
Distributed Set-Expression Cardinality Estimation

Abhinandan Das† ∗ Sumit Ganguly§ ∗ Minos Garofalakis‡ Rajeev Rastogi‡

† Cornell University
asdas@cs.cornell.edu

§ IIT Kanpur
sganguly@cse.iitk.ac.in

‡ Bell Labs, Lucent Technologies
{minos,rastogi}@bell-labs.com

Abstract

We consider the problem of estimating set-expression
cardinality in a distributed streamingenvironment
where rapid update streams originating at remote sites
are continually transmitted to a central processing sys-
tem. At the core of our algorithmic solutions for
answering set-expression cardinality queries are two
novel techniques for lowering data communication
costs without sacrificing answer precision. Our first
technique exploits global knowledge of the distribution
of certain frequently occurring stream elements to sig-
nificantly reduce the transmission of element state in-
formation to the central site. Our second technical con-
tribution involves a novel way of capturing the seman-
tics of the input set expression in a boolean logic for-
mula, and using models (of the formula) to determine
whether an element state change at a remote site can
affect the set expression result. Results of our experi-
mental study with real-life as well as synthetic data sets
indicate that our distributed set-expression cardinality
estimation algorithms achieve substantial reductions in
message traffic compared to naive approaches that pro-
vide the same accuracy guarantees.

1 Introduction

The widespread deployment of wireline and wireless net-
works linking together a broad range of devices has re-
sulted in a new class ofdistributed data streamingappli-
cations. In these applications, rapid update streams origi-
nating at tens or hundreds of remote sites are continuously
transmitted to a central processing system for online query-
ing and analysis. Examples include monitoring of service
provider network traffic statistics, telecommunication call
detail records, Web usage logs, financial stock tickers, re-
tail chain transactions, weather data, sensor data, and so
on.

∗Work done while visiting Bell Labs, Murray Hill, NJ.

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

An important consideration in the above-mentioned
monitoring applications is the communication overhead
imposed by the distributed query processing architecture on
the underlying network. A naive approach in which every
stream update is shipped to the central site for processing
can lead to inordinate amounts of message traffic, and thus
have a crippling effect on the communication infrastructure
as well as the central processor. For instance, monitoring
flow level information within AT&T’s IP backbone using
Cisco’s NetFlow tool [1] is known to generate in excess of
500 GBytes of data per day [4]. Clearly, transmitting ev-
ery flow record to the central network operations center of a
large ISP can seriously strain its processing and network re-
sources. As another example, consider wireless sensor net-
works (e.g., for environmental monitoring, inventory track-
ing, etc.), where sensors have a very limited battery life,
and radio communication is much more expensive in terms
of power consumption compared to processing. In order
to ensure longer lifetimes for sensor nodes, it is critical to
reduce the amount of data transmitted, even if that implies
additional processing at the sensor nodes [13, 12, 10].

Fortunately, for many distributed stream-oriented appli-
cations, exact answers are not required and approximations
with guarantees on the amount of error suffice. Thus, it
is possible to trade answer accuracy for reduced data com-
munication costs. For example, consider the problem of de-
tecting distributed denial-of-service (DDoS) attacks by an-
alyzing network flow information collected from an ISP’s
border routers. In a typical DDoS attack scenario, hun-
dreds of compromised “zombie” hosts flood a specific vic-
tim destination with large numbers of seemingly legitimate
packets. Furthermore, in order to elude source identifica-
tion, attackers typically forge, or “spoof”, the IP source ad-
dress of each packet they send with a randomly-chosen ad-
dress [11]. Consequently, a possible approach for detecting
DDoS attacks is to look for sudden spikes in the number of
distinct IP source addresses observed in the flows across
the ISP’s border routers. Clearly, our DDoS monitoring
application does not require IP source address counts to be
tracked with complete precision. Approximate counts can
be equally effective for the purpose of discerning DDoS ac-
tivity as long as errors are small enough so as to not mask
abrupt changes. Thus, depending on the accuracy require-
ments of the DDoS application, routers only need to trans-
mit a subset of flow records to the central monitoring site.

As another example, consider a Web content delivery

312

service such as that provided byAkamai(www.akamai.-
com). In this case, Web sites are replicated at a large num-
ber of geographically distributed servers, and users access-
ing a Web site are automatically redirected to the geograph-
ically closest server, or the least loaded server. Here, one
might often be interested in tracking (approximately) the
number of (distinct) users accessing a Web site (across all
servers), the number of users who visit both a Web siteA
and Web siteB, or the number of users who visit Web site
A but notB. These statistics can be useful for determining
the servers at which to replicate Web sites, deciding which
advertisements to display at each Web site, and so on.

The problem of counting the number of distinct IP
source addresses or web-site users, as discussed above, are
special cases of the more generalset-expression cardinality
estimation problem, which we tackle in this paper. In this
more general problem, we are interested in estimating the
number of distinct values in the result of an arbitrary set
expression over distributed data streams. For example,
in the DDoS scenario, we may want to employ the set
difference cardinality query|S − T | to detect significant
traffic deviations – here,S is the IP source address set for
the sliding window spanning the past week (until now) and
T is the set of IP source addresses from the week prior to
that (e.g., two weeks ago). Similarly, in our Web example,
if S andT are the sets of users who visit Web sitesA and
B, respectively, then the set intersection query|S ∩ T |
yields the number of users who access both sitesA andB.

Prior Work. The tradeoff between answer accuracy and
communication overhead for specific classes of continuous
queries over distributed update streams was recently stud-
ied in [12, 2]. In [12], Olston et al. consider aggregation
queries that compute sums and averages of dynamically
changing numeric values spread over multiple sources. In
their approach, each site is assigned an interval of a cer-
tain width such that the sum of site interval widths is less
than the application’s total error tolerance. Thus, as longas
the numeric value at each site stays within the interval for
the site, no messages need to be sent by the sites in order
to satisfy the application’s accuracy requirements. How-
ever, in case the value at a site drifts outside the site’s inter-
val, the site is required to transmit the value to the central
site and make appropriate adjustments to its interval. Ref-
erence [2] focuses on the problem of continually tracking
the top-k values in distributed data streams; the developed
techniques ensure the continuing validity of the current top-
k set (at the central site) by installing arithmetic constraints
at each site.

Our work is most similar to the above two research ef-
forts, but considersset-expression cardinality queriesas
opposed to the aggregation and top-k queries handled in
[12, 2]. As we will see later in the paper, processing set-
expression cardinality queries requires substantially new
algorithms to be developed for effectively trading off an-
swer accuracy and communication costs in a distributed-
streams setting.

Much of the recent work on data streams has focused on

developing memory-efficient one-pass algorithms for per-
forming a wide range of computations on a single stream;
examples include computing quantiles [9], estimating
distinct values [7, 8], set-expression cardinality [6] and
frequent stream elements [3]. An exception is [8] where
randomized hash-based sampling algorithms are employed
to estimate the number of distinct values in a sliding
window over distributed streams. However, [8] does
not address the issue of optimizing data-shipping costs
when guaranteed precision estimates are required to be
continually tracked at the central processing site. Our work
differs from these existing proposals that are primarily
concerned with exploring space-accuracy tradeoffs (mostly
for single streams) rather than communication-accuracy
tradeoffs in a distributed streams setting.

Our Contributions. In this paper, we focus on the
problem of estimating the cardinality of arbitrary set
expressions over distributed update streams. Our proposed
algorithmic solutions are thefirst to provide provable
guarantees on the accuracy of the final set-expression
cardinality estimate, while keeping data transmission costs
at a minimum. Since set-expression queries subsume
the important class of distinct-value queries, our work
also constitutes the first attempt at providing low-cost
high-quality answers to this latter type of queries in a
distributed setting. More concretely, our contributions can
be summarized as follows.

• Distributed Framework for Processing Set-
Expression Cardinality Queries. We develop our
solutions in the context of a general framework for guaran-
teeing precision constraints for set-expression cardinality
queries in a distributed setting. In our framework, each
site is allocated an error budget which governs when the
site communicates stream state information to the central
processing site (for estimating set-expression cardinality).
Basically, each remote site associates achargewith every
stream element that is inserted or deleted since stream state
was last transmitted to the central site. Only when the sum
of element charges at a site exceeds the site’s error budget
does it communicate the current stream state information
to the central site. Our framework allows for flexibility in
how elements are assigned charges – methods for com-
puting charges are only required to satisfy certain basic
properties needed for correctness in terms of providing the
stipulated error guarantees. Obviously, methods that return
smaller charges for elements are more desirable since they
result in lower communication overhead.

• Techniques that Incorporate Global Knowledge to
Reduce Communication. In many distributed stream-
ing environments, the frequency distribution of stream
elements will be skewed with certain elements occurring
more frequently than others. For example, in the flows
collected from an ISP’s border routers, IP addresses
corresponding to popular Web sites like Yahoo, Google,
Amazon, etc. will be contained in a disproportionately
large number of flows. Now, if such a frequently occurring

313

element is inserted into a stream at a site (where it does
not appear previously), then we do not need to charge for
it since the element must already be present at the central
site, and thus the insert has no effect on the set-expression
cardinality at the central site. Similarly, the charge for the
deletion of a frequent element can be distributed across
all the sites where the element occurs since the element
would need to be deleted at all these sites to truly go away.
Thus, global knowledge of frequent stream elements can
lead to lower overall communication costs due to reduced
element charges at each site. We propose protocols for
disseminating this global information to the various sites
while incurring minimal message overhead.

• Techniques that Exploit Set-Expression Semantics
to Reduce Communication. We develop schemes that
exploit the semantics of set expressions to obtain further
reductions in element charges. For example, in the
expressionS ∪ T , if an elemente is already present
in streamS, then inserts and deletes ofe from T have
no effect on the set-expression result, and thus we do
not need to charge for them. We propose a logic-based
approach where we capture the conditions for a change
in the set-expression result in a boolean formula. Models
for the boolean formula then represent scenarios for result
changes and are used to compute element charges. Finally,
in order to address the (provably required) exponential
time complexity of model enumeration, we develop an
efficient heuristic for computing element charges whose
running time is polynomial in the number of streams.

• Experimental Results Validating our Approach. We
present the results of an experimental study (with a real-
life TCP traffic data set and multiple synthetic data sets)
that demonstrate the effectiveness of our distributed algo-
rithms for estimating set-expression cardinality. Our results
indicate that, compared to obvious approaches, our estima-
tion algorithms can lead to reductions in communication
costs ranging from a factor of 2 (for the real-life data set)
to more than 6 (for synthetic data sets) while guaranteeing
high precision for the returned estimates.

Note that while our primary focus in this paper is on esti-
mating set-expressioncardinality, our techniques are quite
powerful, and can also be used to approximate set expres-
sion results(i.e., sets of data elements) at the central site.
This can be used by the coordinator to run other potentially
complex queries on top of it, which could be more useful
than just cardinality queries. For example, in the DDoS
scenario, the results could be filtered to identify malicious
hosts, or in theAkamaiexample, to identifyuserscorre-
sponding to certain traffic patterns.

2 System Model

In this section, we describe our distributed update-
stream processing architecture and formally define the set-
expression cardinality estimation problem addressed in this
paper. Consider a distributed environment withm+1 sites
andn update streams. Stream updates arrive continuously

E

Sn−1S0
(Site 0)

S0,m Sn−1,mS0,1 Sn−1,1

Messages
Update State

Substreams Site mSite 1

Coordinator

Estimate | E |

Substreams

Figure 1:Distributed Stream Processing Model.

at remotesites1, . . . , m, and site 0 is a specialcoordinator
site that is responsible for generating answers to user (set-
expression cardinality) queries. We adopt a similar model
to [2, 12] where there is no direct communication among
remote sites ; instead, as illustrated in Figure 1, each re-
mote site exchanges messages only with the coordinator,
providing it with state information for streams at the site.
Note that this distributed communication model is repre-
sentative of a large class of real-life applications including
network monitoring where a central Network Operations
Center (NOC) is responsible for processing network traffic
statistics collected at the switches and routers distributed
across the network.

At each remote sitej, the n update streams rendern
distinct multi-setsS0,j , . . . , Sn−1,j of elements from the
integer domain[M] = {0, . . . , M − 1}. Each stream up-
date at remote sitej is a triple of the form< i, e,±v >,
wherei identifies the multi-setSi,j being updated,e ∈ [M]
is the specific data element whose frequency changes, and
±v is the net change in the frequency ofe in Si,j , i.e., “+v”
(“−v”) denotesv insertions (resp., deletions) ofe. We as-
sume that all deletions in our update streams are legal; that
is, an update< i, e,−v > can only be issued if the net
frequency ofe in Si,j is at leastv. Note that delete opera-
tions help to substantially enrich our streaming model; for
example, with deletions, we can easily handle sliding win-
dow queries by simply issuing a delete operation for each
expired stream update that is no longer in the window of
interest. For eachi = 0, . . . , n − 1, let Si = ∪jSi,j . Thus,
Si reflects the global state of theith update stream, while
each multi-setSi,j captures the local state of streami at
sitej. In the remainder of the paper, we will loosely refer
to Si andSi,j as streams even though the intended meaning
is the current states of the underlying streams.

Our focus is on the problem of answering set-expression
cardinality queries over the underlying collection of dis-
tributed update streams. Specifically, given a set expres-
sion E over streamsS0, . . . , Sn−1 (with the standard set
operators∪,∩, and− as connectives), we seek to estimate
|E|, the number of distinct elements inE. For example,
|S0 ∩ S1| is the number of distinct elements in the inter-
section of streamsS0 andS1. If for m = 2 remote sites,
S0,1 = {a}, S0,2 = {a, b}, S1,1 = {b} andS1,2 = {c}, then

314

S0 = {a, b} andS1 = {b, c}. Thus,E = S0 ∩ S1 = {b}
and|E| = 1.

The problem of estimating|E| at the coordinator is com-
plicated in our setting because the substreamsSi,j that
comprise each distributed streamSi are distributed across
the remote sites. Accurately tracking|E| by having remote
sites continuously ship every stream update to the coordi-
nator is clearly impractical for high data rate streams. Con-
sequently, in order to reduce the burden on the communi-
cation infrastructure, we allow|E| to be approximated, but
enforce a bound on the error in the final estimate. Specifi-
cally, for a prespecified error toleranceε, we seek to com-
pute an estimatêX for X = |E| (at the coordinator) such
thatX − ε ≤ X̂ ≤ X + ε. Theε error parameter provides
system designers with a useful knob that enables them to
trade accuracy for efficiency. Essentially, the larger the er-
ror tolerance of an application, the smaller the communica-
tion overhead required to ensure that the estimateX̂ meets
theε accuracy guarantee.

3 Estimating Single Stream Cardinality
We begin by describing our distributed algorithm for the
case when the expressionE whose cardinality we wish to
estimate is a single streamSi (which is the union of sub-
streamsSi,j at remote sites). Thus, we are basically look-
ing to estimate the number of distinct elements in stream
Si. Our scheme for the distinct elements estimation prob-
lem illustrates the key concepts underlying our approach as
well as the overall structure of our distributed solutions.In
the next section, we will generalize our solution for a single
stream to handle arbitrary set expressions.

3.1 Overview

Our objective is to be able to continuously estimate|E| at
the coordinator withε accuracy. To achieve this, we dis-
tribute the error tolerance ofε among them remote sites.
We denote the error budget allocated to sitej by εj; thus,
∑

j εj = ε. While there are multiple ways to allocate error
budgets to sites [12], a simple approach is to allocate these
proportional to the stream update rates at the sites. The er-
ror parameterεj essentially dictates when sitej sends the
current states of substreamsSi,j at sitej to the coordinator.
We denote bŷSi,j the most recent state of substreamSi,j

communicated (by sitej) to the coordinator. In addition to
Si,j , sitej also stores in its local memory, the transmitted
statesŜi,j for substreams at the site. For each streamSi,
the coordinator constructs the global stateŜi by taking the
union of all the local substream statesŜi,j received from
the remote sites. Thus,̂Si = ∪jŜi,j . Now let Ê be the
result of evaluating expressionE on the stateŝSi instead of
Si. The coordinator estimates the cardinality of set expres-
sionE as|Ê|.

We would like to emphasize here that if remote sites
have limited memory, then our scheme can be modified to
store acompact sketch synopsisfor each substream (instead
of the complete substream state). Due to space constraints,

we describe details of our sketch-based distributed algo-
rithm in [5], and assume that each remote site keeps track
of substream states in our current presentation.

In order to guarantee that the estimate|Ê| is correct, we
need to ensure that|E| − ε ≤ |Ê| ≤ |E| + ε. A simple
approach (based on adapting the scheme of [12]) for ensur-
ing this forE = Si is as follows. At each remote sitej, if
either of|Si,j − Ŝi,j | or |Ŝi,j − Si,j | exceedsεj, then site
j sends the most recent stateSi,j to the coordinator. One
can easily show that this simple scheme guarantees that at
all times,|E − Ê| ≤ ε and|Ê − E| ≤ ε, and is thus cor-
rect. For instance, consider an elemente in E − Ê. The
element must belong toSi,j − Ŝi,j at some sitej, and since
|Si,j − Ŝi,j | ≤ εj , it must be counted against the error bud-
get εj at sitej. As a result, since

∑

j εj = ε, we get that

|E − Ê| ≤ ε. Further, since|E| − |Ê| ≤ |E − Ê|, we
obtain that|E| − |Ê| ≤ ε. Similarly, it is possible to show
that |Ê| − |E| ≤ ε, and thus the estimate|Ê| is within ε
error of|E|.

Intuitively, the simple scheme described above asso-
ciates a chargeφj(e) with each elemente at every remote
site j, and if the total of these charges exceedεj , then the
remote site communicates state information to the coordi-
nator. More formally, letφ+

j (e) = 1 if e ∈ (Si,j − Ŝi,j),

φ−

j (e) = 1 if e ∈ (Ŝi,j − Si,j), andφ+
j (e) = φ−

j (e) =

0, otherwise. As a result,
∑

e φ+
j (e) = |Si,j − Ŝi,j |

and
∑

e φ−

j (e) = |Ŝi,j − Si,j |. Thus, there is a mes-
sage exchange between sitej and the coordinator if either
∑

e φ+
j (e) > εj or

∑

e φ−

j (e) > εj.
In the simple scheme, element charges are computed

based entirely on the local state information available at
each site. We next show that by exploiting global knowl-
edge about elemente, we can reduce the chargeφj(e) for e,
and as a consequence, the overall message traffic between
remote sites and the coordinator. The key observation we
make is that in many stream-oriented domains, there will
be a certain subset of globally “popular” elements. For in-
stance, in an IP network monitoring scenario, destination
IP addresses corresponding to popular Web sites like Ya-
hoo, Amazon, Google etc. will frequently appear in the
flow records collected from network routers. An important
characteristic of each such globally popular element is that,
at any given point in time, it will appear in substreams at
multiple sites although the exact sites that contain the ele-
ment may vary over time.

Now suppose that for a popular elemente, each remote
site (approximately) knows the number of substream states
Ŝi,j that containe. Specifically, for streamSi, letθi(e) > 1
be a lower bound on the number of sites for whiche appears
in the Ŝi,j states communicated to the coordinator. Then,
even if elemente is newly inserted intoSi,j at sitej (that
is, e ∈ (Si,j − Ŝi,j)), we should not charge for it sincee
is already inŜi and, thus, cannot possibly be inSi − Ŝi.
Similarly, if e is deleted fromSi,j at sitej (that is, e ∈

(Ŝi,j − Si,j)), then in order fore to be deleted fromSi and

315

thus be inŜi−Si, e must be deleted fromSi,j at leastθi(e)
sites. Thus, it suffices to chargeφ−

j (e) = 1/θi(e) (instead
of 1) for the local delete ofe at each sitej. This way, if
local deletions at the≥ θi(e) sites causee to be globally
deleted (that is,e ∈ (Ŝi − Si)), then the cumulative charge
∑

j φ−

j (e) for e across the sites is at least 1. As a result,

since
∑

e φ−

j (e) ≤ εj at each sitej, this total charge of
1 is counted against the variousεjs, and correctness is not
compromised.

3.2 Distributed Algorithm

We are now ready to describe the details of our distributed
scheme for producing a correct cardinality estimate|Ê| at
the coordinator. For each elemente ∈ Ŝi, the coordinator
maintains a countCi(e) of the number of remote sites
whose stateŝSi,j contain the elemente. Elements whose
countsCi(e) exceed a thresholdτ are considered to be
frequent, and added to a frequent element setFi for stream
Si. The coordinator also uses the countCi(e) for each
elemente ∈ Fi to compute a lower bound threshold
θi(e) such that the invariantCi(e) ≥ θi(e) always holds.
It continuously communicates changes in the frequent
element setsFi and the threshold valuesθi(e) to the remote
sites so that these can be used to compute element charges
φj(e) at the sites (as described in the previous subsection).
Thus, in order to keep the message overhead under control,
the coordinator does not send exact element countsCi(e)
to remote sites, but rather disseminates the thresholds,
as described in the paragraph below. Each remote sitej
keeps track of the sum of local element charges

∑

e φj(e)
in variableΦj . Further, whenΦj becomes greater thanεj,
it sends the deltas∆+

i = Si,j − Ŝi,j and∆−

i = Ŝi,j − Si,j

that capture the local state changes for substreamSi,j since
site j last transmitted state information to the coordinator.
(Note that the deltas aresetsand not multi-sets).

Coodinator Actions. Figure 2 depicts the actions per-
formed by the coordinator when it receives the deltas∆+

i

and∆−

i for substreamSi,j from site j. The coordinator
employs the received deltas to first update element counts
Ci(e) and the stream statêSi stored at the coordinator. (Re-
call that the setŝSi are used to generate the final estimate
|Ê|.) It then uses the new countsCi(e) to adjust the fre-
quent element setFi, and the threshold valuesθi(e) for
frequent elements. It also informs all the remote sites of
changes toFi andθi(e) by sending them “make frequent”
and “adjust threshold” control messages, which trigger the
remote sites to apply the same changes to their local copies
of Fi andθi(e). The control messages thus ensure that the
values ofFi andθi(e) are synchronized between the coor-
dinator and remote sites.

The correctness of our distributed scheme hinges on the
fact that for each elemente ∈ Fi, the threshold valueθi(e)
is always a lower bound on the number of sitesj for whom
e is in the local statêSi,j sent to the coordinator. Thus,
our scheme for modifyingFi andθi(e) needs to preserve

Procedure COORDINATOR(i,∆+

i , ∆−

i)
Input: Newly inserted (∆+

i) and deleted (∆−

i) elements for some
substreamSi,j .

begin
1. foreach elemente ∈ ∆−

i do {
2. Ci(e) := Ci(e) − 1;
3. if (Ci(e) = 0) then Ŝi := Ŝi − {e};
4. if (e ∈ Fi and Ci(e) < τ) {
5. Fi := Fi − {e};
6. Send “make infrequent” control msgs fore to all remote sites;
7. }
8. else if (e ∈ Fi and Ci(e) < θi(e)){
9. θi(e) := θi(e)/2;
10. Send “adjust threshold” control msgs with new threshold
11. θi(e) for e to all remote sites;
12. }
13.}
14.foreach elemente ∈ ∆+

i do {
15. Ci(e) := Ci(e) + 1;
16. if (Ci(e) = 1) then Ŝi := Ŝi ∪ {e};
17. if (e 6∈ Fi and Ci(e) ≥ 2τ) {
18. Fi := Fi ∪ {e};
19. θi(e) := τ ;
20. Send “make frequent” control msgs fore to all remote sites;
21. }
22. else if (e ∈ Fi and Ci(e) ≥ 4θi(e)){
23. θi(e) := 2θi(e);
24. Send “adjust threshold” control msgs with new threshold
25. θi(e) for e to all remote sites;
26. }
27.}
end

Figure 2:Coordinator Actions for Processing Remote Deltas.

the invariantCi(e) ≥ θi(e) while controlling the num-
ber of messages between the coordinator and remote sites.
Clearly, to maintain the invariant, the coordinator needs to
send messages to all sites every time the countCi(e) drops
below the current thresholdθi(e) for an elemente ∈ Fi.
Consequently, in order to prevent minor fluctuations in the
value ofCi(e) from generating excessive amounts of con-
trol message traffic, our strategy is to try and keep a suffi-
cient gap betweenCi(e) andθi(e). Thus, for instance, if
Ci(e) becomes less thanθi(e), then we simply halve the
value ofθi(e). Similarly, we double the value ofθi(e) only
whenCi(e) exceeds4θi(e), and (conservatively) consider
an element to be frequent only ifCi(e) exceeds2τ .

An additional mechanism that we found to be effective
for keeping the volume of control messages low (in our
experimental study reported in Section 5) is to double
θi(e) only after the countCi(e) is somewhat stable (that
is, has stayed above3θi(e) for a certain time period after
crossing4θi(e)). Using this strategy, we found that the
number of control messages is relatively insensitive to the
value of the threshold parameterτ . Finally, observe that
while increasingθi(e) is not required for preserving the
invariant Ci(e) ≥ θi(e), larger θi(e) values are key to
reducing the chargesφj(e) that sites incur for elements.

316

Procedure REMOTE(i, e, j)
Input: Update streamSi, elemente and sitej.
begin
1. old+ := φ+

j (e);
2. old− := φ−

j (e);
3. [φ+

j (e), φ−

j (e)] := COMPUTECHARGE(e,j, E);
4. Φ+

j := Φ+

j + (φ+

j (e)− old+);
5. Φ−

j := Φ−

j + (φ−

j (e)− old−);
6. if (Φ+

j > εj ∨ Φ−

j > εj) {
7. for l := 1 to n do {

8. ∆+

l := Sl,j − Ŝl,j ;
9. ∆−

l := Ŝl,j − Sl,j ;
10. Ŝl,j := Sl,j ;
11. }
12. Send “update state” message with triples< l, ∆+

l , ∆−

l >
13. for all substreamsSl,j to the coordinator;
14. foreach elemente, φ+

j (e) := φ−

j (e) := 0;
15. Φ+

j := Φ−

j := 0;
16.}
end

Procedure COMPUTECHARGE(e,j, E = Si)
Input: Elemente for whom to compute charge at sitej,

expressionE.
Output: Chargesφ+

j (e) andφ−

j (e).
begin
1. φ+ := φ− := 0;
2. if (e 6∈ Fi) {
3. if (e ∈ (Si,j − Ŝi,j)) then φ+ := 1;
4. else if (e ∈ (Ŝi,j − Si,j)) then φ− := 1;
5. }
6. else /* e ∈ Fi */
7. if (e ∈ (Ŝi,j − Si,j)) then φ− := 1/θi(e);
8. return [φ+, φ−];
end

Figure 3:Remote Site Actions for Computing Charges.

Remote Site Actions. Figure 3 depicts the actions taken by
remote sitej when an elemente is inserted into or deleted
from Si,j (due to a stream update), or the frequent setFi

or threshold valueθi(e) gets modified (due to a “make fre-
quent” or “adjust threshold” control message fore from
the coordinator). Essentially, remote sitej computes new
chargesφ+

j (e) andφ−

j (e) for e, and appropriately adjusts
the total site chargesΦ+

j andΦ−

j . Further, if either of these
charges exceedsεj , the deltas for all substreamsSl,j are
sent to the coordinator; thus,Ŝl,j = Sl,j , and consequently,
all chargesφj(e) are reset to 0. (Note that sending the
deltas for all ‘other’ substreams to the coordinator is not
required when the expressionE = Si since there is only1
substream at each site, but is needed for the more general
set expressions considered in the next section.)

Procedure COMPUTECHARGE in Figure 3 is tailored
for the single stream case (that is,E = Si). Later in
the paper, we will present alternate charge computation
procedures that apply to general set expressions. In a

nutshell, COMPUTECHARGE associates a charge of 1
for non-frequent elements that are newly inserted into or
deleted fromSi,j since the last message to the coordinator.
For frequent elementse ∈ Fi, chargeφ+

j (e) = 0 if e is
newly inserted, and chargeφ−

j (e) = 1/θi(e) if e is locally
deleted.

Correctness Argument. For ease of exposition, in the
arguments pertaining to the correctness of our distributed
scheme, we assume that all message transmissions and the
actions they trigger are performed instantaneously. While
this is clearly not a realistic assumption, our scheme can be
extended to simulate such an instantaneous execution (at
a logical level) by having sites send special acknowledge-
ments for messages once all the actions triggered by the
messages have completed. Details can be found in [5].

The chargesφ+
j (e) and φ−

j (e) computed by COM-
PUTECHARGE can be shown to satisfy the following two
invariants:

For eache ∈ E − Ê,
∑

j φ+
j (e) ≥ 1 (1)

For eache ∈ Ê − E,
∑

j φ−

j (e) ≥ 1 (2)

Thus, our distributed scheme is correct because it
can be shown (see [5]) that Equation (1) implies that
|E| − ε ≤ |Ê| and Equation (2) implies that|Ê| ≤ |E|+ ε.

Using Sketch Synopses to Reduce Space/Communi-
cation. The space usage of our distributed algorithm can
be reduced by storing a compact sketch synopsis for each
substreamSi,j instead of the entire substream state. Our
scheme would then provide probabilistic as opposed to de-
terministic error guarantees. For instance, we can maintain
a (delete-resistant) distinct sample [7] for each substream,
and use the substream samples in place of the substream
states in our distributed scheme. Due to lack of space, we
defer the details of our distinct sample-based estimation al-
gorithms and hash-based techniques for obtaining delete-
resistant distinct stream samples to the full paper [5].

4 Estimating Cardinality of Arbitrary Set
Expressions

In this section, we generalize our single stream solution
(described in the previous section) to tackle the problem
of estimating (to withinε absolute error) the cardinality
of an arbitrary set expressionE involving the distributed
update streamsS0, . . . , Sn−1. Our distributed scheme
for general set expressions is identical to the scheme for
single streams except for the charging procedure COM-
PUTECHARGE. Thus, as before, for each streamSi, the
coordinator maintains the stateŝSi, the frequent setsFi,
and the threshold valuesθi(e) for the number of sitesj
whose shipped statêSi,j contains elemente. The cardi-
nality estimate at the coordinator is|Ê|, whereÊ is the
result of evaluating expressionE using Ŝi instead ofSi.
The coordinator processes the deltas from a remote site for
an arbitrary streamSi as described in procedure COORDI-
NATOR (see Figure 2). Similarly, sitej executes the actions

317

described in procedure REMOTE (see Figure 3) every time
there is a change in the substream stateSi,j , the frequent
setFi, or the local threshold valueθi(e).

In the charging procedure for the single stream case,
we charged 1 for inserts and deletes of elementse 6∈ Fi,
and if e ∈ Fi, inserts were free and deletes were charged
1/θi(e). However, whenE contains multiple streams,
computing the chargeφj(e) for an elemente is more in-
volved sincee may be concurrently inserted/deleted from
more than one substreamSi,j at sitej. A straightforward
approach that overcomes this complication is to set the
chargesφ+

j (e) = φ−

j (e) = 1 if for any of the substreams

Si,j , eithere ∈ (Si,j − Ŝi,j) or e ∈ (Ŝi,j −Si,j). However,
while this straightforward scheme is obviously correct, it
is too conservative, and may end up overcharging in many
situations. This, in turn, could lead to frequent state trans-
mission messages from remote sites to the coordinator.

Example 4.1 Consider distributed streamsS1, S2 andS3,
and let expressionE = S1 ∩ (S2 − S3). For elemente
at sitej, let e ∈ Ŝ3,j ande ∈ S3,j . Clearly,e ∈ Ŝ3 and
e ∈ S3, and thuse 6∈ Ê ande 6∈ E. As a result, even
if e ∈ (Ŝ1,j − S1,j) or e ∈ (S2,j − Ŝ2,j), we should not
charge for elemente at sitej sincee cannot possibly be in
eitherE − Ê or Ê − E; thus, based on the semantics of
expressionE, setting the chargesφ+

j (e) = φ−

j (e) = 0 will
still ensure correctness.

In the following subsections, for an arbitrary set expres-
sion E, we focus on the problem of computing the mini-
mum possible chargesφ+

j (e) andφ−

j (e) for afixedelement
e at sitej by leveraging the semantics of expressionE.
Our proposed charging schemes ensure that chargesφ+

j (e)

andφ−

j (e) satisfy Equations (1) and (2) (from Section 3.2),
and thus provide an accuracy guarantee ofε for the final
estimate|Ê|. Our first charging method, presented in Sec-
tion 4.1, is based on enumerating models for a boolean for-
mula corresponding to expressionE, and thus has an ex-
ponential time complexity. In Section 4.2, we develop a
heuristic that at the expense of overcharging in some situa-
tions (described later), is able to eliminate model enumera-
tion altogether, and bring down the time complexity so that
it is polynomial in the number of streams.

In the remainder of this section, we will say that a stream
Si has a local state change at sitej if eithere ∈ (Si,j−Ŝi,j)

or e ∈ (Ŝi,j − Si,j). Similarly, we will say that a stream
Si has a global state change if eithere ∈ (Si − Ŝi) or
e ∈ (Ŝi − Si).

4.1 A Model-Based Charging Scheme

Our charging procedure first constructs a boolean formula
Ψj that captures the semantics of expressionE and local
stream constraints at each sitej. It then defines the charge
φj(e) at sitej in terms of the charges for modelsM that
satisfyΨj.

4.1.1 Constructing Boolean Formula Ψj

For each streamSi, let pi andp̂i be boolean variables with
semanticse ∈ Si ande ∈ Ŝi, respectively. We construct
two boolean formulaeΨ+

j and Ψ−

j over the variablespi

andp̂i. Intuitively, Ψ+
j andΨ−

j specify the conditions that

stream statesSi andŜi must satisfy fore ∈ (E − Ê) and
e ∈ (Ê −E), respectively. The formulae also capture con-
straints onSi and Ŝi due to local knowledge at sitej of
the substream statesSi,j , Ŝi,j , and threshold valuesθi. For
example, ife ∈ Si,j , then it must be the case thate ∈ Si

(sinceSi = ∪jSi,j), and thus, variablepi must be true.
The formulaeΨ+

j andΨ−

j are built using the following
three formulae: (1) anExpressionformulaFE representing
the logic of expressionE, (2) StateformulaeĜj , Gj that
model the local knowledge that sitej has about stream
statesSi and Ŝi, and (3) aThreshold formula H that
captures the constraints due to the thresholdsθi for each
streamSi. We describe each of them below.

Expression Formula. The expression formulaFE is con-
structed recursively as follows.

1. For every streamSi in E, we replace its occurrence
by the boolean variablepi.

2. The expressionE1 ∪ E2 is translated asFE1
∨ FE2

.

3. The expressionE1 ∩ E2 is translated asFE1
∧ EE2

.
4. The expressionE1−E2 is translated asFE1

∧(¬FE2
).

For example, the set expressionE = S1 ∩ (S2 − S3) is
translated into the boolean formulaFE = p1 ∧ (p2 ∧¬p3).
It is easy to see that elemente ∈ E iff FE is true for the
stream statesSi. For instance,e ∈ S1 ∩ (S2 − S3) iff
e ∈ S1 ∧ (e ∈ S2 ∧ e 6∈ S3). FormulaF̂E is constructed
similarly, except that variablespi are replaced bŷpi.

State Formula. The state formulaeGj and Ĝj are
conjunctions of a subset of the boolean variablespi and
p̂i, respectively. Essentially, ife ∈ Si,j , then variablepi is
added toGj . Thus,Gj captures the constraints on streams
Si for whom we can infer thate ∈ Si based on local
information thate ∈ Si,j at sitej. Similarly, we construct
Ĝj by adding variablêpi to it if e ∈ Ŝi,j . Note thatGj and
Ĝj may be different for the various remote sites depending
on the substream states at each site.

Threshold Formula. The threshold formulaH only ap-
plies to boolean variableŝpi. Basically, ife ∈ Fi for stream
Si, then we add variablêpi toH . Thus,H captures the con-
straints on stream stateŝSi for whom we can deduce that
e ∈ Ŝi from the frequent element sets. Note that formula
H is identical at all sites sinceFi is the same at all sites.

We now construct the formulaeΨ+
j andΨ−

j at sitej as
follows.

Ψ+
j = (¬F̂E ∧ FE) ∧ (Ĝj ∧ Gj ∧ H)

Ψ−

j = (F̂E ∧ ¬FE) ∧ (Ĝj ∧ Gj ∧ H)

The formulaeΨ+
j andΨ−

j comprise two parts; the first part,

involving FE and F̂E , captures the conditions for one of

318

e ∈ (E − Ê) or e ∈ (Ê − E) to hold. The second part
(Ĝj ∧Gj ∧H) specifies the constraints on stream statesŜi

andSi due to local knowledge at sitej of substream states
and frequent element sets. Thus, for the boolean formula
Ψ+

j , it follows thate ∈ (E − Ê) iff Ψ+
j is true for stream

statesŜi, Si. Consequently, ifΨ+
j is unsatisfiable, then it is

impossible thate ∈ (E− Ê), and so we can setφ+
j (e) = 0.

Similarly, if Ψ−

j is unsatisfiable, then chargeφ−

j (e) = 0.
Revisiting Example 4.1 whereE = S1∩ (S2 −S3), and

elemente ∈ Ŝ3,j ande ∈ S3,j , we get that

Ψ+
j = (¬p̂1 ∨ ¬p̂2 ∨ p̂3) ∧ (p1 ∧ p2 ∧ ¬p3) ∧ (p̂3 ∧ p3)

Obviously,Ψ+
j is unsatisfiable (due to¬p3 ∧ p3), and thus,

chargeφ+
j (e) = 0. In the following subsection, we show

how models forΨj can be used to compute the charges
φj(e) whenΨj is satisfiable.

4.1.2 Computing Charges using Formula Ψj

Overview. Let us consider the problem of computing the
chargeφ+

j (e). For an arbitrary boolean formula overp̂i, pi,
we define amodelto be an arbitrary subset of∪i{pi, p̂i}.
Each modelM basically assignstruth values to variables
pi, p̂i with variablepi (p̂i) being assignedtrue iff pi ∈ M
(resp.,p̂i ∈ M); otherwise,pi (resp.,p̂i) is assignedfalse.
We say that modelM satisfies a boolean formula if the for-
mula evaluates totrue for the truth assignment specified
by M . For example, model{p̂1, p2} satisfies the formula
p̂1 ∧ p2, but the model{p̂1} does not. Now, each modelM

represents a specific scenario for statesŜi, Si. Essentially,
e ∈ Si (e ∈ Ŝi) iff pi ∈ M (resp.,p̂i ∈ M). Clearly, if
e ∈ (E − Ê) for stream statesSi, Ŝi, then the model cor-
responding to these states must satisfyΨ+

j . Further, every
modelM that satisfiesΨ+

j represents (from the local view-

point of sitej) a possible scenario for stateŝSi, Si that is
consistent with local substream states at sitej, and in which
e ∈ (E − Ê).

Our model-based approach assigns a chargeφj(M) to
each modelM that satisfiesΨ+

j at sitej. Furthermore,
since as far as sitej is concerned, any of these models can
potentially occur and causee ∈ (E − Ê), we set charge
φ+

j (e) as follows.

φ+
j (e) = max{φj(M) : ModelM satisfiesΨ+

j } (3)

Recall that for correctness, we require that ife ∈ (E − Ê),
then

∑

j φ+
j (e) ≥ 1. Thus, by choosing the chargeφj(M)

for each modelM such that
∑

j φj(M) ≥ 1 if M were to

occur, we can ensure that
∑

j φ+
j (e) ≥ 1 if e ∈ (E − Ê)

due to some modelM that satisfiesΨ+
j .

Now let us see how to compute the chargeφj(M) for a
modelM that satisfiesΨ+

j . Let P be the set of streamsSi

such that exactly one ofpi or p̂i belongs toM , i.e., either
{pi, p̂i} ∩ M = {pi} or {pi, p̂i} ∩ M = {p̂i}. Thus,P

is the set of streams that experience a global state change
in modelM . In our model-based scheme, sitej selects a
single “culprit” streamSi from P using a selection mecha-
nism that satisfies the following property.
UNIFORM CULPRIT SELECTION PROPERTY:Given a
modelM and a setP of streams with global state changes
in M , every site selects the same culprit streamSi ∈ P for
M .
Later in this subsection, we will provide one specific cul-
prit selection scheme satisfying the above property that at-
tempts to minimize the magnitude of the chargeφ+

j (e) at
site j. For the selected culprit streamSi, let chargeφ(Si)
be defined as follows.

φ(Si) =

{

1/θi(e) if e ∈ Fi

1 otherwise (4)

Intuitively, the reciprocal of this charge1/φ(Si) is the min-
imum number of sites where streamSi must have local
state changes for it to have a global state change. For in-
stance, ife ∈ Fi, then fore to be in(Ŝi − Si), e must be
in (Ŝi,j − Si,j) for at least1/φ(Si) = θi(e) sites. We de-
fine the chargeφj(M) for modelM in terms of the charge
φ(Si) for the culprit streamSi.

φj(M) =

{

φ(Si) if Si has a local state change at sitej
0 otherwise

(5)
Thus, we are able to ensure that if modelM indeed does
occur, then since the culprit streamSi has a global state
change inM , at least the1/φ(Si) sitesj at whichSi has
local state changes, chooseφj(M) = φ(Si) and thus,
∑

j φj(M) ≥ (1/φ(Si))φ(Si) ≥ 1.

Correctness Argument. The correctness of our charging
scheme follows from the lemma below.

Lemma 4.2 Let chargeφ+
j (e) be computed as described

in Equations (3), (4) and (5), and the culprit streamSi for
each modelM be selected using a scheme that satisfies the
uniform culprit selection property. Ife ∈ (E − Ê), then
∑

j φ+
j (e) ≥ 1. (An analogous lemma holds forφ−

j (e)) �

Culprit Selection. For a modelM , a possible culprit selec-
tion scheme is as follows: lexicographically order streams
Si ∈ P based on charge, index pairs< φ(Si), i >, and
choose the smallest stream in the lexicographic ordering as
the culprit. In other words, the culprit stream is the stream
with the minimum chargeφ(Si), with ties being broken in
favor of the stream with the smallest index. Clearly, since
the chargeφ(Si) for streamSi is the same across all the
sites, our simple culprit selection scheme satisfies the uni-
form culprit selection property. Thus, due to Lemma 4.2,
our charging procedure is correct. Also, observe that since
our charging procedure selects the stream with the smallest
charge as the culprit for modelM , it minimizes the maxi-
mum charge incurred forM across the sites.

Example 4.3 Consider distributed streamsS1, S2 andS3,
and let expressionE = S1 ∩ (S2 − S3). At some sitej, let
the substream states be as shown in the table below.

319

i = 1 i = 2 i = 3

Ŝi,j e e
Si,j e e

Thus, elemente is in all substream states except forŜ1,j

andS3,j . Also, lete ∈ F3, e 6∈ F1, e 6∈ F2 andθ3(e) = 4;
the meaning here is thate is contained in at least4 sub-
stream states forS3 transmitted to the coordinator. It fol-
lows thatφ(S1) = φ(S2) = 1 andφ(S3) = 1/4. Also, the
formulaΨ+

j for E at sitej is

(¬p̂1 ∨ ¬p̂2 ∨ p̂3) ∧ (p1 ∧ p2 ∧ ¬p3) ∧ (p1 ∧ p̂2 ∧ p2 ∧ p̂3)

Thus, for any modelM that satisfiesΨ+
j , it must be the

case that{p̂3,¬p3} ⊆ M . As a result,S3 ∈ P and since
the chargeφ(S3) for S3 is the smallest, it is chosen as the
culprit for all models. Consequently, sinceS3 has a local
state change at sitej, φj(M) = φ(S3) = 1/4 for all mod-
elsM that satisfyΨ+

j , and thus, the chargeφ+
j (e) = 1/4.

Furthermore, sinceΨ−

j is unsatisfiable, chargeφ−

j (e) = 0.
Now suppose that streamS3 does not have a local state

change at sitej, that is, e is neither inŜ3,j nor in S3,j.
Then, sincee ∈ F3, Ψ+

j will remain the same as before, and
S3 will still be chosen as the culprit stream for all models
M that satisfyΨ+

j . However, sinceS3 does not have a local
state change at sitej, φj(M) will be 0 for the models, and
thus chargeφ+

j (e) = 0.

Computational Complexity. In order to determine the
complexity our model-based approach, we consider the
following decision problem forφ+

j (e).

PROBLEM (MAXIMUM CHARGE MODEL): Given expres-
sionE, sitej, elemente, and constantk, does there exist a
modelM that satisfiesΨ+

j and for whichφj(M) ≥ k?
The following theorem can be proved using a reduction

from 3-SAT.

Theorem 4.4 TheMAXIMUM CHARGE MODEL problem
is NP-complete.

From the above theorem, it follows that sinceφ+
j (e) is

the maximum charge for modelsM that satisfyΨ+
j , com-

putingφ+
j (e) is intractable.

4.2 Heuristic for Charge Computation

Our model-based charging procedure enumerates all
modelsM in the worst case, and thus, has a worst-case
time complexity ofO(22n). While this may be reasonable
for small values ofn (e.g., 3 or 4 streams), the model
enumeration-based approach will clearly not scale when
set expressions involve a moderately large number of
streams, a scenario likely in practice. (e.g. in theAkamai
case). In this section, we present a heuristic solution for
computing the chargesφ+

j (e) andφ−

j (e) for an elemente
at sitej. Our heuristic procedure has a time complexity
that is polynomial in the number of streamsn, and

computes identical charge values as the model-based
approach as long as every stream appears at most once in
the expressionE. However, our heuristic may overcharge
for elemente in certain cases when there are duplicate
occurrences of streams in expressionE.

Overview. Our model-based charging procedure essen-
tially computesφ+

j (e) as the maximum stream charge
φ(Si) such that (1)Si has a local state change at sitej, and
(2) Si is the culprit stream for some modelM that satisfies
Ψ+

j . (Recall that the culprit streamSi for modelM is the
stream with the smallest charge, index pair< φ(Si), i >
from among streams with a global state change inM .)
Thus, for a streamSi, if we can develop a test for quickly
determining ifSi is the culprit stream for some model that
satisfiesΨ+

j , then we can speed up the computation of
chargeφ+

j (e). This is the key idea underlying our heuristic.
Let T denote the expression tree forE with leaves

and internal nodes corresponding to streams and set
operators inE, respectively. For each nodeV of T , let
E(V) be the subexpression for the subtree rooted at node
V , and F̂E(V) and FE(V) be the formulae forE(V) as
defined in Section 4.1.1. For example, in the expression
tree for E = S1 ∩ (S2 − S3), the subexpression for
the subtree rooted atV =“−” is E(V) = S2 − S3, and
FE(V) = p2∧¬p3. Now, in order to quickly test if a stream
Si is the culprit stream for some model satisfyingΨ+

j ,
our heuristic keeps track of culprit streams (for models) at
each node of the expression tree using the notion ofcharge
triples. Formally, suppose thatM is a model that satisfies
the local constraints(Gj ∧ Ĝj ∧ H) at sitej. At nodeV
in T , we define the charge triple for modelM , denoted
by t(M, V), as the triple(a, b, x) with the following values:

• If M satisfiesF̂E(V), then bita = 1; otherwise,a = 0.
Similarly, if M satisfiesFE(V), then bitb = 1; otherwise
b = 0.

• If none of the streams inV ’s subtree have a global state
change in modelM , thenx = ∞. (The charge, index
pair < φ(S∞),∞ > is considered to be greater than
< φ(Si), i > for all streamsSi.) Otherwise,x is the index
of the culprit stream forM in V ’s subtree; that is,x = i,
whereSi is the stream with the smallest charge, index pair
< φ(Si), i > from among streams (inV ’s subtree) with a
global state change inM .

For example, consider a modelM that satisfies
¬F̂E(V) ∧ FE(V) (in addition to local constraints). Then,
if the culprit streamSi for M in V ’s subtree is defined, the
charge triplet(M, V) for M at nodeV is (0, 1, i); other-
wise, t(M, V) = (0, 1,∞). Our charging heuristic com-
putes, in a bottom-up fashion, a setC of charge triples for
each nodeV of T . Furthermore, it ensures that for every
modelM that satisfies(Gj ∧ Ĝj ∧H), the computed setC
for nodeV contains the triplet(M, V). Here, it is impor-
tant to note that the size ofC (in the worst case) is linear in
the number of streamsn – this is because there are at most
O(n) distinct charge triplest(M, V) (one for each combi-

320

nation ofa, b andx).
Now, consider the charge triple setC for the rootV

of T . Clearly, sinceE(V) = E, if a modelM satisfies
Ψ+

j = (¬F̂E ∧FE)∧(Ĝj ∧Gj ∧H) and has culprit stream
Si, then triplet(M, V) = (0, 1, i) must be inC. Thus, we
can quickly determine if a streamSi is the culprit stream
for some model satisfyingΨ+

j by checking ifC contains
the triple(0, 1, i). Hence, by selectingφ+

j (e) to be the max-
imum stream chargeφ(Si) such that (1)Si has a local state
change at sitej, and (2) triple(0, 1, i) ∈ C, we can ensure
thatφ+

j (e) ≥ max{φj(M) : ModelM satisfiesΨ+
j } and

thus, due to Lemma 4.2, our charging heuristic is correct.
Due to lack of space, we defer the details of our bottom-

up charge triple computation algorithm to [5] but illustrate
its execution in the following example.

Example 4.5 Consider the distributed scenario described
in Example 4.3 involving streamsS1, S2 andS3, and ex-
pressionE = S1 ∩ (S2 − S3). Suppose that elemente is
in all substream states except forŜ1,j andS3,j, and also
e ∈ F3 andθ3(e) = 4. Thus,φ(S1) = φ(S2) = 1 and
φ(S3) = 1/4. The following figure illustrates the charge
triple sets computed for the nodes of the expression tree for
E by our charging heuristic.

S1

S3S2

(1,0,3)

(0,1,3)

(0,0,1)
(0,1,3)

(0,1,1)

(0,0,)

(0,0,)

(1,1,) (1,1,)

(1,1,)

.

..

The charge triple set for each leafSi is first initialized
to containt(M, Si) for modelsM that satisfy local con-
straints. For example, sincee is in S1,j but not inŜ1,j , it
follows thatp1 ∈ Gj and thus for modelsM that satisfy
(Gj ∧ Ĝj ∧ H), p1 ∈ M but p̂1 may or may not be inM ;
so the charge triple set forS1 contains the triples(1, 1,∞)
(for models that contain̂p1) and(0, 1, 1) (for models that
do not contain̂p1).

Next, the charge triple(a, b, x) for each internal nodeV
is computed by combining pairs of triples(a1, b1, x1) and
(a2, b2, x2) from V ’s two children. Suppose thatop is the
boolean operation corresponding to the set operation forV ;
the boolean operations for∪, ∩ and− are∨, ∧ and∧¬, re-
spectively. Thena = a1 op a2, b = b1 op b2 andx is set
to one ofx1 or x2, whichever has the smaller charge, index
pair < φ(Sxi

), xi >. For example, the charge triples for
node “−” of T are generated by combining triples for nodes
S2 andS3. Triples(1, 1,∞) and(1, 1,∞) when combined
result in the triple(0, 0,∞) (since1 ∧ ¬1 = 0). Simi-
larly, combining triples(1, 1,∞) and(1, 0, 3) results in the
triple (0, 1, 3) (since1 ∧ ¬0 = 1, and< φ(S3), 3 > is less
than< φ(S∞),∞ >). Finally, the sets forS1 and “−”
are combined to obtain the charge triple setC for the root
node “∩”, which is then used by our charging heuristic to

compute the chargesφ+
j (e) andφ−

j (e). SinceC contains
the triple(0, 1, 3) andS3 has a local state change at sitej,
chargeφ+

j (e) = φ(S3) = 1/4. Further, sinceC does not
contain a triple of the form(1, 0, x), φ−

j (e) = 0.

Correctness Argument. The following lemma establishes
the correctness of our charging heuristic.

Lemma 4.6 Consider a modelM that satisfies local con-
straints(Gj ∧ Ĝj ∧ H) at sitej. Then, for an arbitrary
nodeV in T , charge triplet(M, V) is in the set of charge
triples forV computed by our heuristic.

Computational Complexity. The maximum size of a
charge triple set for a node isO(n), and thus, the worst-case
time complexity of our charging heuristic can be shown to
beO(n2s), wheres is the size of set expressionE [5].

The following lemma implies that whenE contains no
duplicate streams, our heuristic returns the same charge
values as the model based approach.

Lemma 4.7 Let E be a set expression in which each
stream appears at most once. For an arbitrary nodeV in
T , charge triplet is in the set of charge triples forV com-
puted by our heuristicif and only if t = t(M, V) for some
modelM satisfying(Gj ∧ Ĝj ∧ H) at sitej.

5 Experimental Study
In this section, we present the results of an empirical study
of our distributed set-expression cardinality estimational-
gorithms with real-life as well as synthetic data sets. The
main objective of this study is to gauge the effectiveness of
our approximation techniques in cutting down the volume
of message traffic. Our results indicate that compared to
naive approaches, our estimation algorithms can lead to re-
ductions in communication costs ranging from a factor of 2
(for real-life data sets) to more than 6 (for synthetic data).

5.1 Testbed and Methodology

Algorithms for Query Answering. We implemented our
distributed algorithm from Section 3.2 where the coordina-
tor executes the actions in procedure COORDINATOR (see
Figure 2) to process substream deltas, and each remote site
performs the actions in procedure REMOTE (see Figure 3)
to detect error violations. In procedure COORDINATOR, we
choose the threshold parameter for considering elements to
be frequent asτ = 4. In our experiments, we observed
that the conservative policy (described in Section 3.2) of
“doubling θi(e) only after the countCi(e) has stabilized”
increases the robustness of our algorithm by making the
number of control messages virtually independent of the
choice ofτ . Further, we employ our expression tree-based
charging heuristic procedure to compute element charges
at each remote site. We will refer to this implementation of
our distributed scheme asTree-based algorithm.

To test the efficacy of our tree-based algorithm, we com-
pare it to a naive algorithm in which the coordinator does

321

0

100

200

300

400

500

600

700

15 20 25 30 35 40 45 50 55 60

Co
mm

un
ica

tion
 co

st (
in t

ho
usa

nd
s)

Error tolerance

Single stream

Naive
Tree-based (z = 0.75)
Tree-based (z = 1.0)

Tree-based (z = 1.25)

Figure 4:Distinct Values Query.

0

500

1000

1500

2000

15 20 25 30 35 40 45 50 55 60

Co
mm

un
ica

tion
 co

st (
in t

ho
usa

nd
s)

Error tolerance

Set expressions (z = 1)

Naive
Tree-based (Set exp 1)
Tree-based (Set exp 2)

Figure 5:Set Expression Query.

0

50

100

150

200

250

300

350

400

30 35 40 45 50 55 60

Co
mm

un
ica

tion
 co

st (
in t

ho
usa

nd
s)

Error tolerance

Single stream

Naive
Tree-based

Figure 6:Distinct Values Query.

not send any control messages to remote sites. Instead,
each remote sitej simply keeps track of the number of
elements that have been inserted or deleted from any of
the substreamsSi,j since stream state information was last
communicated to the coordinator. If this element count ex-
ceeds the error budgetεj for the site, then it transmits all the
substream deltas to the coordinator. Essentially, the naive
algorithm adapts the scheme of [12] to our set-expression
setting; it considers the chargesφ+

j (e) andφ−

j (e) to be 1 if
elemente is newly inserted/deleted from any substream at
site j completely oblivious of global element frequencies
and set-expression semantics.

In the above two algorithms, we distributed the error
tolerance budgetε uniformly across them sites; thus,
eachεj = ε

m
. Recall thatε represents theabsolute error

and not the relative error tolerance. For both real-life as
well as synthetic data sets, we found the performance of
this uniform distribution policy to be comparable to more
sophisticated schemes that allocate error budgets to the
various sites proportional to stream update rates.

Data Sets. We experimented with multiple synthetic data
sets where we varied the frequency distribution for stream
elements and one real-life data set.
•Synthetic data sets.Our synthetic data stream genera-
tor sequentially outputs 1 million stream updates for the
n streams at 16 remote sites. For each update, it randomly
selects the substreamSi,j to be updated at one of the 16 re-
mote sites. The elemente for the update is chosen from the
domain[1000] = {0, . . . , 999} following a Zipfian distri-
bution. Essentially, the zipf parameterz provides a knob to
control the skew in the frequency with which elements in
[1000] are updated. If the selected elemente is not present
in substreamSi,j , then the update is treated as an insert op-
eration. Otherwise, the update is either an insert or a delete
with a slight bias towards deletes to ensure that elements
are continuously inserted and deleted from substreams.
•Real-life data set. We used the LBL-TCP-3 data set1

which is a packet trace containing two hour’s worth of
all wide-area TCP traffic between the Lawrence Berkeley
Laboratory and the rest of the world. We considered
500,000 records from the data set, where each record
includes a timestamp, source host and destination host

1Available from http://ita.ee.lbl.gov/html/contrib/LBL-TCP-3.html.

field. Even though the trace was collected at a single
site, we treat it as if it were collected in a distributed
fashion at 16 sites. Thus, each record corresponds to an
insert operation for a single distributed stream at one of
the 16 sites and whose arrival time is given by the record
timestamp. Further, we delete each record using a sliding
window of 2 seconds; that is, we issue a delete for each
record exactly 2 seconds after its insertion into the stream.

Performance Metrics. Similar to [2], we use the num-
ber of messages exchanged between the coordinator and
the remote sites as a measure of the communication costs
incurred by the tree-based and naive algorithms. The ratio-
nale for this is that in our study, we found message sizes to
be generally small (≤ 200 bytes); as a result, the number
of messages is an appropriate metric to compare the perfor-
mance of the two algorithms.

5.2 Experimental Results
5.2.1 Synthetic Data Sets
In our experiments, we compare the message overhead
of the tree-based and naive approaches as the skewz in
element update rates and the error toleranceε are varied.
In the following, we first consider a single stream scenario
where our goal is to estimate the number of distinct values
in a single distributed stream. This case essentially allows
us to isolate the performance improvements realized
by our tree-based algorithm as a result of propagating
global frequency threshold information. We then turn our
attention to general set expressions to further explore the
gains obtained due to exploiting set-expression semantics.

Single Stream Cardinality Estimation. In Figure 4, we
plot the communication costs for the tree-based and naive
algorithms as the error toleranceε is varied. In Figure 4,
we consider three values forz (0.75, 1 and 1.25), but only
plot a single curve for the naive scheme since the message
traffic does not change much as the element update skew is
altered. As expected, in the graph of Figure 4, the messag-
ing overhead for both algorithms decreases as the accuracy
requirements are relaxed. Furthermore, for all the error and
skew values shown in Figure 4, our tree-based algorithm
outperforms the naive scheme by a factor of at least 5. The
reason is that as elements are randomly inserted and deleted
from the various substreams, a significant fraction of them
occur at more thanτ = 4 sites, and are thus considered to

322

be frequent. Now, for such frequently occurring elements
e, our tree-based algorithm propagates the threshold values
θi(e) which ensure that inserts ofe are ‘free’ and deletes are
charged1/θi(e). In contrast, the naive algorithm charges 1
for both inserts and deletes, and thus, sends many more
“update state” messages to the coordinator.

Note that there is a cost associated with disseminating
the θi values to remote sites in our tree-based algorithm
– on an average, we counted the number of such “adjust
threshold” control messages sent by the coordinator to
be approximately 18 thousand for the 1 million stream
updates. Clearly, this is negligible compared to the savings
in state transmission messages obtained due to the smaller
charge values at sites. In general, control messages (whose
counts have been included in all graphs shown) constituted
between 20% and 50% of the total message traffic for our
tree-based algorithm.

Set-Expression Cardinality Estimation. Figure 5 depicts
the number of messages sent by the tree-based and naive
algorithms for two set expressions as the error toleranceε
is varied between 15 and 60, and skewz is fixed at 1. The
expressions we consider are over 3 streamsS0, S1 andS2,
with the first being(S0 − S1) ∪ S2, and(S0 ∪ S1) ∩ S2,
the second. In the graph, we only plot one curve for the
naive scheme since the communication cost was the same
for the two set expressions. This is not surprising since
the naive scheme does not really care about the structure of
set expressions, and simply charges 1 for each element that
is inserted/deleted from any of the streams. On the other
hand, our tree-based algorithm, by exploiting the seman-
tics of set expressions (in addition to element frequency
threshold information), is able to deliver impressive reduc-
tions in the data transmission overhead. For the expression
(S0 − S1) ∪ S2, our tree-based algorithm results in factors
ranging from 16 (forε = 60) to 20 (forε = 15) lower com-
munication compared to the naive scheme. For the expres-
sion(S0 ∪ S1)∩ S2, the performance improvement factors
are halved (since the set-difference operator provides more
opportunities to suppress communication as compared to
the set-intersection operator), but still lie between 7 and
10.

5.2.2 Real-life Data Set

We compare the communication costs of the tree-based
and naive algorithms for the following query over the dis-
tributed TCP trace data: How many distinct destination
hosts are contained in the TCP trace records within the
most recent 2 second sliding window? As shown in Fig-
ure 6, our tree-based algorithm incurs between 35% (for
ε = 30) and 50% (forε = 60) less communication over-
head compared to the naive scheme. The reason for the
comparatively modest improvement over the naive scheme
in this case is the lesser stability in element counts resulting
in lower thresholds valid for short durations of time. Also
note that our techniques which exploit set-expression se-
mantics did not come into play. It is interesting to note that
for our tree-based algorithm, the number of control mes-

sages transmitted is actually quite low and ranges between
5% and 20% of the total message traffic.

6 Concluding Remarks
In this paper, we considered the problem of approxi-
mately answering set-expression cardinality queries over
distributed streams originating at tens or hundreds of re-
mote sites. We proposed novel algorithms for estimating
set-expression cardinality with guaranteed accuracy at a
central processing site, while keeping data communication
costs between the remote sites and the central processor at
a minimum. Our solutions exploit global knowledge of the
distribution of frequent elements as well as the semantics of
set expressions to reduce data transmission overhead while
preserving user-specified error guarantees. We developed
protocols for efficiently propagating global frequency in-
formation across sites, and devised a logic-based formula-
tion for identifying the element state changes (at a remote
site) that can affect the set expression result (at the central
site). Through experiments with a real-life TCP traffic data
set and multiple synthetic data sets, we demonstrated the
effectiveness of our techniques in reducing the volume of
message traffic compared to naive approaches that provide
the same error guarantees.

References
[1] “NetFlow Services and Applications”. Cisco Systems White

Paper (http://www.cisco.com/), 1999.
[2] B. Babcock and C. Olston. “Distributed Top-K Monitoring”.

In SIGMOD, 2003.
[3] M. Charikar, K. Chen, and M. Farach-Colton. “Finding Fre-

quent Items in Data Streams”. InICALP, 2002.
[4] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.

“Gigascope: A Stream Database for Network Applications”.
In SIGMOD, 2003.

[5] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. “Ap-
proximating Set-Expression Cardinality over DistributedUp-
date Streams”. Bell Labs Tech. Memorandum, 2003.

[6] S. Ganguly, M. Garofalakis, and R. Rastogi. “ProcessingSet
Expressions over Continuous Update Streams”. InSIGMOD,
2003.

[7] P. B. Gibbons. “Distinct Sampling for Highly-Accurate An-
swers to Distinct Values Queries and Event Reports”. In
VLDB, 2001.

[8] P. B. Gibbons and S. Tirthapura. “Distributed Streams Algo-
rithms for Sliding Windows”. InSPAA, 2002.

[9] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J.
Strauss. “How to Summarize the Universe: Dynamic Main-
tenance of Quantiles”. InVLDB, 2002.

[10] S. Madden, M. J. Franklin, J. H. Hellerstein, and W. Hong.
“The Design of an Acquisitional Query Processor for Sensor
Networks”. InSIGMOD, 2003.

[11] D. Moore, G. M. Voelker, and S. Savage. “Inferring Inter-
net Denial-of-Service Activity”. InUSENIX Security Sympo-
sium, 2001.

[12] C. Olston, J. Jiang, and J. Widom. “Adaptive Filters for
Continuous Queries over Distributed Data Streams”. InSIG-
MOD, 2003.

[13] G. Pottie and W. Kaiser. “Wireless Integrated Network Sen-
sors”. Communications of the ACM, 43(5), 2000.

323

