification in the presence of
system overload.

3 System Architecture

We illustrate the major system components of Load-
star in Figure 1. A detailed description of the system
can be found in [3].

Classifier

channel

multiple raw
data streams

input:

Data
Stream

communication

output:

all streams
result for

dropped
raw data

historic
feature
values

quality of decision

Load
Shedding
Scheme and Analysis

Preparation
Data

Feature
Predictor

Figure 1: Loadstar System Architecture

Raw data from multiple streams are sent through
communication channels to the data preparation and
analysis block, which is responsible for data cleaning,
feature extraction, feature composition, etc. The de-
rived features are passed to the classifier. Our system
assumes that data preparation and analysis (e.g., fea-
ture extraction for multimedia data) is CPU intensive.
In comparison, the classification requires few CPU cy-
cles. An equivalent scenario is when the bandwidth
of the communication channel is limited and therefore
not all raw data can go through.

Thus, when the system is overloaded, the data are
dropped before they enter the communication channel.
The feature values of dropped data are recovered by
the feature predictor block based on historic feature
values. Therefore, the classifier will handle both the
real feature values generated by the data preparation
and analysis block, and predicted feature values for
data that has been dropped.

4 Theoretical Foundation of Loadstar

Load shedding takes place when data from multiple
streams exceeds the processing capacity. We are inter-
ested in load shedding schemes that ensure dropped
load has minimal impact on the benefits of mining. In
order to do this, we need

1303



• a measure of benefit loss if we discard data x from
a certain stream, and

• the ability to measure the benefit loss without see-
ing the exact values of x.

Measuring the Quality of Classification

We view a classifier as a set of discriminant functions
fi(x), i = 1 . . .K. The classifier assigns class label ck

to x if fk(x) ≥ fi(x),∀i. Consider an example where
there are two classes and the data is one dimensional
(i.e., there is a single feature x). Figure 2(a) shows
the two discriminant functions and Figure 2(b) shows
their log ratio.

When feature values are not exact, classification de-
cisions have different levels of certainty. For example,
assume that x = 2 and x = 1.5 are current feature
values and we believe x will not change dramatically
in the next step. If the classifier has to make a classi-
fication decision for the next step, it may assign class
label c2 to both data streams; however, for the data
stream with x = 2, the classifier is much more cer-
tain about its decision than for the data stream with
x = 1.5. Intuitively, the quality of the classification
decision for the first data stream is higher than that
of the second data stream.

−0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Feature Value

Discriminant Functions

f
1
(x) f

2
(x)

f
1
(x)

f
2
(x)

−0.5 0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

5

Feature Value

Log Ratio of Discriminant Functions

decision boundary

(a) (b)
Figure 2: Certainty of a Classifying Decision

Assume we have derived a probability density func-
tion for X, the feature value in the next time unit:

X ∼ p(x) (1)

At point x in feature space X, if we decide the class
is ci, then the conditional risk of our decision is

R(ci|x) =
K∑

j=1

σ(ci|cj)P (cj |x)

where σ(ci|cj) is the loss function, i.e., the penalty
incurred when the real class is cj and our decision is
ci.

Because we have the distribution of the feature
value x at the next time unit, we can compute the
expected risk for a decision for next time unit as

EX [R(ci|x)] =
∫
x

R(ci|x)p(x)dx

We use δ to represent the best-effort decision rule
that minimizes this expected risk:

δ : k = arg min
i

EX [R(ci|x)] (2)

Let c∗ denote the optimal decision1 for x ∈ X. Be-
cause x is unknown, c∗ is infeasible to realize in load
shedding. The risk associated with c∗ is

EX [R(c∗|x)] =
∫
x

R(c∗|x)p(x)dx

This risk is the Bayesian lower bound based on distri-
bution p(x). We then define the QoD based on the dif-
ference between the expected risk and the lower bound:

Q = 1− (EX [R(ck|x)]− EX [R(c∗|x)]) (3)

Intuitively, the larger the Q, the higher the quality
of the decision. Detailed discussion of how to compute
QoD given by Eq 3 based on different loss functions
such as 0-1 loss can be found in [3].

Feature Value Prediction

The computation of the QoD is based on the assump-
tion that we know the distribution of the feature val-
ues. In reality, p(x) of Eq 1 is unknown. If the current
feature values are independent of those in the next
time unit, the best we can do is to use the prior dis-
tribution of the feature values. However, in many real
life applications, feature values often have short-term
temporal correlation.

Loadstar uses discrete-time Markov-chains with a
finite number of states for feature value prediction.
Consider any feature x and its corresponding Markov-
chain. Assume the feature value at time t0 is known
to us, and we have x = si, 1 ≤ i ≤ M . Thus, the dis-
tribution of the feature value at t0 is p0(x) = ei, where
ei is a 1×M unit row vector with 1 at position i and
0’s at other positions. The distribution of the feature
value in the next time unit t1 is p1(x) = p0(x)P = eiP ,
where P is the state transition probability matrix. In
the next time unit t2, the distribution of the feature
value becomes p2(x) = p1(x)P = eiP

2.
We refer readers to [3] for a detailed description of

the theoretical foundation of load shedding in classify-
ing data streams.

5 About the Demo

Our VLDB 2005 demo will illustrate the key features
of the LoadStar system. In particular, we will demon-
strate:

1More rigorously, c∗ should be written as c∗(x).

1304



Penalty of Load Shedding

A good load shedding scheme allows system perfor-
mance (e.g., accuracy in classification) degrade grace-
fully under system overload. Our demonstration will
show how Loadstar achieves this goal. Here, we give
an example, where we apply load shedding to change
detection. Assume we have a maximum load of 100
data streams, among which 10 are volatile from time
to time. During system overload, the system capacity
is reduced from 100 data streams to 20 data streams.

0 20 40 60 80
3.5

4

4.5

5

5.5

6

6.5

Percentage of Loads Shed (%)

E
rr

or
 R

at
e 

(%
)

Naive Algorithm
Loadstar*
Loadstar

0 20 40 60 80
5

10

15

20

25

30

Percentage of Loads Shed (%)

Lo
ad

s 
gi

ve
n 

to
 V

ol
at

ile
 S

tr
ea

m
s 

(%
) Naive Algorithm

Loadstar

(a) (b)

Figure 3: Performance Comparison
Figure 5(a) shows the error rates of the classifier

under different levels of overload2. Note that the max-
imum error rate is 10%, as only 10 streams are volatile.
Using Loadstar, performance will not degrade until
load shedding is beyond the 60% level. Figure 5(b)
explains the reason behind the good performance: as
load shedding builds up, increasing percentage of re-
sources are devoted to streams that are volatile, while
in the naive approaches, the percentage is always fixed
at 10%.

Resource Adaptive Load Shedding

In our demo, we will show how Loadstar dynamically
adjusts to changes in available system resources. Fig-
ure 4 is a snapshot of the monitor screen of our load
shedding system. Loadstar monitors the fluctuation of
classification error (the screen on the left hand side) in
response to changes in system capacity (the screen on
the right hand side). Both of the screens are in fact
moving windows on the time axis. They demonstrate
how the load shedding system manages to keep the
fluctuation of the error rate under a relatively low level
when system capacity is going through very dramatic
changes. This proves that an intelligent load shedding
scheme can make a stream management system more
robust to external disturbances.

Data Streams with Concept-drifts

We demonstrate how Loadstar copes with concept
drifts in the data stream. Loadstar dynamically learns
a Markov model to predict feature values of unseen
data. Our demonstration uses the Kullback-Leibler

2Loadstar∗ is a Loadstar variant that handles data streams
with evolving concepts.

Figure 4: Real Time System Montioring
divergence as the measure of error. Figure 5 shows
the effect of learning. When data distributions change
at time unit 1000, the system will experience a sudden
increase in classification error. However, in a system
with learning capability, this increase is merely tem-
porary.

1000 2000 3000 4000 5000
0

50

100

150

200

250

Time Unit

K
−

L 
D

iv
er

ge
nc

e

Loadstar

(a) Loadstar without Learning

1000 2000 3000 4000 5000
0

50

100

150

200

Time Unit

K
−

L 
D

iv
er

ge
nc

e

Loadstar*

No Shedding
50% Shedding

(b) Loadstar with Learning

Figure 5: Learning the Markov-Chains

References
[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherni-

ack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul,
and S. Zdonik. Aurora: a new model and archi-
tecture for data stream management. The VLDB
Journal, 12(2):120–139, 2003.

[2] B. Babcock, M. Datar, and R. Motwani. Load
shedding for aggregation queries over data streams.
In 20th International Conference on Data Engi-
neering, 2004.

[3] Yun Chi, Philip S. Yu, Haixun Wang, and Richard
Muntz. Loadstar: A load shedding scheme for clas-
sifying data streams. In SIAM International Con-
ference on Data Mining (SDM), 2005.

[4] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherni-
ack, and M. Stonebraker. Load shedding in a data
stream manager. In Proc. of the 29th Intl. Conf.
on Very Large Databases (VLDB’03), 2003.

[5] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining
concept-drifting data streams using ensemble clas-
sifiers. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery
and data mining, 2003.

1305


