From XML view updates to relational view updates: old solutions
to a new problem*

1

databases.

Vanessa P. Braganhdlo Susan B. Davidson Carlos A. Heusér
vanessa@inf.ufrgs.br susan@cis.upenn.edu heuser@inf.ufrgs.br
Hnstituto de Informatica 2Department of Computer and Information Science
Universidade Federal do Rio Grande do Sul - UFRGS University of Pennsylvania, USA &
Brazil INRIA-FUTURS, France

Abstract

This paper addresses the question of updating rela-
tional databases through XML views. Usiggery
treesto capture the notions of selection, projection,
nesting, grouping, and heterogeneous sets found
throughout most XML query languages, we show
how XML views expressed using query trees can
be mapped to a set of corresponding relational
views. We then show how updates on the XML
view are mapped to updates on the corresponding
relational views. Existing work on updating rela-
tional views can then be leveraged to determine
whether or not the relational views are updatable
with respect to the relational updates, and if so,
to translate the updates to the underlying relational
database.

Introduction

XML is frequently used as an interface to relational
In this scenario, XML documents (or views)

are exported from relational databases and published, xstapase community, it would be good to use all that work
changed, or used as the internal representation in user apgh solve the new problem of updates though XML views.
cations. Thls fact h_as stimulated much.research In ex@prtigpecifically, is there a way to leverage existing work on up-
and querying relational data as XML views [15, 23, 22, 8]qating through relational views to map view updates to the

Vendor(vendorldvendorName, url, state, country)
Book(isbn title, publisher, year)

DVD(asin title, genre, nrDisks)
Sell-Book(vendorldisbn price)

— foreign key(vendorld) references Vendor

— foreign key(isbn) references Book
Sell-DVD(vendorld asin price)

— foreign key(vendorld) references Vendor

— foreign key(asin) references DVD

Figure 1: Sample database

vendors

vendor

“Amazon” “1111"“Unix Network 3% “Amazon”“2222" “Computer w297
Programming” Networks”

Figure 3: View 1: books and vendors

However, the problem of updating a relational databasgderlying relational database?

through an XML view has not received as much atten-
tion; Given an update on an XML view of a relational
database, how should it be translated to updates on the r
tional database? Since the problem of updates through refd
tional views has been studied for more than 20 years by th

*Research partially supported by CNPqg and Capes (Brazil)efisas

NSF DBI-9975206 (USA).
Permission to copy without fee all or part of this materiagignted pro-

vided that the copies are not made or distributed for diremtnmercial
advantage, the VLDB copyright notice and the title of thelipabion and

its date appear, and notice is given that copying is by pesioisof the Very
Large Data Base Endowment. To copy otherwise, or to refukiégjuires

a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

276

e

In the relational case, attention has focused on updates
lilar_ough select-project-join views since they represent a
ommon form of view that can be easily reasoned about us-
key and foreign key information. Similarly, we focus
on a common form of XML views that allows nesting, com-
posed attributes, heterogeneous sets and repeated edement
An example of such a view is shown in figure 2, which was
defined over the database of figure 1. In this XML view,
booksare nested under ti@roductsnode, and theaddress
node composes attributes in a nested record format. The
productsnode is composed of tuples of two different types,
bookanddvd

We represent XML view expressions agslery trees
Query trees can be thought of as the intermediate represen-

vendors

vendor

N
vendor ®)21

. 122
@id vendopXame - - & products @id == venderName / » products
ok e 5 address ® e 10 d:d4drcss e
“01” «Amazon® 9 “02” “Barnes book
co\ntry book and state/ co\ntry 00!
state »
6™ 70 A book N &I Noble™ 250 260 book 20
“WA” “US”\ ‘ A @bpric i “NY” “US” - /
@bprice, /" ptitle sbn tite \sbn - @dpride asin @bprice Aitle isbn @bprice py isbn
0w O 10 120 O 150 160 18/ 190 20 O 9 O 300 31 O O 33 340 350
“38” “Unix Network «1111” “29” “Computer “2222” () “Friends” “D1111” “38” “Unix Network “1111” “38” “Computer<2222”
Programming” Networks” “29” Programming” Networks™

Figure 2: View 2: vendors, books and dvds

tation of a query expressed by some high-level XML querfrelated work can be found in Section 6. We conclude in
language, and provide a language independent framewdslection 7 with a discussion of future work.

in which to study how to map updates to an underlying re-

lational database. They are expressive enough to captuse

the XML views that we have encountered in practice, y(;% Query Trees

are simple to understand and manipulate. Their expressi@ery trees are used as a representation of the XML view
power is equivalent to that of DB2 DAD files [9]. Through- extraction query. We use this abstract representatioerath
out the paper, we will use the term “XML view” to meanthan an XML query language syntax for several reasons:
those produced by query trees. First, reasoning about updates and the updatability of an

The strategy we adopt is to map an XML view to a seKML view is performed at this level. Second, they are easy
of underlying relational views. Similarly, we map an updatdo understand yet expressive enough to capture several im-
against the XML view to a set of updates against the undeportant aspects of XQuery such as nesting, composed at-
lying relational views. It is then possible to use any erigti tributes, and heterogeneous setdhey can therefore be
technique on updates through relational views to both franthought of as the intermediate processing form for a subset
late the updates to the underlying relational databaseaandaf many different XML query languages. For example, we
answer the guestion of whether or not the XML view is uphave developed an implementation of our technique which
datable with respect to the update. uses a subset of XQuery as the top-level language [6].

This strategy is similar to that adopted in [5] for After defining query trees, we introduce a notion which
XML views constructed using the nested relational algebraill be used to describe the mapping to relational queries,
(NRA), however, our view and update language are far mothe abstract type of a query tree node. We use this notion
general. In particular, nested relations cannot handirbet of typing to define the semantics of query trees, and then
geneity. Thus, the NRA is capable of representing the XMIpresent their result type DTD.
view of Figure 3 but not that of Figure 2, and maps an XML

view to exactly one underlying relational view. 2.1 Query Trees Defined
The outline and contributions of this paper are as follows: o]
An example of a query tree can be found in Figure 4, which

e Section 2 defines query trees, their abstract types, and. . .
the resulting XML view DTD. retrieves books that are sold for prices greater than $30.

e Section 3 bresents the algorithm for maoping an XMLThe guery tree resembles the structure of the resulting XML
: P 219 . napping view. The root of the tree corresponds to the root element of
view to a set of underlying relational views, and prove

its correctness The result. Leaf nodes correspond to attributes of relation
; tables, and interior nodes whose incoming edges are starred

* Section 4.1 defines a simple XML update language an pture repeating elements. The result of this query is also
algorithms to detect whether or not an update is correB esented in Figure 4

with respect to the XML view DTD. Querytrees are very similar to thieew forestof [15] and

* Section 4.2 gives an algorithm for mapping INSErtionsy o ma-tree querigwesented in [3]. The difference is that,

(r)nno?rl:‘:acatjtlno dnesrlainnd dregg;%r;\SaFCiévh\st \gﬁ\évsstgcl:igﬂaf%nstead of annotating all nodes with the relational queries
ying ' “that are used to build the content model of a given node, we

roves its correctness. oo . .)
P annotate interior nodes in the tree using only the selection

* Section 4.4 illustrates our approach by showing hOW. Rriteria (not the entire relational query). An annotati@mc

use the techniques of [13] to detect if an XML view 'She asourceannotation or avhereannotation. Source anno-

updatable with respect to a given update. tations bind variables to relational tables, avitereannota-

* Section 5 discusses the EXpressive power of our Iarﬂbns impose restrictions on the relational tables makisgy u
guage, and evaluates our technique with respect to

2. . . 10 4t the variables that were bound to the tables.
isting proposals on extracting XML views of relational

databases. 1They can also capture grouping, but for simplicity we ométttfv].

277

<books>
<book @sbn="1111">
<title>Unix Network
Progranmi ng</title>
<price>38</price>
</ book>
<book @ sbn="2222">
<titl e>Conputer
Net wor ks</title>
<price>29</price>
</ book>

name = ‘books’

name = ‘book’
[$b := table(“Book™)]
[$sb := table(“Sell-Book”)
[where $sb/price > 30 angl
$sh/isbn=$b/isbn]

I

name = title
value = $bititle

name = price

name = ‘@isbn’ C
value = $b/isbn value = $sb/prict </ books>

Figure 4: Example of query tree and its resulting XML view

In the definitions that follow, we assume ti2ts a rela-

tional database over which the XML view is being defined.

T is the set of table names ®f. At is the set of attributes
of a given tableél’ € T.

Definition 2.1 A query tree defined over a databaBeis
a tree with a set of nodes and a set of edgeB in which:
Edgesare simple or starred ("*-edge"). An edgessnpleif,

name = ‘vendors’

name = ‘vendor’ T

[$v := table(“Vendor”)]

Ts Ts ‘ C Te

name = ‘@id’ name = ‘vendorNam 4 g — ,
[value = $v/vendorIJ [value = $v/ivendorNanje [name - addres} [name = ‘products]

s TS Ty * N
name = ‘dvd’
[$sd := table(“Sell-DVD")]
[$d := table(“DVD")]
[where
$sd/vendorld=$v/vendorld

and $d/asin=$sd/asin]

name = 'state’

name = ‘country’ name = ‘book’
value = $v/state)

value = $v/coumry] [$sb := table(“Sell-Book")]
[$b := table(“Book”)]
[where
$sb/vendorld=$v/vendorld
and $b/isbn=$sb/ishn]

TS S TS TS TS

name = ‘@bpricq’ | name = ‘btitle’ name = ‘isbn’ name = ‘@dpricq’| name = ‘dtitle’[| name = ‘asin’
value = $sb/pricg | value = $bititle] | value = $b/ishi value = $sd/pric¢ | value = $dttitle| | value = $d/asi

Figure 5: Query tree for View 2

operatoropis a comparison operatof=, #, >, <, <, >}.
Z; is either a literal (integer, string, etc.) or an expression
of the form$y /B, whereB € Ar and$y is bound toT" by

in the corresponding XML instance, the child node appeara source annotation on or some ancestor of.

exactly once in the context of the parent node, atatred
otherwise .Nodesare as follows:

1. All nodes have a name that represents the tag nan%
of the XML element associated with this node in thé

resulting XML view.

attributes.

Leaf nodes have a value (to be defined). Names of leaf
nodes that start with “@” are considered to be XML

efinition 2.4 The value of a node is of form$x/ A, where
€ Ar and$z is bound to table&l” by a source annotation
Onn or some ancestor of.

In Figure 4, the nodéook has source annotations and
where annotations. The source annotations bind vargtble
to the relational tablBook and variablésb to the relational

Starred nodegnodes whose incoming edge is starred}ape Sell-Book The where annotations restrict the books

may have one or more source annotations and zero @4t appear in the view to those with price greater than $30,

more where annotations (to be defined).

and specify the join condition of tabl&ookandSell-Book

Since we map XML views to relational views, nodes with! N€ value of the nod@isbnis specified agb/isbn indicat-
the same name in the query tree may cause ambiguities'f that the content of the XML view attributsbnwill be
the mapping. This problem can easily be solved by ass§enerated using attribuisbnof the tableBook
ciating with each node name a number corresponding to its A more complex example of a query tree can be found
position in the query tree, and using it internally in the mapin Figure 5 (ignore for now the types associated with

ping. For simplicity, in this paper we will ignore this prob-

lem and use unique names for nodes in the query trees.

nodes). This query tree retrievesndors and for eaclven-
dor, its @id, vendorNamgaddressand a set obools and

Returning to the example in Figure 4, there is a *-edgdvds within products The rootvendorshas a set ofendor

from the root (namedtbooks$ to its child namedook indi-

child nodes (*-edge). Theendornode is annotated with

cating that in the corresponding XML instance there may be binding for$v (to table Vendor), and has several chil-

severalbooksubelements dfooks There is a simple edge
from the node namelookto the node nametitle, indicat-
ing that there is a singliitle subelement obook The node
named@isbnwill be mapped to an XML attribute instead
of an element.

dren at the end of simple edge®id, vendorNamgand
addres$. The value of itsid attribute is specified by the
path $v/vendorld and that ofvendorNames specified by
the path$v/vendorName The nodeaddressis more com-
plex, and is composed stateandcountrysubelements.

Before giving an example of how values are associated The nodeproductshas two *-edge childrenbook and

with nodes, we definesource and where annotations on
nodes of a query tree.

Definition 2.2 A source annotatiorn within a starred node
n is of the form[$z := table(T")], where$x denotes a vari-
able andT € T is a relational table. We say thdix is
bound toT by s.

Definition 2.3 A where annotatiomn a starred node: is
of the form[where$z,/A4; op Z; AND ... AND $z/Ax
op Zxl, k > 1, whereA; € Ar, and $z; is bound toT;
by a source annotation on or some ancestor of. The

278

dvd Source annotations of thmoknode include bindings
for $b(Book) andbsb(Sell-Book) and its where annotations
connect tuples in Sell-Book to tuples in Book, and tuples in
Sell-Book with tuples in Vendor (join conditions). Noded
has source annotations fd (DVD) and $sd (Sell-DVD).

Its where annotation connects tuples in Sell-DVD to tuples
in DVD and tuples in Sell-DVD with tuples in Vendor. The
result of this query tree is View 2, shown in Figure 2.

From now on, we assume that a query treeas-empty
i.e. that it consists of more than a root node.

2.2 Abstract Types eval(gt, d) { qt is the root of the query tre@, the database instance}
. . X . . {qt is the query tree and is the database instance}
In our mapping strategy, it will be important to recognizg evaluate(roott), d)

nodes that play certain roles in a query tree. In partlcular,evaluateh 4

we identify five abstract types of nodes; rr, v, 7¢ and [Assume a node type has functions abstract_type(nameg), value(),
T9. We call themabstract typeso distinguish them from children(r), sourcesg), and wheref) (with the obvious meanings).}

. Let bindi be a hash f bindi f variable attributes t lunétsall
the type or DTD of the XML view elements. eﬁ’]ptl): ings{} be a hash array of bindings of variable attributes to valinitially

Nodes in the query tree are assigned abstract types assseabstract_typef)
follows: 7|7c: buildElement()
' |7 tableg)
Tg: print "<namef)>value:)</nameg)>"
end case

1. Theroot has abstract type
2. Each leaf has abstract type (Simple). .
3. Each non-leaf node with an incoming simple edge hasmfmﬁmw
abstract type (Complex). for each attribute: in childreng) do
4. Each starred node which is either a leaf node or whase nj‘jdfﬂr"“amaf) = value)" to tag
subtree has only simple edges has an abstract type oﬁrim "< tag "
™ (Nested)_ for each non-attribute in children¢:) do

5. All other starred nodes have abstract typgTree). e aated)
Note that each node has exactly one type unless it i$ g </namet)>"

starred leaf node, in which case it has typgesandry. }able(g) st of conditions | "
H H H et w be a list of conditions in sources]

As an example of this abstract typing, consider the query, cachu i do
tree in Figure 5, which shows the type of each of its nodgs. i w[i] involves a variables in bindings{} then
Sincebookanddvdare repeating nodes whose descendants _ Sjestitute the value binding for v
are non-repeating nodes, their typesagerather than. end for

We call the XML views produced by query trees and their calculate the seB of all bindings for variables in sources that makes the corj-

. . junction of the modifiedw [4]’s true, usingd
associated abstract typell-behavedecause, as we will | 1o cachs in B do
show in the next section, they can be easily mapped to a|set EdrligEt? bindirzgs{}
. . s . uildElement

of corresponding relational views. However, before tugnin - oo0e, from bindings(
to the mapping we prove two facts about query trees thatend for

will be used throughout the paper. Algorithm 1: Eval algorithm
Proposition 2.1 There is at least onex node in the ab-
stract type of a query treg:.

constructs the XML view resulting from a query tree recur-

i sively, and starts witln being the root of the query tree.
Proof: Since query trees are assumed to be non-empty, The pasic idea is that the source and where annotations in
must have at least one leaf. This means tfianust have gach starred nodeare evaluated in the database instadice

at least one starred node since the leaf node has a valueproducing a set of tuples. The algorithm then iterates over
which involves at least one variable which must be defineghege tuples, generating one element correspondingio

in some source annotation attached to a starred node. Sifgg output for each of these tuples and evaluating the chil-
the tree is finite, at least one of these starred nodes i eithgen of;, once for each tuple.

a Ieaf_node or has a subtree of simple edges, i.e. the starredrpe bindings{} hash array stores the current values of
node is ary node. B variables, taken from the underlying relational datab¥ée.
Proposition 2.2 There is at most oney node along any assume that values indings{}are represented &/A =
path from a leaf to the root in the abstract type of a query, $x/B = 2 where$z is a variable bound to a relational ta-
treeqt. bleT, A and B are the attributes df’ and1 and?2 are the
Proof: Suppose there are twey nodesn; andn,, along Vvalues of attributesl and B in the current tuple of .

the path from some leaf to the root gf. Without loss of

generality, assume thay is the ancestor ofi,. By defini- 2.4 DTD of a Query Tree

tion of 7, ny must be a starred node. Therefarehas @ Query tree views defined over a relational database have a
*-edge in its subtree, a contradiction. ® well-defined schema (DTD) that is easily derived from the

We will refer to the abstract type of an element by thqree, Given a query tree, its DTD is generated as follows:
abstract type that was used to generate it followed by the For each attribute leaf node namedi with parent
element name. As an example, the abstract type of the ele-" namedE. create an attribute declaration

mentdvdin Figure 5 is referred to asy(dvd), and its type <IATTLIST E @A CDATA #REQUIRED>

(DTD) is <!ELEMENT dvd (dtitle, asin)> 2. For each non-attribute leaf node nam@dcreate an
element declaration <!ELEMENE (#PCDATA)>

3. For each non-leaf node namé{] create an element

The semantics of a query tree follows the abstract type of declaration <!ELEMENTE (F;, ..., Ex, Exi1*, ...,

its nodes, and can be found in algorithm 1. The algorithm FE,,*)>, where E1, ..., E) are non-attribute child nodes

2.3 Semantics of Query Trees

279

of E connected by a simple edge, aBgl,,*, ..., E,*
are child nodes of? connected by a *-edge. In case
n = 0, then create an element declaration <!ELE-

MENT E EMPTY>

name = ‘vendor’
[$v := table(“Vendor”)]

. Ts Ts V Tc
As an example, the DTD of the view produced by the (™ rame= @i) [name = vendornam [name = products |
query tree ShOWI’l in Figure 5 is. value = $v/vendorld |value = $v/vendorNanje

name = ‘addres:

Tn

T %

T — .
<! ELEMENT vendors (vendor*)> name = ‘state’ name = ‘country’ S b farr:)el » bolfk e
<! ELEMENT vendor (vendor Nane, address, products)> value = $v/state] | value = $v/country) [$S[$5':;S‘[a§|(e?ug[;§£%)
<= éIEI[_/:ESNrT vengor Nlad G(DA'IP'A #_lFfE;JJI RED> [where $sbivendorld=$v/vendor|d
<! vendor me (#PCDA > and $b/isbn=$sb/isbn]
<! ELEMENT address (state, country)> Tg = T
<! ELEMENT state (#PCDATA)> - — s s
<! ELEMENT count ry (#PCDATA) > name = @bpn_ce name = ‘btlt_le‘ name = ‘|5pn'
<! ELEMENT pr oduct s (book* dvd*) s value = $sb/price| | value = $bititle| | value = $b/isb

<! ELEMENT book (btitle, isbn)> . .

<! ATTLI ST book bprice CDATA #REQUI RED> Figure 6: Partitioned query tree fex (book)
<! ELEMENT btitle (#PCDATA)>

<! ELEMENT i sbn (#PCDATA) >

. . SELECT b.isbn AS isbn, b.title AStitle, sb.price AS price
]
< ELEVENT dvd (dtitle asin)> FROM (Book AS b | NNER JO N Sel | - Book AS sb
SHATTLEST dvd dprice CDATA #REQU RED> ON sb. i sbn=b. i sbn) WHERE sb. price > 30
<! ELEMENT asin (#PCDATA) > : : P

<HELEVENT dtitle (#PCDATA)> Split. For a query tree with more than ong node, this

Note that all (#PCDATA) elements are required. Wherprocess is incorrect. As an example, consider the query tree

the value of a relational attribute is null, we produce an eleOlc Figure 5 which has tway nodes [;ookand dvg). If
ment with a distinguished null value. we follow the mapping process described above, the tables

DVD and Book will be joined, resulting in a cartesian prod-
. . i uct. In this expression, a book is repeated for each DVD,
3 Mapping to Relational Views violating the semantics of the query tree. We must therefore

In our approach, updates over an XML view are transSPlit a query tree into sub-query trees containing exactgy o

lated to SQL update statements on a set of correspontY node each beforg generating the corresponding relational
ing relational view expressions. Existing techniques suc{€"s: _After the splitting process, each sub-q_uery tree pro
as [13, 17, 20, 2, 27] can then be used to accept, reje‘é't‘ced is mapped to a relational view as explained above.

or modify the proposed SQL updates. In this section, we The splitting process consists in isolating a nodef
; ; iypery in the query treet, and taking its subtree as well as

mapped to a set of corresponding relational view expre&S @ncestors and their non-repeating descendants (types
sions. andrg) to form a new treeyt;. Recall thatgt must have at

Map. Given a query tregt¢ with only onery node, the Iea_ﬁlor:ce-N node by Proposmqn 2.1. Th
corresponding SQL view statement is generated as follow, e first step to generatg; IS o copyqt to gt;. Then,

Join together all tables found in source annotations (dall elete fromgt; all subtrees rooted at nodes of type, ex-
source tablelin a given node: in ¢t, using the where an- cept for the subtree rooted at Observe that deleting a

notations that correspond to joins on source tables @s S“b”?e“ may change the abstract_ type of the ancestors of
inner join conditions. If no such join condition is found Specifically, ifr has an ancestarwith typerr, andr isa's

then use “true” (e.g. 1=1) as the join condition, resulting i only _starred descgndant, the typeadiecomesyy after the
a cartesian product. Call these expressismisice join ex- deletion ofr. Continue to delete subtrees rooted at nodes of

pressionsUse the hierarchy implied by the query tree to Ieﬂt%pteTN N gt z;derhetype ancestors un;:zlgsfthe only nocée f
outer join source join expressionsin an ancestor-descendd’ YPETN 1N g i.d € plrtoc_ess IS rtei\pea € ordevery no I'te 0
direction, so that nodes with no children still appear in th&/P€ 7~ In ¢t and results in exactly ongy hode per spli

view. The conditions for the outer joins are captured as foll e (algor|thm$na_1pandspllt are available in [7]). . .
lows: If nodea is an ancestor of and a where annotation . | "€ result of this process for the query tree of Figure 5 is

in n, specifies a join condition on a tableinwith a table in shown in Figures 6 and 7. Using these split trees, the corre-

a, then use this annotation as the join condition for the outegtloond'trr‘]g rela'qonal wewSﬁewBo?kar:[ld\t/;]ewD_\/l?r?re (we |
join. Similar to inner joins, if no condition for the outerifo name ese VIews So we can refer (o them in the examples

is found, then use “true” as the join condition so that if thé)'c Section 4):
; . 0ot CREATE VI EW VI EMBOOK AS
inner relation is emp_ty: the tuples of the Quter will still-ap SELECT v.vendor1d AS i d. v.vendor Name AS vendor Narre,
pear. Use the remaining where annotations (the ones thatstate AS state, v.country AS country,
H ini it i sb.price AS bprice, b.isbn AS isbn, b.title AS btitle
were not used as inner or outer join conditions) in an SQ (Vendor AS v LEFT JOIN (Sel I -Book AS sb | NAER JOI N
where-clause and project the values of leaf nodes. The Mok AS B ON b. i sbn=sb. i sbn) ON v.vendor | d=sb. vendor | d);
H H P TE VI EW VI EWDVD AS
sulting SQL view statement represents an unnested Versigiicr ' vendorid AS Td. v.vendor Name AS vendor Nare,
of the XML view. v.state AS state, v.country AS country,
. . : sd.price AS dprice, d.asin AS asin, d.title ASdtitle
For example, the relational view corresponding to thezg, (Vendor AS v LEFT JON (Sel |-DVD AS sd | NNER JOI N

query tree in Figure 4is: DVD AS d ON d. asi n=sd. asin) ON v.vendor | d=sd. vendor | d)

280

. The correctness of the set of relational views resulting
from mapandsplit can now be understood in the following
name = ‘vendor | T sense:

[$v := table(“Vendor”)]

I, = = Theorem 3.1Given a query treet defined over a database
[o J[namei‘vendorNamj < D and an instancel of D, then evalRel(evalft, d)) C

value = $vivendorld |value = $vivendorNanje re'OuterUnion(map(sp"@(ﬁ)), d)
(Proofs for all the theorems of this papers are available in

name = ‘addres I name:‘products‘l

Tn

*

Ts

_ . _ . name = ‘dvd’
[e ~ssme | | e oo) 550 = bl Sel-0vD") [71)
[$d := table("DVD")] . . i
[where $sdivendorld=$vivendor|d Furthermore, the tuples melOuterUnion(map(split(t)),
and $d/asin=$sd/asin] .
I T d) — evalRel(evalft, d)) represent starred nodes with an
[name:l@dprici puwspuves B pe—— empty evaluation (which we call “stubbed” nodes). More
value = $sd/pric¢ | value = $brtitle| | value = $b/isb precise|y:
Figure 7: Partitioned query tree fox (dvd) Definition 3.4 Letx be an XML instance of a query tree

. . . o with evaluation schem&, andn be ary or 7 instance
As described abovesplit takes as input the original oge iny. A stubbed tuplef = is created fromn by asso-
query treeqt and produces as output a set of query tre€giating the value of each leaf nodi¢hat is an ancestor af
{qt1, ..., qtn}, each of which has oney node;maptakes yjith the attribute inS corresponding to the name gfand
{4t1, ., ¢t} as input and produces a set of relational vieWeaying the value of all other attributes # null.
expressiong V1, ..., Vi, }, where each; is produced from Thg set of all stubbed tuples.ofs denotedstubsg).
qt; as described above. It follows directly from these algo- As an illustration of a stubbed tuple, consider tuén

rithms that. table 2. Since the XML instance of Figure 2 does not have

Proposition 3.1 The number of relational view expressionsany dvd sold by vendaBarnes and Noblethere is a tuple

in map(split¢t)) is the number of 5 nodes ingt. [2, Barnes and Noble, NY, US, null, null, qui ViewDVD
The correctness of the set of relational view expressiovéhich was added by the LEFT join. This is correct, since

resulting frommapandsplit can be understood in the fol- vendoris in a common part of the view, so its information

lowing sense: Each tuple in the bindings relations for th@ppears both iNiewBookandViewDVD Howeverg is not

XML view is in one or more instances of the Correspondin@] table 1, since when the entire view is evaluated, this ven-

relational views. To be more precise, we define the followdor joins with a book.

ing: Theorem 3.2Given a query treet defined over a database

Definition 3.1 Theevaluation schemé of a query tree¢ 2 @nd an instanced of D, then every tuplet in
is the set of all names of leaf hodesg;in ;(telobg;e)rumon(map(spllaj(t)), d) — evalRel(evalft, d)) <

u .
Definition 3.2 Let x be an XML instance of a query tree Note that the statement of correctnessisthat the XML
gt with evaluation schem&, in which the instance nodes view can be constructed from instances of the underlying re-
are annotated by the query tree type from which they welational views. The reason is that we do not know whether
generated. Leh be the deepesty or 7 instance nodes or not keys of relations along the path fromy nodes to
for some root to leaf path in. Letp be the set of nodes in the root are preserved, and therefore do not have enough in-
the path fromn to the root ofz. Anevaluation tupleof z formation to group tuples from different relational view in
is created fromm by associating the value of each leaf nodestances together to reconstruct the XML view. When keys at
[that is a descendant of or of some node ip with the all levelsare preserved, then the query tree can be modified
attribute in S corresponding to the name 6fand leaving to a form in which the variables iterate over the underlying

the value of all other attributes i null. relational views instead of base tables, and used to recon-
The multi-set of all evaluation tuples ofis called its struct the XML view. Details of this algorithméplace can
evaluation relatiomnd is denote@valRel(). be found in [7].
For example, Table 1 shows the resultesflRelf) for
the query tree of Figure 5. 4 Updates

Definition 3.3 Let {V4,...,V,,} be defined over a rela- Given an update against a well-behaved view, we translate
tional schemaD, and d be an instance ofD. Then itto a set of SQL update statements against the correspond-
relOuterUnior{V1, ..., V,, }, d) denotes the set of relational ing relational view expressions, so existing work on upslate
instances that result from taking the outer union of the evathrough relational views can be used to translate the update
uation of eachV; overd: relOuterUnion({Vi,...,V,},d) to the underlying relational database. In this section, we
= evalV(V1,d) U ... U evalV(V,,,d), whereJ denotes start by defining XML updates and then describe the trans-

outer union, ancevalV(V,d) instantiatesl” overd. lation. We also summarize how to determine whether or not
For example, relOuterUnion({ViewBook, ViewDVD}, an update is side-effect free.

d) is the outer union ofevalV(ViewBook, d) and Although no standard has been established for an XML

evalV(ViewDVDyl), whose result is shown in Table 2. update language, several proposals have appeared [1, 25, 4,

281

id vendorName state country bprice btitle isbn dprice d@titl asin
t1 1 Amazon WA us 38 Unix Network Programming 1111 NULL NULL NULL
to 1 Amazon WA us 29 Computer Networks 2222 NULL NULL NULL
ts 1 Amazon WA us NULL NULL NULL 29 Friends D1111
ta 2 Barnes and Noble ~ NY us 38 Unix Network Programming 1111 NULLNULL NULL
ts 2 Barnes and Noble NY us 38 Computer Networks 2222 NULL NULL INIU

Table 1: Tuples resulting fromvalRel(evalft, d)) for the query tree of Figure 5

id vendorName state country bprice btitle isbn dprice dtitl asin
t1 1 Amazon WA uUs 38 Unix Network Programming 1111 NULL NULL NULL
to 1 Amazon WA us 29 Computer Networks 2222 NULL NULL NULL
ts 2 Barnes and Noble NY us 38 Unix Network Programming 1111 NULLNULL NULL
ta 2 Barnes and Noble NY us 38 Computer Networks 2222 NULL NULL INIU
ts 1 Amazon WA us NULL NULL NULL 29 Friends D1111
te 2 Barnes and Noble NY uUs NULL NULL NULL NULL NULL NULL

Table 2: Tuples resulting fromelOuterUnion({ViewBook,ViewDVD})

19]. The language described below is much simpler than = {<book bprice = "38"> _ _

any of these proposals, and in some sense can be thought _, bgg}(;i' e>New Book</bti tl e><i sbn>9999</i sbn>

of as an internal form for one of these richer languages (as-]
suming a static translation of updates [4]). The simplioty Example 4.27To change theendorNamef the vendor with

the language allows us to focus on the key problem we ai@ = "01" to Amazon.comwe specify: ¢ = modify, ref
addressing. = /vendors/vendor[@id = "01"]/vendorNama = {Ama-

zon.com}.

4.1 Update language Example 4.3To delete all books with title "Com-

Updates are specified using path expressions to point tgP4te" Networks” we specify: t=_ delete ref = /ven-
set of target nodes in the XML tree at which the update is tgOrs/vendor/products/book[btitle="Computer Netwoiks

be performed. For insertions and modifications, the update Note that not all insertions and deletions make sense
must also specify & containing the new values. since the resulting XML view may not conform to the DTD
Definition 4.1 An update operation is a triple <t,A ref>, ~ Ofthe query tree (see Section 2.4). For example, the daletio
wheret is the type of operation (insert, delete, modifyy; SPecified by the pativendors/vendor/vendorNameould

is the XML tree to be inserted, or (in case of a modifical©t conform to the DTD of Figure 5 sinoeendorNames
tion) an atomic value; andefis a simple path expression in & required subelement endor We must also check that
XPath [10] which indicates where the update is to occur. A’s inserted and subtrees deleted are correct.

The path expressioef is evaluated from the root of the Definition 4.3 An update <,Aref> against an XML view
tree and may yield a set of nodes which we agidate specified by a query treg is correctiff
points In the case of modify, it must evaluate to a set of o refis valid with respect tgt;
leaf nodes. We restrict the filters used@fto conjunctions e if ¢ is a modification, then the unqualified portionref

of comparisons of attributes or child elements with atomic
values, and call the expression resulting from removing fil-
ters inref the unqualified portionof ref. For example, the 4
unqualified portion ofvendors/vendor[@id="01"]s /ven-
dors/vendor

Definition 4.2 An update pathef is valid with respect to a
query treeqt iff the unqualified portion ofef is non-empty .
when evaluated ouqt.

For example /vendors/vendor[@id="01"]/vendorName

evaluated oryt arrives at a node whose abstract type
iS Tg;

if ¢ is an insertion (deletion), then the unqualified por-
tion of ref + the root of A (ref) evaluated oyt arrives

at a node whose incoming edge is starred (equivalently,
its abstract type is7 or 7y);

if nonempty, them\ conforms to the DTD of the ele-
ment arrived at byef.

For example, the deletion of example 4.3 is correct

is a valid path expression with respect to the query tresince book is a starred subelement @foducts How-
of Figure 5, since the pattvendors/vendor/vendorNarme ever, the deletion specified by the update péaten-

non-empty when evaluated on that query tree.

dors/vendor/vendorNamis not correct sinc&eendorName

The semantics of insert is that is inserted as a child of s of abstract types, as is the deletion specified by the in-
the nodes indicated bief; the semantics of modify is that valid update pativendors/vendor/dvd

the atomic value\ overwrites the values of the leaf nodes
indicated byref; and the semantics of a delete is that thel.2
subtrees rooted at nodes indicated®fyare deleted.

Mapping XML updates to relational views

We now discuss how correct updates to an XML view are
translated to SQL updates on the corresponding relational
Example 4.1 To insert a new book selling for $38 under theviews produced in the previous section.

vendor with id="01" we specify: ¢ = insert ref = /ven- Throughout this section, we will use the XML view 2 of
dors/vendor[@id="01")/ products Figure 2 as an example. The relational vieviswBookand

The following examples refer to Figure 2:

282

ViewDVDcorresponding to this XML view were presented <btitle>Book 2</btitle><i sbn>9222</i sbn></ book>

in Section 3. <g\é?i ?Ip:aL(I:JS:D igl Zt i t| e><asi n>D9333</ asi n></ dvd>
The translation algorithm for insertions, deletions and </ product s>
modificationstranslateUpdatgis given in [7]. </vendor>}.
The unqualified update pattef evaluated against the
4.2.1 Insertions query tree of Figure 5 yields a nodévendors) which is

To translate an insert operation on the XML view to the unth€ root. Continuing from here using labelsn we dis-

derlying relational views we do the following: First, the-un COVer two nodes of typey: 7y (book)and 7y (dvd) We
qualified portion of the update patéf is used to locate the Will therefore generate SQL insert statementyi@wBook
node in the query tree under which the insertion is to tak&d as well a¥iewDVD _ _
place. Together with\, this will be used to determinewhich _Evaluatingref against the XML instance of Figure 2
underlying relational views are affected. Secaedjs used Yi€!ds one update point, node 1. Traversing the path from
to query the XML instance and identify the update pointstiS Update pointto the rootyields no label-value painsqei
Third, SQL insert statements are generated for each unddf€ Update point is the root itself). We then identify each
lying relational view affected using informationinas well node of typery in A, and generate one insertion for each
as information about the labels and values in subtreesdoot8! them. As an example, traversing the path from the first
along the path from each update point to the root of the XM (book) node inA yields label-value pairbprice = "30,
instance. title = "Book 1", andisbn ="9111". Going up to the root of
Observe that by proposition 2.2, there is at most one node: We haveid ="03", vendorName = "New Vendarstate
of type 7 along the path from any node to the root of the~ PA_ andcountry = "US". Thlsllnformat.lon is therefore
query tree and that insertions can never occur belaw a combined to generate the following SQL insert statement:

node, since all nodes belowrg node are of types or 7o ! NEEWcLNT?sXLEV\E?% (e')d vendor Nare, state, country,
by definition. VALUES (" 03", "New Vendor", "PA", "US", 30, "9111", "Book 1");
For example, to translate the insertion of example 4.1, we - . N

o In a similar way, information is collected from the re-

use the unqualified update pa#endors/vendor/products . .)
: : maining twory nodes inA to generate:

the query tree of Figure 5, and find that the type of the up- _
date pointisrc: (products). Continuing fromre (products) o ;’Lﬁ‘”y’boﬂ(tf'e;’ vendorName, state, country,
using the structure oA, we discover that the onkyy node VALUES ("03", "New Vendor","PA","US", 30, "9222", " Book 2");
in Ais its root, which is of typery (book). The underlying ' N§ET, {NTO VI BVEID (1 ¢ vendorfane, state, country.
view affected will therefore b&iewBook We then use the VALUES (03", " New Vendor","PA","US", 30, "D9333","DVD 1");
update pathef= /vendors/vendor[@id="01")/ productto

identify update points in the XML document. In this cased4.2.2 Modifications

there is one node (8). Therefore, a single SQL insert statg— - e
ment against viewiewBookwill be generated. y definition, modifications can only occur at leaf nodes. To
Jprocess a modification, we do the following: First, we use

To generate the SQL insert statement, we must find v - lifiedef . h d . hich
ues for all attributes in the view. Some of these attribute '€ Unqualifiedet against the query tree to determine whic

value pairs are found ith, and others must be taken fromrelational views are to be updated. This is done by looking

the XML instance by traversing the path from each up‘?‘t the first ancestor oflthe node specifiedrbfy\./vh.ich has
and finding all nodes of typey in its sub-

date point to the root and collecting attribute-value pairgypeTT or 7n,

from the leaves of trees rooted along this path. In exanjir[]eel' (ft Izasthon_er]\l; UOde mélj.]f‘.t g)_(ist,f by d(_afiniltfiorr]].) I
ple 4.1, A specifiesbprice="38", btitle="New Book” and the leaf node that s being modified is of type itself, then

isbn="0999" . Along the path from the node 8 to the rootit is guaranteed that the update will be mapped only to the

in the XML instance of Figure 2, we find="01" , vendor- relational view corresponding to this noc_ie.
Name=*Amazon’, state="WA" andcountry="US". Com- Second, we generate the SQL modify statements. The

bining this information, we generate the following SQL in-Qualifications inref are combined with the terminal label
sert statement: ’ of ref and value specified bsx to generate an SQL update

I NSERT | NTO VI EWBOOK (id, vendorNane, state, country, statement agamSt the view.

bprice, isbn, btitle) For example, consider the update in example 4.2. The un-
VALUES (01", " Amazon", "WA", "US", 38, " 9999, " New Book™) qualifiedref is /vendors/vendor/vendorNaniEhery nodes
As another example, consider the following insertiorin the subtree rooted &endor(the firstr; or 7y ancestor of
against the view 2t = insert ref = /vendors vendorNamgarery (book) andry (dvd), and we will there-
A={<vendor id="03"> fore generate SQL update statements for higtvBookand
Svendor Name>New Vendor </ vendor Namre> ViewDVD We then use the qualificatiad = "01" from ref
<stat e>PA</ stat e> = /vendors/vendor[@id = "01"]/vendorNamegether with

<count ry>US</ count ry>
</ addr ess> the new value i\, to yield the following SQL modify state-
<product s> ments:

<book bprice="30"> N , S y_mqn
<btitle>Book 1</Dbtitle><i sbn>9111</i sbn></ book> UPDATE VI EMBOOK SET vendor Nane="Amazon. conf WHERE i d="01";

<book bprice="30"> UPDATE VI EMDVD SET vendor Name="Amazon. cont’ WHERE i d="01"

283

4.2.3 Deletions In the next subsection, we discuss a scenario in which

Deletions are very simple to process. First, the unqualiﬁet(rj1IS claim can be made.

portion of the update pattef is used to locate the node in .
the query tree at which the deletion is to be performed. Thi&4 Updatability

is then used to determine which underlying relational viewghere are several choices of techniques that could be used
are affected by finding aity nodes in its subtree. Second,tg translate from updates on relational views to updates on
SQL delete statements are generated for each underlying fge underlying relational database. Some consider a &ransl
lational view affected using the qualificationsréf. tion to be correct if it does not affect any part of the databas
As an example, consider the deletion in example 4.3. Thfiat is outside the view [2, 20]. Others consider a trarstati
unqualified update path isendors/vendor/products/book to be correct as long as it corresponds exactly to the spec-
The only7y node in the subtree indicated by this path in thefied update, and does not affect anything else in the view
query tree is-y (book) This means that the deletion will be [13]. still others use additional information to build sfiec
performed invViewBook Examining the update pathen- translators for each view [18, 21, 27]. Here, we choose [13]
dors/vendor/products/book[btitle="Computer Networks" to jllustrate how reasoning abosite-effect freeelational
yields the label-value paibtitle="Computer Networks" view updates can be extended to XML views.
Thus the deletion on the XML view is translated to an SQL | [5], we define conditions under which XML views
delete statement as: constructed by “nest-last” nested relational algebra (NRA
DELETE FROM VI EVBOOK WHERE Dbti tle="Conputer Networks® expressions are updatable. Since nest-last NRA expression
Itis important to notice that if a tuplein one relation perform nests over a relational algebra expression, our re-
“‘owns” a set of tuples in another relation via a foreign keygyits are based on the ability to unnest the NRA expres-
constraint (e.g. a vendor “owns” a set of books), then del&jon to obtain a (single) corresponding relational vievd an
tions must cascade in the underlying relational schema {Ren build on the results of [13] to detect updatability.c®in
order for the deletion of specified through the XML view query trees also express nesting and are mappedetod

to be allowed by the underlying relational system. corresponding relational views, we can use these results to
reason about the updatability of XML views constructed by
4.3 Correctness query trees. We assume the underlying relational database i

Since we are not focusing on how updates over relationdl BCNF (as required by [13]), and impose three restrictions
views are mapped to the underlying relational database, o@f the query tree and update: (1) each table must be bound
notion of correctness of the update mappings is their effet® at most one variable; (2) each value in a leaf node must
on each relational vieweated as a base tahle be unique, that is, if the value efis specified agz /A, then

Let = = eval(gt, d) be the initial XML instanceu be this value specification does not appear on any other node in
the update as specified in Definition 4.1, aapbly(@,) the query tree; (3) comparisons in the filterseff must be
be the updated XML instance resulting from applyingp ~ equalities. These restrictions are imposed so that thétvesu
z. The functiortranslateUpdatet, gt, u) (shown in [7] and ing relational views do not include joins of the same tables
summarized in Section 4.2) translatet a set of SQL up- and projections of the same attribute (as required by [13]).
date statementslfiy, ..., Uim,, ..., Un1, .., Unm,}, Where The restriction to equalities in conditions is also reqdiiog
eachU;; is an update on the underlying view instange [13].
= evalV(;,d) generated bynap(splitgt)).

We use the notation; = applyR@;, {Ui1, ..., Uim,}) tO
denote the application oftf;1, ..., Uim,} t0 v;, resulting in
the updated view,. If the set of updates for a given is
empty, therv] = v;.

Theorem 4.3A correct updatex to an XML view defined
by a query tregyt is side-effect free if for alll{;, V;), where
V; is the corresponding relational view ¢f;, andU; is the
translation ofu overV;, U; is side-effect free i;.

Based on Theorem 4.3, we can how answer a more gen-
eral question: Is there a class of query tree views for which
all possible updates are side-effect free? To answer this
guestion, we summarize the results of [5] and [13] for condi-

Theorem 4.1Given a query tregt defined over database
D, then for any instancé of D and correct update; over
qt, evalRel(applyg, u)) € v} U ... U v/,, where J denotes

outer union. tions under which NRA views are updatable, and generalize
Theorem 4.2Given a query tregt defined over a database them for XML views constructed by query trees.

D and an instanced of D, thenv; |J ... U v, — Insertions. An insertion over an NRA view is side-effect
evalRel(applyg, u)) C stubs(applyt, u)) free when the corresponding relational viéiis a select-

Note that a correctness definition lilgply(evalgt,d), project-join view, the primary and foreign keys of the saurc
u) = eval(gt, d’), whered' is the updated relational databaserelations of V' are in the view and joins are made only
state resulting from the application of the translated viewhrough foreign keys. In terms of query trees, this means
updates {/11, ..., Uimy, -, Un1, ..., Unm, } t0 Updates ond, that the primary keys of the source relationggfmust ap-
does not make sense due to the fact that we do not contp®ar as values in leaf nodes@f and thewhereannotations
the translation of view updates. Therefore we cannot claiin gt; specifies joins using foreign keys, for all split tregs
that they are side-effect free. corresponding to a query trge.

284

Deletions and modifications.Deletions and modifications vious section. While grouped values and leaf nhodes with
over an NRA viewV are side-effect free when the aboveattributes do not affect these results, the addition of func
conditions for insertions are met afdis well-nested5]. tions and aggregates would. Analogous to work on updat-
By well-nestedwe mean that the source relationdirmust ing views in relational databases which restricts views to
be nested according to key-foreign key constraints in the uselect-project-join queries, we have therefore initialls
derlying relations. We rephrase this condition in terms ofided against considering a richer language (although we
query trees as follows: plan to do so in future work).

The EBNF for the subset of XQuery corresponding to our
language (with grouped values) can be found in [7].

To evaluate our language, we first discuss the restrictions
in our form of queries, and what query trees can or cannot
express. Second, we examine the power of expression of
query trees, and compare it with existing proposals in lit-

rature. We have also analyzed the “practicality” of XML

ews constructed by query trees by collecting examples
A . Uk) “of real XML views extracted from relational databases and
tions; one that is updatable for all possible insertionte-de evaluating whether or not query trees can capture them. For

tions and modifications; and a general one whose updal@ase real XML views, query trees were sufficiently expres-
bility with respect to a given update can be reasoned abo%\ e. Details can be found in [7].

using Theorem 4.3. Furthermore, we can now prove the fol-
lowing:

Definition 4.4 A query treegt is well-nestedf for any two
source relations? and S in ¢t, if S is related toR by a for-
eign key constraint then the source annotationfRooccurs
in an ancestor of the nodecontaining the source annota-
tion for S. Additionally, attributes of? must not appear as
values in the descendantsof

The results above identify three classes of updatab,
XML views: one that is updatable for all possible inser

5.1 Limitations of Query Trees

Theorem 4.4Given a query treegt with the restrictions Although query trees are quite expressive, there are some

mentioned above and defined over a BCNF databa?%strictions

D, then for any instanced of D and correct up- ')

date u over qt: apply(evalgt,d), u) = evalgt, &), Vvalues mustcome from the relational databaseWe do

where d’ is the updated relational database state resultDot allow constants to be introduced as values in leaves, nor

ing from the application of the translated view update§|0 we allow functions tp calculate new valu_es from vglues

{U11, s Uty ooy Ui, oo, Unm.. } Using the techniques of IN the database. Allowing constant values in leaves is po-

[13]. tentially useful (for example, to add a version number to the

view), but they are not interesting from the perspective of

%pdates to the relational database nor can they themselves

be updated since they are not part of the database schema.

. Calculating a value from a set of values (e.g. taking the av-

5 Evaluation erage of arelational column) creates a one to many mapping

For purposes of presentation, the query tree language pméhiCh cannot be updated; research on relational views also

sented in this paper was kept simple to highlight how théisallows this case. However, calculating a new value from

mapping of the query tree and updates are performed. asingle value in the database (e.g. translating lengthrin ce
Query trees can be extended in a number of ways, fegimeters to length in inches) could be allowed as long the

example to deal with grouping, aggregates, function applfeverse function was also specified.

cations and so on. As an example of such extension, in [Queries are trees rather than graphs. This restric-

we allow grouped valuesvhich allow tuples that agree on tion disallows recursive queries, which are also disaltbwe

a given value to be clustered together, as well as leaf nodgs SilkRoute [15]. For example, suppose the relational

with attributes. With such an extensidmoks anddvds that database contained a relation Patriarchs(PName, CName)

agree on a given price could be grouped under a commejith instance {(John, Marc), (John, Chris), (Justin, Jghn)

productsancestor. In this case, the nogeductswould An XML view of this that one might wish to construct would

be a starred node with a chit@price The nodeproducts pe:

would repeat for every distinct value pficeon tables Sell- _p,; ;i arch>

Book and Sell-DVD. This extension affects the mapping al-<Name>Just i n</ Name>

gorithm only superficially and does not affect the results of<C'"LL,g[,§230hn<, Name>

this paper. <Chi I dren> <Name>Nar c</ Name>

However, another consideration that must be kept in o | grens e o' S/ Nane>
mind when extending the language is whether or not the re</ chi | dren>
lational views resulting from the XML view are updatable. P2t arch>
The language presented in this paper, with suitable restric Since recursive queries cannot be mapped to select-
tions on the way in which joins and nesting are performegroject-join queries, our technique would have to be ex-
with respect to keys and foreign keys in the underlying relaended significantly to reason about them.
tional database, presents a subset of XQuery in wiié- On the other hand, query trees are flexible enough to rep-
effect freeupdates can be defined as discussed in the preesent heterogeneous structures (e.g. the view in Figure 5)

We leave the study of updatability using other existin
relational techniques for future work.

285

(Crame = vesur] T with RDB_node method are equivalent to query trees in ex-

T — 1 pressive power, since all the data come directly from the
pomvpmmemmn B gu——"] name = dvds relational database and functions cannot be applied oeer th
(8 = table(Book) retrieved data. This is meaningful, since DB2 DAD files
Ts T name ='dvd’ represent features that are useful in practice, and because
name = ‘vendor’ [$b := table("DVD")]
[[Sv = table(*Vendor’)]]ﬂ Ts T, this subset can easily be mapped to relational views.
[$sb := table(“Sell-Book")]
[where $v/vendorid=$sb/vendor]|][name=‘btit_le’] [name = ‘dtitle’]
value = $v/vendorName value = $bttitle] value = $d/title

6 Related Work

. . There are several proposals for exporting and querying
It can also represent query trees with a repeating leaf nodgys \iews of relational databases [8, 15, 22, 23]. For up-

as shown in Figure.8 (note t_haEndoris _Iabeled WithT,N dates, [28] presents a round trip case study, where XML
andrs). The XML view resulting from this query tree is as y,cyments are stored in relational databases, recoredruct

Figure 8: Example of query tree

z?gngi and then updated. In this case, it is always possible totrans
<sel | Books> late the updates back to the underlying relational database
<vendor >Amazons</ vendor > Our approach differs since we address updatetegdcy
<vendor >Bar nes and Nobel </ vendor > .
</ sel | Books> databases through XML views.
<book><btitle>Uni x Network Programming</btitle></book> Commercial relational databases offer support for ex-

<book><btit| e>Conput er Networks</btitle></book> . . L
tracting XML data from relations as well as restricted types

of updates. In SQL Server [11], an XML view generated
. by an annotated XML Schema can be modified usipg
o ravas> dategrams To update, the user provides a before and after
It turns out that XML views with heterogeneous contenhmage of the XML V|ew_[12]. The system computes the
and repeating leaves arise frequently in practice, butrthat ifierence betweer_1 the images and generates SQL update
cursive views are not common. We therefore t')elieve th sfatements. .The views supported by thls.approach are very
the above restrictions do not Iirﬁit the usefulness of our a%strlcted: joins are through keys and foreign keys, ant nes
ang is controlled to avoid redundancy. This corresponds to
proach. our well-nested query trees, which are therefore provably
updatable with respect to all insertions, deletions and-mod
ifications. Oracle [14] offers the specification of an anno-
We now compare the expressive power of query trees witlated XML Schema, but the only possible update is to insert
SilkRoute’sview forestd15], XPERANTO [22], and DB2 an XML document that agrees with the schema. I1BM DB2
DAD files [9]. XML Extender [9] requires that updates be issued directly
XPERANTO [22] can express all queries in XQuery.in the relational tables.
View forests [15] are capable of expressing any query in the Native XML databases also support updates [26, 16, 24].
XQueryCore that does not refer to element order, use recurhe goal of all these systems differs from ours since they do
sive functions or use is/is not operators. Query trees ptesenot update through views.
the same limitations as [15], and are also not capable of ex-
pressingf/then/elseexpressions; sequences of expressions Conclusions
(since we require that the result of the query always be an
XML document); function applications; and arithmetic andn this paper, we present a technique for updating relationa
set operations. Input functions are also a limitation ofrgue databases through XML views. The views are constructed
trees; in contrast to SilkRoute, variables cannot be boand tsing query trees, which allow nesting as well as heteroge-
the results of expressions. neous sets of tuples, and can be used to capture mixed con-
DB2 XML Extender provides mappings from relationstent, grouping, as well as repeating text elements and text
to XML through DAD files. Mappings can be done elements with attributes.
in two ways: using a single SQL statement (by using The main contributions of this paper are the mapping of
the SQL_st nt element in the DAD file), or using the the XML view to a set of underlying relational views, and
RBD_node mapping. The SQL_stmt method allows onlyhe mapping of updates on an XML view instance to a set
a single SQL statement, so XML views with heterogeneousf updates on the underlying relational views. By providing
structures (like the one in Figure 5) can not be constructethese mappings, the XML update problem is reduced to the
The RBD_node method allows heterogeneous structuresjational view update problem and existing technigues on
since instead of specifying a single SQL statement for thepdates through views [13, 17, 2, 20] can be leveraged. As
XML extraction, the user specifies, for each XML elementin example, we show how to use the approach of [13] to
or attribute in the XML view, the table and attribute nameproduce side-effect free updates on the underlying redatio
from which the data must be retrieved. It is also possibldatabase.
to specify conditions for each XML node in the DAD file Another benefit of our approach is that query trees are
(join conditions and selection conditions). DB2 DAD filesagnostic with respect to a query language. Query trees rep-

<dvds>
<dvd><dtitl e>Friends</dtitl e></dvd>

5.2 Power of Expression

286

resent an intermediate query form, and any (subset of an)
XML query language that can be mapped to this form could

online tutorial http://www.topxml.com/tutorials/main.asp?
id=sqlxml.

be used as the top level language. In particular, we have ifi3] U. Dayal and P. A. Bernstein. On the correct transla-
plemented our approach in a system cafathxd that uses

a subset of XQuery to build the XML views and translates
XQuery expressions into query trees as an intermediate r

tion of update operations on relational view&CM
Transactions on Database Systenty2):381-416,
Sept. 1982.

SQL/XML is making

e -
resentation [6]. Similarly, our update language represant ﬁ“] A. Eisenberg and J. Melton.
intermediate form that could be mapped into from a numbet_[L5 I(\JAOOIE prqujessS\I{Glll/l(()jl_D 'T(ECSRSDK.L(Z)AZ&OZ: hi
of high-level XML update languages (using a static evalult°] and \%ngn Tzzn’ 'SiII?rolzfe'aA ffar#g\l/vérk'foropszllig]r?’
ation OT which updates are to be perf_ormed). In our imple- ing relational data in XML. ACM Transactions on
mentation, we use a graphlcal_ user _mterface which allowg Database Systems (TODSY(4):438-493, Dec. 2002.
users to click on thg update point or (in the case ofasetorlG] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V.
ented update) specify the path in a separate window and see Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
what portions of the tree are affected. y D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
In future work, we plan to study the updatability of XML TIMBER: A native XML database The VLDB Jour-
views using other proposals of updates through relational nal, 11(4):274-291, 2002.
views in the literature. We also plan to extend the languad@7] A. M. Keller. Algorithms for translating view up-
to include other features such as aggregates, and to extend dates to database updates for views involving selec-
the model to include order. tions, projections, and joins. IRroceedings of SIG-
MOD, pages 154-163, Portland, Oregon, Mar. 1985.
ACM.
References [18] M. Keller. The role of semantics in translating view
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and updateslEEE Computer19(1):63-73, 1986.
J. Wiener. The Lorel Query Language for Semistrucf19] A. Laux and L. Martin. XUpdate WD, Sept. 2000.
tured Datalnternational Journal on Digital Libraries Working Draft. http://www.xmldb.org/xupdate/xupdate-
1(1):68-88, 1997. wd.html
[2] F. Bancilhon and N. Spyratos. Update semantics d20] J. Lechtenbdrger. The impact of the constant comple-
relational views ACM Transactions on Database Sys- ment approach towards view updating Aroceedings
tems 6(4), Dec. 1981. of PODS 2003 pages 49-55, San Diego, CA, June
[3] P. Bohannon, S. Ganguly, H. Korth, P. Narayan, and 2003.
P. Shenoy. Optimizing view queries in ROLEX to sup-{21] L. A. Rowe and K. A. Shoens. Data abstraction, views
port navigable result trees. Proceedings of VLDB and updates in RIGEL. IISIGMOD, pages 71-81,
2002 Hong Kong, China, Aug. 2002. Boston, Massachusetts, 1979.
[4] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active [22] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan,
XQuery. InICDE, San Jose, California, Feb. 2002. and J. Funderburk. Querying XML views of relational
[5] V. Braganholo, S. Davidson, and C. Heuser. On the data. InProceedings of VLDB 200Roma, Italy, Sept.
updatability of XML views over relational databases. 2001.
In Proceedings of WEBDB 2003an Diego, CA, June [23] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J.
2003. Carey, B. G. Lindsay, H. Pirahesh, and B. Reinwald.

[6]

V. Braganholo, S. Davidson, and C. Heuser. UX-
Query: building updatable XML views over relational
databases.
pages 26—40, Manaus, AM, Brazil, 2003.

Efficiently publishing relational data as XML docu-
ments.The VLDB Journglpages 65-76, 2000.

IBrazilian Symposium on Databases [24] Software AG. Tamino XML Server, 2002ttp://www.

softwareag.com/tamino/details.htm

[7] V. Braganholo, S. Davidson, and C. Heuser. Propd25] |. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updat-

[8]

gating XML View Updates to a Relational Database.
Technical Report TR-341, UFRGS, Porto Alegre, RS,
Brazil, Feb. 2004.
S. Chaudhuri, R. Kaushik, and J. Naughton. On re-

ing XML. In Proceedings of SIGMOD 2005anta
Barbara, CA, May 2001.

[26] The Apache Software Foundation. Apache Xindice.

http://xml.apache.org/xindi¢e2002.

lational support for XML publishing: Beyond sorting [27] L. Tucherman, A. L. Furtado, and M. A. Casanova. A

and tagging. IrProceedings of SIGMOD 200%an
Diego, CA, June 2003.

pragmatic approach to structured database design. In

VLDB, pages 219-231, Florence, Italy, Oct. 1983.

[9] J. Cheng and J. Xu. XML and DB2. Rroceedings of [28] L. Wang, M. Mulchandani, and E. A. Rundensteiner.

[10]

[11]

[12]

ICDE’00, San Diego, CA, 2000.

J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C Recomendation, Nov. 1999.

A. Conrad. A Survey of Microsoft SQL
Server 2000 XML Features. MSDN Library.
http://msdn.microsoft.com/library/en-us/dnexxmlfstml
07162001.aspJul 2001.

A. Conrad. Interactive microsoft SQL Server & XML

287

Updating XQuery Views Published over Relational
Data: A Round-trip Case Study. IRroc. of XML
Database Symposiymerlin, Germany, Sept. 2003.

