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Abstract

Wavelet synopses have been found to be of
interest in query optimization and approxi-
mate query answering. Recently, extended
wavelets were proposed by Deligiannakis and
Roussopoulos for data sets containing multi-
ple measures. Extended wavelets optimize the
storage utilization by attempting to store the
same wavelet coefficient across different mea-
sures. This reduces the bookkeeping overhead
and more coefficients can be stored. An opti-
mal algorithm for minimizing the error in rep-
resentation and an approximation algorithm
for the complementary problem was provided.

However, both their algorithms take linear
space. Synopsis structures are often used in
environments where space is at a premium and
the data arrives as a continuous stream which
is too expensive to store. In this paper, we
give algorithms for extended wavelets which
are space sensitive, i.e., use space which is de-
pendent on the size of the synopsis (and at
most on the logarithm of the total data) and
operates in a streaming fashion. We present
better optimal algorithms based on dynamic
programming and a near optimal approximate
greedy algorithm. We also demonstrate the
performance benefits of our algorithms com-
pared to previous ones through experiments
on real-life and synthetic data sets.

1 Introduction

Approximate query processing has recently emerged as
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a viable solution for dealing with the huge amounts of
data, the high query complexities, and the increasingly
stringent response-time requirements that characterize
decision support systems (DSS) applications.

Due to the exploratory nature of many DSS appli-
cations, in several scenarios such as ad-hoc mining or
dealing with remote data [8, 1] approximate answers
obtained from synopses suffice. In DSS applications,
databases with multiple measures are common. For
example, market basket database may include infor-
mation on the revenue, the quantity of being sold and
the profits. One natural and widely used tool for syn-
opses with multiple measures is approximate Wavelet
representation.

Traditionally, wavelet approximation methods in
this multi-measure scenario used either decomposition
on individual dimensions, or treated the data as a vec-
tor and applied a multidimensional decomposition. As
pointed out by Deligiannakis and Roussopoulos in [3],
these methods may result in suboptimal solutions. It is
not hard to see that the former may store the same co-
ordinate for more than one measure – which stores the
coordinate of the coefficient multiple times and wastes
space. The latter on the other hand, may be forced to
store very small number of coordinate values of which
only a few coefficients might help reduce significantly
the error and not be effective as well. To remedy this,
extended wavelets were proposed in [3]. This problem
seeks to optimize the storage utilization by attempting
to store the same wavelet coefficient across different
measures, thereby eliminating the bookkeeping over-
head for one (or possibly, more) of them. They gave
an optimal algorithm for the sum of squared error be-
tween the representation of the data achieved by the
synopsis and the input. They also gave a faster 2-
approximation algorithm for the problem of maximiz-
ing the sum of weighted squares of the representation,
termed as “benefit”. The benefit and error add up to
weighted sum of squares of the input coefficients and
is therefore fixed, thus the problems can be thought of
as“complimentary”. They also demonstrated that ex-
tended wavelets achieve better estimation quality com-
pared to multidimensional wavelets in several cases.
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However, there are two problems with the proposed
solutions. (i) Both their algorithms require linear
space. Synopsis structures are frequently used in envi-
ronments where space is at a premium and the data ar-
rives as a continuous stream which is too expensive to
store. Thus, linear space algorithms are not desirable
in such scenarios. (ii) An approximation algorithm for
maximizing the benefit does not give a good approx-
imation algorithm for minimizing error, e.g., suppose
the optimum solution had benefit 99 and error 1. Sup-
pose a 2-approximation of the benefit achieved a ben-
efit of 50 (which is more than 99

2 ) — but the error of
this solution is 50 as well, 50 times the optimum error.

1.1 Our contributions

We make the following contributions:

• To address the problem of linear space, we present
optimal algorithms for extended wavelets which
are space sensitive, i.e., use space which is depen-
dent on the size of the synopsis (and at most on
the logarithm of the total data size) and operates
in a streaming fashion.

• For the problem of no guarantee on error by the
previous approximation algorithm, we give an al-
gorithm that has error less than or equal to the
error of the optimum solution (therefore at least
as much benefit), but relaxes the space bound to
store a few extra coefficients (at most as many as
the number of different measures).

• We also demonstrate how to adapt all the above
algorithms to the context of streaming data
(which connects to the linear space requirement
of previous work), i.e., given multidimensional
points as a stream we construct the coefficients
on the fly as well as maintain the synopsis. This
is particularly of use in modeling time series data.

• Through experiments on real-life and synthetic
data sets, we demonstrate that our proposed algo-
rithms have significant performance benefits while
requiring much less space.

We would like to mention that if the space bound
is indeed strict, we can give a different (1 + ε)-
approximation algorithm for the optimum error pre-
serving the space bound. In this process, we show a
non-trivial connection between extended wavelets and
histograms similar to the V-Optimal objective. The
complexity of the algorithm is asymptotically the same
as the approximation algorithm presented here. How-
ever, due to space limitations, this connection cannot
be described in this paper. It can be found in [7]. Fur-
thermore, the algorithm that arises from the connec-
tion to histograms is somewhat theoretical and signif-
icantly complicated to implement, which we relegate
to future work.

1.2 Organization

The paper is organized as follows. In the next sec-
tion, we present related work. In Section 3, we intro-
duce preliminary definitions and the problem of con-
structing extended wavelet on databases with multiple
measures. In Section 4, we introduce improved opti-
mal algorithms. We then present the approximation
algorithm in Section 5. Section 6 discusses how to
adapt the extended wavelet to stream. In Section 7,
we present experimental results. Finally, we make con-
cluding remarks in Section 8. Due to the lack of space,
we are unable to present any proofs of the lemmas and
theorems. They can be found in [7].

2 Related Work

Several approximation techniques using small sum-
mary have been developed for selectivity estimation
and approximate query answering. These techniques
include histograms [14, 15, 9, 13], wavelets [10, 2] and
sampling [4, 20].

Wavelet-based approaches provide a mathematical
tool for the hierarchical decomposition of functions,
with a long history of successful applications in im-
age processing [12, 16]. In [2, 10, 16], they demon-
strated that wavelets can be accurate even in high-
dimensional datasets. Recent studies have also demon-
strated the applicability of wavelets in selectivity es-
timation [10], answering range-sum aggregates queries
over data cubes [19, 18], approximate query processing
[2] and data streams [11, 5].

3 Preliminaries

Wavelets, particularly Haar wavelets, provide useful
tools for multi-resolution summarization. In context
of databases they have been found to be of interest
in query optimization, approximate query answering,
and similarity estimation. We review the definition of
wavelets before discussing our problem.

3.1 Wavelets

We consider signals indexed on {1, . . . , N}, where N
is a power of 2. Given a sequence of N numbers
X = x1, . . . , xN , which can thought of belonging to
the Euclidean space <N , we can represent the sequence
as a linear combination

∑N
i=1 xiui where ui is the N -

dimensional vector where the i-th coordinate is set to
1 and all other coordinates are 0.

Definition 3.1 The function that equals 1 on set S
and zero elsewhere is denoted by Γ(S). A (Haar)
wavelet is a function Ψ on [1, N ] of one of the following
forms:

• 1√
N

Γ([1, N ])
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• Γ([i + 1, i + 2j ])− Γ([i + 2j + 1, i + 2 · 2j ])
2(j+1)/2

where i = 2k2j for some integer k and j ≥ 0.

The first type of wavelets is a vector with all coordi-
nates equal to 1/

√
N . Example wavelets of the second

type are

( 1√
2
,− 1√

2
, 0, 0, 0, 0, . . . , 0, 0),

(0, 0, 1√
2
,− 1√

2
, 0, 0, . . . , 0, 0), . . .

( 1
2 , 1

2 ,− 1
2 ,− 1

2 , 0, 0, 0, 0, . . . , ) . . .

There are N wavelets altogether, and they form an
orthonormal basis. Thus any N -dimensional vector
can be decomposed uniquely as a linear combination of
the wavelet vectors (Basis property). Further if Ψ,Ψ′

are two wavelets then 〈Ψ,Ψ′〉 is 1 if Ψ = Ψ′ and 0
otherwise (orthonormality).

Every signal can be reconstructed exactly from all
its wavelet coefficients (its full wavelet transform, an
orthonormal linear transformation), as X =

∑
i wiΨi

where wi = 〈X,Ψi〉 is defined as the i-th coefficient.
We will term i as the index of Ψi. Observe that the
wavelet 1√

N
Γ([1, N ]) will have a coefficient which is√

N times the average of all the values.
Both the transformations (to the wavelet represen-

tation and from wavelets to the original representa-
tion) can be performed in linear time. There are sev-
eral ways of computing them, for more details consult
[16, 10, 5].

3.2 Extended Wavelets

Given N points∗, each having M “measures” we have
several choices in choosing a wavelet representation.
In [16], two choices were outlined – “individual”, i.e.,
to treat each of the dimensions independently or “com-
bined”, i.e., to compute the wavelet transform of the
columns (dimensions) and then perform a wavelet
transform along the rows. In [3], a more flexible strat-
egy termed as “extended wavelets” were proposed,
which outperformed the earlier two strategies.

Definition 3.2 An extended wavelet coefficients of N
points with M measures is a triplet < Bit, i, V > con-
sisting of:

• A bitmap Bit consisting of M bits. Bit(j) indi-
cates whether the coefficient corresponding to the
j-th measure has been stored.

• The i indicates the coefficient number. The space
to store Bit and i is denoted by H.

• The stored list of coefficient values V , where
the r-th item in the list corresponds to the i-
th coefficient of measure j if Bit(j) = 1 and∑j

j′=1 Bit(j′) = r. Each of the stored coefficients

∗Without loss of generality, N is a power of 2.

are assumed to take space S. We denote the i-th
coefficient of measure j by wij .

Extended wavelet provides a flexible storage
method and bridges the gap between the two extreme
approaches of individual or multi-dimensional decom-
positions.

Since the most common objective used as an error
measure is minimizing L2 norm of approximation, a
natural extension for datasets with multiple measures
is how to minimize the weighted sum of the squared
error for all measures. If the error (the difference be-
tween the original data and the wavelet reconstruc-
tion) for i-th data item in j-th measure is denoted by
eij then the optimization problem is the following:

Problem 1 Given a set of NM wavelet coefficients
{wij} points in D-dimensional dataset with M mea-
sures, a storage constraint B, and a set of weights W ,
select the extended wavelet coefficients to be stored in
order to minimize the weighted sum

∑N
i=1

∑M
j=1 Wj ·e2

ij

Following [16], it is shown in [3] that the above is
equivalent to the following:

Problem 2 Given the NM wavelet coefficients {wij},
a storage constraint B, and a set of weights W , select
the extended wavelet coefficients to be stored in order
to minimize the weighted sum

∑

i,j:wij is not stored
Wj · w2

ij

Observe that Problem 2 is equivalent the “maximiz-
ing the benefit” where the benefit is defined as:

∑

i,j:wij is stored
Wj · w2

ij

But a good approximation for one may not mean a
good approximation for the other. A more useful prob-
lem in the DSS scenario is:

Problem 3 Given a N data points in D-dimensions
with M measures, a storage constraint B, and a set
of weights W , compute and select the extended wavelet
coefficients to be stored in order to minimize the error

n∑

i=1

M∑

j=1

Wj · e2
ij =

∑

i,j:wij is not stored
Wjw

2
ij

in a single pass over the data.

3.3 DynL2: An Optimal Algorithm for Prob-
lem 2

An optimal dynamic programming algorithm, DynL2,
in Figure 1 was proposed in [3] to solve Problem 2.
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Procedure DynL2(InCoeffs, B, W)
begin
1. for u :=1 to N*M do
2. for v :=0 to S+H-1 do {
3. /* Nothing can be stored! */
4. Opt [u,v].ben := Force[u,v].ben := 0
5. Opt[u,v].choice := Force[u,v].choice := 1
6. }
7. for v :=S+H to B do {
8. Opt[1,v].ben := Force[1,v].ben := W[1]*w2[1,1]
9. Opt[1,v].choice := Force[1,v].choice := 3
10. }
11. for u :=2 to N*M do {
12. x := 1 + (u-1) div M (Coefficient index)
13. y := 1 + (u-1) mod M (Measure index)
14. for j :=S+H to B do {
15. a := Opt[u-1,v].ben
16. b := Opt[u-1,v-S-H].ben+W[y]*w2[x,y]
17. c := Force[u-1,v-S].ben+W[y]*w2[x,y]
18. d := Force[u-1,v].ben
19. if y > 1 {
20. Opt[u,v].ben := max(a, b, c)
21. Force[u,v].ben := max(d, b, c)
22. }
23. else {
24. Opt[u,v].ben := max(a, b)
25. Force[u,v].ben := b
26. }
27. Set Opt[u,v].choice and Force[i,j].choice

to the value 2, 3 or 4, appropriately.
28. /* If ben = a or ben = d, set choice to 2 */
29. /* If ben = b, set choice to 3 */
30. /* If ben = c, set choice to 4 */
31. }
32. }
33. Reconstruct optimum solution by doing a reverse

traversal starting from the entry Opt[NM,B], and
moving based on the choice field of the current entry.

34. return Opt[NM,B].ben (Maximum benefit)
end

Figure 1: The DynL2 Algorithm in [3]

Suppose the coefficients are ordered in the canonical
order, i.e., wij is in position u = i ∗M + j in an array.
Let Opt[u, b] the optimal solution with at most b units
of space where no coefficient which occurs later than
u in the order is being used. We also let Force[u, b]
be defined as the same as Opt[u, b] except that the
solution of the former should store some wij′ with j′ ≤
j where u = i ∗ M + j, i.e., at least for one of the
measures the i-th coefficient is stored.

The intuition behind the algorithm is that from u−1
to u the algorithm tries to figure out the extra space
it would have to use and the benefit derived. Thus
four choices, denoted by the variables a, b, c, d in the
pseudocode arise depending on wij being added or not
to Opt[u, b] or Force[u, b].

The algorithm stores Opt and Force, and thus
takes O(NMB) space. Since each entry of both Opt
and Force is evaluated in O(1) time, the time com-
plexity of DynL2 is O(NMB).

In [3], a 2-approximation algorithm with
O(NM2 log(NM)) time and O(NM) space was
also proposed for Problem 2.

4 Improved Optimum Algorithms

4.1 OptWaveI: A Simple Algorithm

We first present the definitions that will be used to
describe our improved optimum algorithms.

Definition 4.1 Let Newopt[i, b] denote the mini-
mum error (maximum benefit) of using at most b space
and no coefficient of index larger than i (irrespective
of measure). To aid the presentation, we also define:

• Let All[i] =
∑M

j=1 Wjw
2
ij .

• Let Bottom[i, j] be the sum of the j
smallest items of the set of numbers
W1w

2
i1,W2w

2
i2, . . . , WMw2

iM .

• Let Top[i, j] be the sum of the j largest items
in the set of numbers W1w

2
i1, . . . , WMw2

iM . Natu-
rally,

All[i] = Top[i, j] + Bottom[i,M − j]

Lemma 4.2 If we are storing the i-th coefficient for
a subset C ⊆ {1, . . . ,M} of the measures, the best so-
lution is to store the |C| coefficients which have the
largest contribution, i.e., Wjw

2
ij. Thus Top[i, p] gives

the best benefit over all subsets C with |C| = p. The
minimum error of choosing to store |C| coefficients is
therefore Bottom[i, p].

Intuition: The above lemma allows us to decouple
the choices of subsets C ′ and C for the coefficients with
indexes i − 1 and i respectively. Thus, the choice re-
duces to how much space we allocate to all coefficients
of index i− 1 versus all coefficients of index i.

As a result, we have the naive optimum algorithm
OptWaveI shown in Figure 2. This algorithm, as we
will see later in the experiments, already performs
much better than the DynL2. Observe that, without
any further improvements (which we will make later),
the space required is O(NM + NB). In the O(NB)
space, we need to maintain the choice of p for each
Newopt[i, b]. Given p and i, the subset of the mea-
sures for which we store the coefficient is automatically
the coefficients being in the sorted order of the contri-
bution Wjw

2
ij . We can prove the following:

Theorem 4.3 The algorithm OptWaveI evaluates
Newopt[i, b] correctly for all i and b.

The running time of the algorithm is
O(NMB + NM log M). A sorting with O(M log M)
time allows us to compute all of Bottom[i, M − p].
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Procedure OptWaveI()
begin
1. SUMAll:= 0
2. for b :=1 to B do
3. Newopt[0, b] := 0
4. for i :=1 to N do {
5. for j :=1 to M do
6. Compute Bottom[i,j]
7. SUMAll:= SUMAll+ Bottom[i,M]
8. for b :=1 to B do {
9. if b < H + S (cannot store anything)
10. Newopt[i, b] := SUMAll
11. else {
12. Newopt[i, b] := Newopt[i-1, b] + Bottom[i, M ]
13. for p :=1 to M do
14. if b-H-S ∗ p ≥ 0
15. Newopt[i, b] := min(Newopt[i, b],
16. Newopt[i-1, b-H-S ∗ p]+
17. Bottom[i, M -p])
18. }
19. }
20. }
end

Figure 2: The OptWaveI

The rest of the algorithm take O(NMB) time.

Improved Space Requirement: Note that, to
evaluate Newopt[i, j] for 1 ≤ j ≤ B, we only need
the array of Newopt[i− 1, j] for 1 ≤ j ≤ B. Since for
each of Newopt[i, j] we need O(B) space to store the
information regarding chosen coefficients so far, the
space required is O(B2) only. If we try to copy the
solutions, the running time will increase due to O(B)
time for a single copy operation. We instead use a
pointer to speed up coping operation of chosen coef-
ficients so far. Since multiple entries of Newopt[i, b]
table may be extended from the same Newopt[i

′
, b
′
]

with i′ < i, the selected coefficients for the latter
may be shared. Thus, when we deallocate space for
Newopt[i

′
, b
′
], we have to make sure not to delete

its selected coefficients if they are still pointed by
other Newopt[i, b]. To handle this, a counter of how
many different Newopt[i, b] are using Newopt[i′, b′]
is maintained in each Newopt[i

′
, b
′
]. We delete all in-

formation stored for Newopt[i′, b′] if it is not used by
any Newopt[i, b] for i > i

′
. In this process, we will de-

crease the counters of earlier coefficients selected and
may need to delete them. Notice that the amortized
cost of all the delete is O(NB) since the total num-
ber of deletions can be at most the total number of
Newopt[i, b] being computed which is O(NB). Thus,
we arrive at a O(NMB) time and O(B2) space algo-
rithm.

Notice that B ¿ NM , since otherwise there is no
benefit in space by storing a synopsis, and thus we
improve over DynL2 in terms of the space bounds.

4.2 OptWaveII: A Better Optimum Algo-
rithm

Definition 4.4 Define L = b B
S+ H

M

c. Observe that the
optimum algorithm can store at most L coefficients
since each coefficient wij takes up at least S+ H

M space
on the average. The extra space H has to be shared
by the coefficients – and the best case scenario is when
all coefficients corresponding to an index i have been
chosen.

Definition 4.5 Suppose we ordered the coordinates
of i for 1 ≤ i ≤ N in a non-increasing order of Top[i, p]
(the maximum benefit of storing p coefficients) into
ip1, i

p
2, . . . , i

p
n. That is, Top[ipj , p] ≥ Top[ipj′ , p] if 1 ≤

j ≤ j′ ≤ N . We let Best[p] = {ipj |j ≤ L}. Notice
that Best[p] need not be disjoint as p varies.

Ideally, we would like to say that the subsets of coef-
ficients with index i stored by optimum must belong to⋃M

p=1 Best[p] for some p, but it may be that there are
several solutions with equal error. But in that case one
of them will always select coordinates in

⋃M
p=1 Best[p]

only and this is captured in the following theorem:

Theorem 4.6 There exists an optimum solution
which only stores the coefficients of the coordinates
from

⋃M
p=1 Best[p].

Intuition: The motivation behind the above
theorem is to introduce a filtering step where we try
to recognize the more useful coordinates. The idea is
that given two subsets of coefficients C ′, all of which
correspond to index i′ and C which corresponds to i,
if we have |C| = |C ′|, it is better to choose the subset
which has the greater contribution to the benefit.
Now, the proof of the theorem is more involved, since
the optimum may store coefficients with indices i and
i′ but |C| 6= |C ′|.

Using the above theorem, we develop a signif-
icantly better optimal algorithm OptWaveII. The
OptWaveII first invokes the OptWavePreProcess
shown in Figure 3 to compute

⋃M
p=1 Best[p]. It then

runs the same algorithm as OptWaveI in Figure 2
except that the for-loop in line (4) is replaced as below:

for each i ∈ ⋃M
p′=1 Best[p′] do {

Since we consider only i ∈ ⋃M
p′=1 Best[p′], we add

Newopt[n,B] := Newopt[n,B]+TOTSUM−SUMALL

where TOTSUM =
∑N

i=1 Bottom[i,M ] at end of
OptWaveII to compute correct value of Newopt[n, B].
TOTSUM is computed by OptWavePreProcess.

We maintain M min-heaps of size L for Best[p].
The min-heaps are implemented using M arrays of
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Procedure OptWavePreProcess()
begin
1. for i :=1 to N do {
2. Sort the coefficients of i-th coordinate
3. for p :=1 to M do {
4. Compute Top[i, p] using Top[i, p− 1]
5. if sizeof(Best[p]) < L {
6. Insert i with key Top[i, p] to Best[p]
7. count[i] := count[i]+1;
8. }
9. else {
10. if findmin(Best[p]).key < Top[i, p] {
11. Let m be the minimum element in Best[p]
12. count[m] := count[m]-1
13. if count[m] = 0
14. Eliminate m from hash table.
15. Insert i with key Top[i, p] to Best[p]
16. count[i] := count[i]+1;
17. }
18. }
19. }
20. If count[i] > 0
21. Store wi1, . . . , wiM in the hash table with count[i].
22. }
end

Figure 3: The OptWavePreProcess()

size L. The key of element i (for heap p) is Top[i, p].
the operations findmin() costs O(1) time and in-
sert/delete costs O(log L) time. We also maintain a
hash table which for the key i will store wi1, . . . , wiM

and counti, the number of heaps i is currently present
in.

We first compute
⋃M

p=1 Best[p] using OptWavePre-
Process as in Figure 3. For each i, we compute
Top[i, p] for all p in O(MlogM) time, and the cost
of at most M insertions is O(M log L). Thus in this
phase we take O(NM(log M + log L)) time.

For the second phase, the outer for loop will be
executed at most ML times, which is an upper bound
on

⋃M
p′=1 Best[p′]. The inner loops take time MB.

Thus the time for the second phase is M2LB, and
in total we take O(NM(log M +log L)+ M2B2

S+ H
M

)†. The

total space bound is O(MB+B2) where the two terms
correspond to the two different phases.

5 An Approximation Algorithm

A natural question arises in this context – if the
O(NMB) worst case algorithm can be speeded up. In
[3], the authors proposed a greedy 2-approximation of
the “benefit” which runs in time O(NM2 log(NM)).
Recall that the benefit of choosing a subset C of
coefficients in {1, . . . , M} that is i-th coordinate is
defined as

∑
j∈C Wjw

2
ij . The benefit quantifies the

†We can assume ML ≤ N otherwise we can use a bound of
N on the set, and thus the total time is at most O(NM(log M +
log L) + NMB).

error “saved” by choosing the coefficients in C.

Our approximation at the surface is similar to the
2-approximation algorithm in that it uses benefit to
space ratios. However our algorithm will take a differ-
ent road. Our algorithm will try to reduce the space
subject to maintaining the same quality of solution as
the optimum.

It may appear that we are comparing apples and
oranges, but these algorithms are known as pseudo
approximation algorithms – where we find an approxi-
mate solution, but relax some constraints (in this case,
space bound) slightly (by MS + H). But because in
this case we are able to prove that the quality of our
solution is at least as good as the optimum (restricted
to B), the result can be viewed as approximating the
space while keeping the quality fixed. Note, that we
assume no knowledge of the quality of the solution be-
forehand.

Technically our algorithm in this section differs from
the 2-approximation in [3] in the following aspects:

1. We use our previous idea of not considering all
coefficients.

2. We are more cautious in selecting the subsets for
which we compute benefit.

3. Unlike previous work, our definition of the benefit-
space ratio will not be uniform over all subsets.

4. Our algorithm operates in O(B) space.

5. Unlike previous algorithm, we do not consider in-
serting coefficients corresponding to the same in-
dex i more than once (i.e., if they are ejected).

Before describing the algorithm, we make a few im-
portant observations.

Lemma 5.1 Let S, H > 0. Given a sequence X =
{x1, x2, . . . , xM} of non-negative numbers in non-
increasing order, let p̂ be the value of p that maxi-

mizes max
p=1,...,M

∑p
j=1 xj

S ∗ p + H
. Among every subset Y ⊆

X = {x1, x2, . . . , xM}, the subset Y = {x1, x2, . . . , xp̂}
maximizes

∑
xj∈Y xj

S|Y |+ H
.

Definition 5.2 Let us define Ratio[i].wt as follows:

Ratio[i].wt = max
p=1,...,M

Top[i, p]/(S ∗ p + H)

Let us also define Ratio[i].p as the smallest value p
for which the maximum ratio is obtained.

Lemma 5.3 Suppose wij1 , wij2 , . . . , wijM are the co-
efficients with index i such that Wjuw2

iju
≥ Wjvw2

ijv

whenever u ≤ v. For all u > Ratio[i].p, we have
Ratio[i].wt ≥ Wjuw2

iju
/S. Furthermore, for all 1 ≤

u ≤ Ratio[i].p, we have Wjuw2
iju

/S ≥ Ratio[i].wt.
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The algorithm: The algorithm ApproxWave is
given in Figure 4. We will maintain a min-heap of
size at most B +M ∗S +H. The heap will shrink and
grow — but the total space required to store all the
coefficients associated with the heap will not exceed
O(B). The min-heap will be implemented using an ar-
ray as before. The elements in the heap will be tuples
(i, p, f lag) where flag = 1 will indicate all the coef-
ficients wij1 , . . . , wijp are (which define Top[i, p]) are
chosen. flag = 0 would mean only the coefficient wijp

is chosen. We can implement findmin() in O(1) time
and insert/delete in O(log B) time. We will maintain
a hash table to store the wavelet coefficients for every
tuple (i, p, flag) in min-heap. It is straightforward to
observe that the time complexity of the algorithm is
O(NM(log M + log B)) since the size of the heap is
bound by B.

Due to the lack of space we cannot prove any of the
claims made, but we indicate an outline of the proof.
In a very high level, we will show that if we consider the
elements in our solution which are not in the optimum,
they must have a better benefit to space ratio than the
elements in the optimum solution which we have not
included. We show the separation by bounding the
former from below, and the latter from above, by the
key value of the minimum element in the heap.

Observation 5.4 If the key value of the minimum el-
ement in the heap is λ, then any item with key value
at least λ must be present in the heap.

Lemma 5.5 In the above algorithm, once we reach
the condition of Free < 0, we have −(M ∗ S + H) ≤
Free < 0 in all subsequent steps.

The above lemma can be proved by induction and
the proof is omitted due to lack of space. But the
lemma implies that we exceed the space bound by at
most M coefficients. Thus we can bound the size of
the heap to be O(B).

Lemma 5.6 Let Ones = {i|(i, p, 1) in heap} and
Zeros = {i|(i, p, 0) in heap}, then the condition of
Ones ⊇ Zeros always holds. That is, if (i, u, 0)
is present in the heap at any point, so must be
(i,Ratio[i].p, 1).

The next set of lemmas will be used as the critical part
of the proof for the main theorem of this section that
states that the benefit of our solution is no less than
that of the optimal solution.

Lemma 5.7 Further let |Zeros| be the number of el-
ements of the form (i, p, 0) in the heap, then

B−Free =
∑

i∈Ones

(S ∗Ratio[i].p + H)+S∗|Zeros|

Procedure ApproxWave()
begin
1. Free := B
2. for i :=1 to N do {
3. Compute Ratio[i]
4. if (Free ≥ 0) {
5. Insert (i,Ratio[i].p, 1) in heap

with key = Ratio[i].wt
6. Free ← Free− S ·Ratio[i].p−H
7. } else if (findmin().key < Ratio[i].wt) {
8. while ( (findmin().key < Ratio[i].wt)

and (Free < 0) ) {
9. Suppose the min element was (i′, mp, f lag).
10. if (flag = 1) {
11. if (Free + S(mp −Ratio[i].p) ≥ 0) {
12. /* leave while loop */
13. break
14. }
15. Free ← Free + S ·mp + H
16. }
17. else
18. Free ← Free + S
19. Remove the min element in the heap.
20. }
21. Insert (i,Ratio[i].p, 1) in heap

with key = Ratio[i].wt
22. Free ← Free− S ·Ratio[i].p−H
23. }
24. for u := Ratio[i].p + 1 to M {
25. if (Free ≥ 0) {
26. Insert (i, u, 0) with key =

Wju w2
iju

S
27. Free ← Free− S

28. } else if (findmin().key ≥ Wju w2
iju

S
) break

29. else {
30. Suppose the min element was (i′, mp, f lag)
31. if flag = 0 {
32. Remove the min element in the heap.
33. Set Free ← Free + S
34. } else if (Free + S(mp − 1) + H < 0) {
35. Remove the min element in the heap.
36. Set Free ← Free + S ·mp + H
37. }
38. Insert (i, u, 0) with key =

Wju w2
iju

S
39. Free ← Free− S
40. }
41. }
42. }
43. Include all the coefficients stored in the heap.
end

Figure 4: The ApproxWave
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Corollary 5.8 The space taken by the solution is at
most B+M ∗S +H, i.e., we exceed the budgeted space
at most M extra coefficients.

Before proving the quality of our solution we will
have to define some notation. Suppose that λ∗ is the
ratio of the minimum element after all coefficients have
been processed. Thus for any item in the heap and not
considered by our algorithm, the key could have been
at most λ∗. Suppose the optimum solution uses a set
of coefficients corresponding to Sopt ⊆ [1, . . . , n] and
we choose a set of coefficients corresponding to Ssol ⊆
[1, . . . , n]. For each i ∈ Sopt suppose that the optimal
chooses o(i) coefficients (it will choose the best ones)
and for i ∈ Ssol suppose that we chose p(i) coefficients.

Lemma 5.9 Recall that by wij1 , wij2 , . . . , wijM we re-
fer to the coefficients of i sorted in non-increasing or-
der of Wjw

2
ij. The following four conditions hold.

(P1): If i ∈ Sopt and i 6∈ Ssol then

o(i)∑
u=1

Wju
w2

iju
≤ λ∗(So(i) + H)

(P2): If i 6∈ Sopt and i ∈ Ssol then

p(i)∑
u=1

Wju
w2

iju
≥ λ∗(Sp(i) + H)

(P3): If i is in both Sopt,Ssol and p(i) < o(i) then
for all p(i) < u ≤ o(i) we have Wju

w2
iju

≤ λ∗S.

(P4): If i is in both Sopt,Ssol and p(i) > o(i) then
for all o(i) < u ≤ p(i) we have Wju

w2
iju

≥ λ∗S.

Observe that the above lemma shows that for all the
coefficients not stored by our solution the benefit is at
most λ∗ times the space taken by those coefficients‡.
Likewise, the lemma says that for the coefficients we
stored and the optimal solution did not store, the ben-
efit is at least λ∗ times the space§.

Theorem 5.10 The benefit of our solution is no less
than the benefit of the optimum solution (which takes
at most B space).

6 Adapting small space extended
wavelet algorithms to streams

Formally, a data stream computation is a space
bounded algorithm, where the space is sub-linear in
the input. Any input items are accessed sequentially

‡Including the space required by the bitmaps if we did not
store any coefficient for i, whereas optimum stored at least one
coefficient.

§Once again including the space required by bitmaps.

and any item not explicitly stored cannot be accessed
again in the same pass. A comprehensive discus-
sion of streaming is beyond the current scope. For
our current problem, we need a small space algorithm
that that makes one-pass over the data and generates
the extended wavelet synopsis. In this scenario we see
the data items xi1, xi2, . . . , xiM , and then we proceed
to see the data items x(i+1)1, x(i+1)2, . . . , x(i+1)M and
likewise to i + 2, etc.

p q

(p+q)/sqrt(2)

(p−q)/sqrt(2)

p,q

Figure 5: The algorithm A`

We will draw upon [6] for computing wavelet de-
compositions. Suppose we have a simple algorithm
illustrated in Figure 5 which takes two numbers p, q
and outputs the two wavelet coefficients (p − q)/

√
2

and (p+q)/
√

2. Now suppose we made this algorithm,
say A1, repeatedly pick pairs of items from the stream
and output the two associated coefficients, but with a
difference. Suppose the coefficients corresponding to
the difference, e.g. (p− q)/

√
2 are output directly and

the sums are handed to a different algorithm A2 which
does exactly the same thing.

As an example consider a single dimension with 8
data values: 8, 7, 6, 5, 4, 3, 2, 1. A2 will receive (8 +
7)/
√

2,(6+5)/
√

2, (4+3)/
√

2 and (2+1)/
√

2. From the
first two numbers, A2 will output

(
8+7√

2
− 6+5√

2

)
/
√

2
immediately and pass the corresponding sum to A3.
The number which is being output is actually 8+7−6−5

2
and is the coefficient of the wavelet vector whose sup-
port is the first half of the input! Thus A2 will output
the coefficients corresponding to wavelet vectors with
support 4. A3 will receive 8+7+6+5

2 , 4+3+2+1
2 and out-

put the wavelet coefficient of the wavelet vector with
support 8. A3 will pass the coefficient corresponding
to the sum of all the coefficients to A4. On seeing the
end of input A4 will output this single number.

Observe that each A` will need only space O(1)
since it stores the first value it receives; on seeing a
second value it outputs the difference (divided by

√
2),

sends the other value to A`+1 and forgets both the
numbers. A` keeps repeating this process for every
pair of answers it sees. When the end-of-input signal
is seen it passes the signal to A`+1.

If one A`′ receives only one input and then the
end of input of the original data, it just output the
stored input. Notice that the division by

√
2 happens

at each stage recursively and the last output is the
sum of all the numbers divided by

√
N , or the average

of all numbers multiplied by
√

N . Several researchers
compute the coefficients differently, by computing the
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recursive averages and multiplying by normalization
constants. The processes are equivalent, and the pro-
cess described here adapts to streams readily. Due to
lack of space, we relegate further details to [7]. See
also [16, 10, 5] for further details on wavelets.
Summarizing all the above, we get:

Fact 6.1 Using O(log n) space we can compute the
wavelet decomposition in a single pass. The order in
which the coefficients will be output will correspond to
a post-order traversal of the complete binary tree de-
fined on the input indices {i}. Note that n need not be
known in advance for the process.¶

An immediate corollary would be

Corollary 6.2 Any one-pass algorithm for Problem 1
can be used to get a one-pass algorithm for Problem 3
with an additional space of O(M log N)

7 Experimental result

We conducted experiments on real-life as well as syn-
thetic data sets. We implemented algorithms DynL2
and GreedyL2 proposed in [3] and compared them
against the algorithms proposed in this paper. All
experiments reported in this section were performed
on Pentium-4 2.8 GHz machine with 512 MB of main
memory, running Linux operating system. All the
methods are implemented using GCC compiler of Ver-
sion 2.95.3

Experimental results confirm that our optimal al-
gorithms, optWaveI and optWaveII, are faster than
DynL2. The ApproxWave is at least as accurate as
GreedyL2 but much faster.

7.1 Synthetic Data Sets

For our synthetic data sets, we implemented a data
generator suggested in [3, 2, 17]. The input parame-
ters to the data generator along with their description
and default values are as illustrated in Table 1. The
generator begins by randomly selecting n regions rect-
angular regions in a N-dimensional array. The volume
of any dense region is randomly chosen between Vmin

and Vmax. Sumi is the summation of the values for
all the cells contained in n regions dense regions for
measure i. Through the use of Zipf function with pa-
rameter Z, Sumi is partitioned across the n regions
rectangular regions. Within each region, the values
are distributed by using one of the four distributions
in Table 2 with skew parameter between zmaxi and
zmini

. Note that we use the notion of the Altered-
X‖ distribution to help create pairs of measures with

¶As an aside, each of the A` form a transducer and the above
describes a wavelet coefficient computation using transducers.

‖X can be either one of the Center, Middle or Reverse distri-
butions.

Parameter Description Default Value
N Number of dimensions 2
M Number of measures 30

Cardi Cardinality of dimension
i

512

n regions Number of dense regions 10
Vmin Minimum and maximum 4900
Vmax volume of regions 4900

Z Skew across regions 0.5
zmini , zmaxi Minimum and maximum

skew within region i
1, 1

Sumi Sum of values for mea-
sure i

1,000,000

spCount Fraction of populated
cells in sparse areas

0.05

spSumi Sum of values of popu-
lated cells in sparse area
i

0.05

Table 1: Data Generator Input Parameters

Distribution Description
Center Cells with smaller L1-distance from

center have larger values
Reverse Cells with smaller L1-distance from

center have smaller values
Middle Consider a hyper-rectangle cen-

tered at the region’s center, and
having for each dimension, half the
length of the corresponding region
length. Cells with smaller L1-
distance from this hyper-rectangle
have larger values

Altered-X This measure follows the same dis-
tribution as X distribution, but its
values are randomly altered by up
to 50%

Table 2: Data Generator Value Distributions

similar, but not identical , data distribution. The gen-
erator also populates nonzero cells outside the dense
regions. The fraction of such cells is defined by sp-
Count parameter and the total sum of the values of
these cells is denoted by the spSumi parameter.

In each experiment, the parameters of the data gen-
erator were set to the default values, unless specified
otherwise.

7.2 Algorithms

We conducted a comprehensive performance evalua-
tion of the various schemes. Specifically, we show the
performance figures of the following schemes:

• DynL2: This is our implementation of the dy-
namic programming algorithm DynL2 in [3]. It is
an improved version of [3] using less space.

• GreedyL2: It is the greedy approximate algo-
rithm in [3] which uses a heap instead of an AVL-
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tree.

• OptWaveI and OptWaveII: It represents our
optimal algorithms presented in Section 4.1 and
Section 4.2 respectively.

• ApproxWave: It represents approximate algo-
rithm described in Section 5.

7.3 Synthetic Data Sets

7.3.1 Behavior of All Algorithms

Figure 6 shows the results of optimum and approxi-
mate algorithms with varying the number of measures
M from 2 to 6. We also varied the space constraint
B from 1K to 10K bytes. The initial two measures
are the ones with distributions Center and Middle,
and the measures that are later added are: Reverse,
Altered-Center, Altered-Reverse, Altered-Middle. We
fixed Cardi to 1024. Other parameters were set to de-
fault values. The execution times are shown using a
log scale.

Both OptWaveI and OptWaveII are much faster
than traditional optimum algorithm DynL2. The exe-
cution time for OptWaveII is again at least two orders
of magnitude faster than DynL2. Our ApproxWave is
also much faster than traditional GreedyL2. Further-
more, when the value of B is small (e.g. B = 1K
bytes), the optimum algorithm OptWaveII is actu-
ally even faster than the approximation algorithm
GreedyL2. As we increase B, GreedyL2 starts to win
optWaveII with larger M values and finally becomes
better regardless of the value of M (e.g. B = 4K
bytes). In Figure 6, we present two graphs only for
B = 1K and B = 4K bytes.

7.3.2 Behavior of Approximate Algorithms

To see the behavior of approximate algorithms, we
tested synthetic data sets with both GreedyL2 and
ApproxWave.

Storage Space: In Figure 7-(a) and Figure 7-(b),
we present the execution time and average weighted
sum squared error for approximation algorithms as
the storage space is varied from 1K to 1M bytes.
We set the number of measures M to 30 and the
skew parameter of the data distributions within each
region was set to 1.0. The errors of both GreedyL2
and ApproxWave are very close, but the error of
ApproxWave is slightly better than that of GreedyL2.
Furthermore, the speed of ApproxWave is much faster
than that of GreedyL2.

Skew within Region: We modified the zipfian
parameter controlling the skew of the measure’s data
distributions within each region from 0.5 to 4 and we
set B to 100K bytes. The Figure 7-(c) and Figure 7-(d)
presents the obtained results for the average weighted

sum of squared error and execution time respectively.
When the skew is small, the values of the measures
are very similar and most of detail wavelet coefficients
become zero. Thus, the error becomes very small. As
the skew increases more, the measure values become
different and the detail wavelet coefficients start to
have non-zero values. It results in larger errors.
However, as the skew parameter increases even larger
(after 1.5) values, the large coefficients are restricted
to a smaller area for each distribution. This produces
the reduction of the weighted sum of squared error of
the results, as the number of significantly influencing
coefficients becomes smaller. On the other hand, the
probability that coefficients from multiple measures
become important simultaneously becomes smaller.
This explains the shape of the average weighted
sum of squared error graph in Figure 7-(d). Even
though the graphs of the errors of both algorithms
are close, the error of ApproxWave is slightly better
that that of GreedyL2. However, regardless of skew
changes, the execution times do not show any big
change. It is expected since the time complexities of
both algorithms are not dependent on skew in data
distribution. ApproxWave is again much faster than
that of GreedyL2.

Number of Measures: We present the execution
time with varying the number of measures M from
5 to 50 in Figure 8. The distributions of measures
are cyclically repeated in order of Center, Middle, Re-
verse, Altered-Center, Altered-Reverse and Altered-
Middle. We set B to 100K bytes. The experiments
validate our earlier analysis that the time complexities
of GreedyL2 and ApproxWave are O(NM2 log(NM))
and O(NM(log M+log B)) respectively. Furthermore,
since the space requirement of GreedyL2 is much larger
than that of ApproxWave, as the number of measures
increases, GreedyL2 starts to suffer from some mem-
ory problem and thus its running time degrades signifi-
cantly. The execution time of GreedyL2 is slower than
that of ApproxWave up to in an order of magnitude.

7.4 Real-life Data Set

For our real-life data experiments, we used the Pa-
cific Northwest weather measurement data from the
state of Washington ∗∗ The coordinates of the dataset
are day and time. We selected one year dataset and
used the solar irradiance, wind speed, wind peak, air
temperature, dewpoint temperature and relative hu-
midity for the station in the university of Washington.
We set a weight value of 3 to the first two measure,
a weight value of 2 to the next two measures and a
weight value of 1 to the remaining measures. The num-
ber of tuples in the dataset is 525600. We computed
the average weighted sum of squared absolute errors.

∗∗It is available from http://www-k12.atmos.washington.edu/
k12/grayskies/nw weather.html.
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Figure 9 presents the result for execution time, as the
storage bound B was varied from 1K to 10K bytes.
The execution times of the three optimum algorithms
grow linearly in increasing B as the time complexities
of the algorithms illustrate. The value of B affects
the execution times of the approximation algorithms
very little as expected. Our results show that the ex-
ecution time for OptWaveII is at least two orders of
magnitude better than DynL2. The execution time
for ApproxWave is again much faster than GreedyL2
too. We believe that our results clearly demonstrate
the significant performance gains by both OptWave
and ApproxWave algorithms compared to traditional
DynL2 and GreedyL2 algorithms.

8 Summary

Degligiannakis and Roussopoulos [3], pointed out that
traditional wavelet approximation methods for multi-
ple dimensions may result in suboptimal space utiliza-
tion in constructing synopses, and proposed extended
wavelets. They gave an optimal algorithm for the sum
of squared error and a faster 2-approximation for the
problem of maximizing the weighted sum of squares
of the representation, termed as “benefit”. This ap-
proximation algorithm however does not guarantee the
error. However, both their algorithms required linear
space.

To address the problem of linear space, we presented
optimal algorithms for extended wavelets which are
space sensitive. We gave an algorithm that has error
less than or equal to the error of the optimum solution
(therefore at least as much benefit), but relaxes the
space bound to store a few extra coefficients (at most
as many as the number of different measures). We also
demonstrate how to adapt all the above algorithms to
the context of streaming data. Through experiments
on real and synthetic data sets, we demonstrated that
our proposed algorithms have significant performance
benefits while requiring much less space.
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