
ROX: Relational Over XML

Alan Halverson†, Vanja Josifovski*, Guy Lohman*, Hamid Pirahesh*, Mathias Mörschel+

alanh@cs.wisc.edu, vanja@us.ibm.com, lohman@almaden.ibm.com, pirahesh@almaden.ibm.com,
M.Moerschel@web.de

†University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706

*IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120
+Am Rederwald 9, D-66954 Pirmasens, Germany

Abstract

An increasing percentage of the data needed by
business applications is being generated in XML
format. Storing the XML in its native format will
facilitate new applications that exchange
business objects in XML format and query
portions of XML documents using XQuery. This
paper explores the feasibility of accessing
natively-stored XML data through traditional
SQL interfaces, called Relational Over XML
(ROX), in order to avoid the costly conversion of
legacy applications to XQuery. It describes the
forces that are driving the industry to evolve
toward the ROX scenario as well as some of the
issues raised by ROX. The impact of
denormalization of data in XML documents is
discussed both from a semantic and performance
perspective. We also weigh the implications of
ROX for manageability and query optimization.
We experimentally compared the performance of
a prototype of the ROX scenario to today’s SQL
engines, and found that good performance can be
achieved through a combination of utilizing
XML's hierarchical storage to store relations
"pre-joined" as well as creating indices over the
remaining join columns. We have developed an
experimental framework using DB2 8.1 for
Linux, Unix and Windows, and have gathered
initial performance results that validate this
approach.

1. Introduction

After two decades of commercially-available products,
relational database systems (RDBMSs) supporting the
SQL query language standard are an unqualified
commercial success, with a huge industry-wide
investment in applications such as Enterprise Resource
Planning (ERP) [SAP04, PSW04, ORC04] and Customer
Relationship Management [SIB04, ORC04] that query an
RDBMS with SQL. As the acceptance and sources of
XML documents have proliferated, many commercial
relational database systems have adapted by developing
techniques for storing XML documents in relational
systems by shredding documents into relations [EDO01,
SB00, SQX04] and/or by storing each document as an
unstructured, large object (LOB) [EDO01]. However,
shredding and recomposing all documents, many of which
will never be retrieved, is unduly expensive.
Alternatively, searching XML documents stored as LOBs
is prohibitively slow. As more enterprises exchange
business objects, such as purchase orders, in XML format,
applications will increasingly need to efficiently query
portions of XML documents via the emerging XQuery
standard [BCF03]. This will lead to storing the data in
some native XML format that efficiently supports
XQuery.

Legacy relational interfaces and native XML storage
appear to be on a collision course that raises many
interesting questions. Can the relational and XML data be
treated separately, storing each in the appropriate type of
repository? In other words, will data from relational
sources be queried exclusively by SQL, and XML data
exclusively by XQuery? Or will databases of the future
have to be hybrids, storing both relational and XML? Or
will we just convert relations into XML objects and store
everything in XML format? Regardless, what is to
become of the “legacy” applications written in “good old”
SQL that need access to data that increasingly originates
as XML data? Do they need to be re-written, or can XML

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

264

repositories support both XQuery and SQL? Will there be
evolution, or a revolution?

We are convinced that XML adoption must
necessarily be an evolution – that existing relational
applications are too big and complicated to convert them
all rapidly or inexpensively from SQL to XQuery. We
also project that the data accessed by these SQL
applications will increasingly come from XML sources
and need to also be accessible via XQuery, and hence will
be stored in native XML format.

This paper therefore explores how to efficiently
support Relational Over XML (ROX), i.e. the existing
SQL interface to a native XML store. We postulate a
database containing a blend of both tables and XML
documents, with an increasing percentage of XML
documents over time. The ROX scenario limits our

consideration to SQL queries as input that return rows as
output, in order to support legacy applications, even
though the system is very likely to also support XQuery
interfaces to the same database.

The ROX scenario alone raises many important issues.
Perhaps the most important is whether ROX can perform
as well as today’s SQL engines. What is the impact of the
obvious expansion of data caused by tags and other
structuring information? How much should XML
documents be normalized, and does the denormalization
supported by XML help or hinder performance? Or is
normalization of data obsolete with the advent of XML?

The remainder of this paper is organized as follows.
The next section summarizes the evolution of XML data
management. Section 3 discusses issues involving query
semantics of SQL and XQuery, tradeoffs for selecting an

SQL DBMS

SQL DBMS

XQuery co-processor

XQuery text/XML text

XQuery DBMS

Shared Data Management Layer

SQL QP

XQuery QP

SQL
Parser/Rewriter

SQL Runtime
Function Library

XML text

Internal query/data representation

Figure 1(b) – Co-processor Architecture

Figure 1(c) – Side-by-Side Architecture Figure 1(d) – ROX Architecture

Figure 1(a) – Shredding (XOR)
Architecture

SQL Rowset

Tables w/ XML
text in CLOBs

XQuery embedded into SQL

XML in Rowset columns

Tables

Tables w/ XML
nodes in columns

Native XML as
nodes

SQL Rowset XQuery

XML

XML

SQL Rowset XQuery

XQuery

XQuery
Parser/Rewriter

XML

Figure 1 - Architecture choices for mixed SQL and XQuery systems

265

appropriate XML schema, and performance concerns.
We present our ROX experimental design in Section 4,
and the results of those experiments in Section 5. Our
conclusions and directions for future research comprise
the last section.

2. The Evolution of XML Data Management
Systems

Storing and processing XML data have been a focus of
the database research community for much of the last
decade. Several XML data management systems have
been proposed, most based on various degrees of
adaptation and reuse of relational technology. There are
two main reasons for reuse of relational technology. First,
adaptation is presumably less expensive and allows faster
time to market than development from scratch. The other
reason is that such hybrid systems are capable of storing
both relational (structured) and XML (semi-structured)
data. As most applications are likely to operate over both
types of data, the new generation of databases will need to
support both allowing the application to access a single
data repository.

Several different architectures have been proposed for
building a hybrid XML-relational database, as illustrated
in Figure 1. Chronologically, the first attempts were based
on reusing the whole RDBMS stack when processing
XQuery queries: from the SQL query language to the
relational data storage. In this XML-Over-Relational
(XOR) approach, the XML documents are shredded into
atomic values that are then stored in relational tables.
XQuery queries are translated into SQL queries to be
evaluated by the existing query processor. Several
research prototypes have explored this scheme, such as
LegoDB [BFH00], and XPeranto [SKS01], and several
products offer different shredding and XPath querying
capabilities based on this approach [EDO01, MSF00].
The advantage of this architecture is that it requires
almost no modification of existing database engines. As
such, an XQuery implementation can easily be adapted to
several different DBMS systems. However, as the
XQuery language has evolved into an elaborate and
complex standard, it has become clear that translating
XQuery queries into SQL queries is a daunting task.
While shred-and-query systems claim compatibility with
a subset of the language, none has managed to produce a
fully compliant XQuery implementation.

Next in the timeline were systems that are on the other
side of the architectural spectrum, named Co-processor
Architecture in Figure 1(b). Here, XML is stored as
unparsed text in VARCHAR or LOB columns of
relational tables. The XML data is opaque to the RDBMS
and only the storage layer is re-used. The XML data is
queried using an XQuery processor that is external to the
database and invoked much like a user-defined function.
The communication between the two processors is using
textual or equivalent format. The SQL and the XQuery

processors can be developed separately and interchanged.
This solution is attractive for its relative simplicity and
modularity.

Most of today’s commercial systems support this type
of XML manipulation using stored procedures to invoke
an external XQuery processor [EDO01, MSF00], in
conjunction with XOR support. However, due to the loose
coupling of the query processors, usually the entire XML
document is brought into memory before processing,
severely limiting the size of the data and optimization
possibilities

Several systems have been reported that support only
XQuery. Systems such as Niagara [NDM01] and Timber
[JAK02] break the XML document into nodes and store
the node information in a B+-tree, with all document
nodes stored in order at the leaf level. This allows for
efficient document or sub-tree reconstruction by a simple
scan of the leaf pages of the tree. In Niagara, additional
inverted list indexes are created to enable efficient
structural join algorithms for ancestor/descendant paths.
However, these systems do not support SQL or relational
storage.

More recently more native storage of XML documents
has been proposed in [KM99] and [ZKO04]. In our work
we take a similar approach where the XML data is stored
as in a native tree format in which document nodes are in
most cases clustered together on a page. Bulk processing
is performed using indexes, while the storage is optimized
for fast navigation to evaluate the non-index portions of
the query. Parent-child traversal does not require a join
between different tables. Since most XPath expressions
require parent-child traversal, this scheme allows for
efficient access to the data. The details of the storage are
beyond the scope of this paper. We use this model as an
example to explore the consequences of representing
relational data with hierarchical trees.

At this point we consider where will the system
architecture move beyond today’s state of the art? Can we
project the direction of the path based on the evolution so
far? Is the current situation similar to the introduction of
the relational database systems compared to IMS? We try
to analyze the issues from several angles and answer to
these questions.

One probable direction in the short term is the side-by-
side architecture, as shown in Figure 1(c). In this
architecture there is a tighter coupling between the query
processors than in the architecture based on shredding.
Query fragments can be translated from one language to
the other and exchanged using internal data structures that
may not adhere to the language semantics. Such a
mechanism improves the efficiency of the translation and
allows more degrees of freedom in the evaluation. For
example, when returning values from XQuery to SQL, as
required when evaluating SQL/XML, queries might
require that an element is constructed by an embedded
XQuery query and then shredded by an SQL table
function. Instead, the optimizer can re-write such queries

266

so that rows of values are returned from the XQuery
processor directly into the SQL processor, although rows
are not part of the Query Data Model.

While more efficient than the first two architectures,
the side-by-side architecture introduces many
complexities. It requires that various system components
have compatible definitions on both sides of the system.
For example, the catalogue description of internal objects
such as indexes and materialized view definitions need to
be matched to both the SQL and XQuery queries. While
these issues pose interesting research challenges, we view
this architecture only as a partial solution that will be
simplified and eventually morph into the Relational over
XML architecture shown in Figure 1(d) where the
primary processing is performed by an XQuery engine
with native XML storage model. In its engine all
transformations are governed by the XQuery language
specification and the Query Data Model. The SQL
support is divided between a thin parse-and-rewrite layer
and a library for support of the SQL functions and
operators that cannot be mapped to the XQuery functions
and operators.

The ROX architecture is at the opposite extreme of the
solution space when compared to the first XQuery query
processor designs, in which the XQuery processor was a
thin layer over SQL database systems. The obvious
question is what makes this architecture viable if the
opposite solution has not been implemented in any of the
major database products? Furthermore, in terms of
development cost, this architecture requires a complete
XQuery engine that is adapted to run SQL queries,
seemingly a much more demanding path than the opposite
route.

As XQuery and the QDM data model conceptually
subsume the SQL language and the relational model,
implementing SQL on top of an XQuery engine poses
significantly lesser challenge than the opposite. We also
believe that this architecture will not be achieved by
developing an XQuery engine from scratch. Existing
relational engines will be morphed into this architecture
possibly through the intermediate stages represented by
the other architectures depicted in Figure 1. It seems to us
that, beyond the initial releases of the commercial
database products for XML data management, the main
forces in the database engine evolution will be to increase
the performance and reduce the complexity of the
relational-XML engines. These two forces will be the
major factors in the appearance of the ROX architecture,
shown in Figure 1(d).

3. ROX Model Issues

While unable to implement a complete ROX
architecture, we single out three issues that are crucial to
demonstrate the viability of the infrastructure and explore
in more details each. We first overview the language
semantics issues and how the semantics differences

between SQL and XQuery impact the ROX architecture.
Then we turn our attention to the data layout and
normalization related issues as posed by the nested XML
data model. Finally we consider the performance impact
of an XML native format, query optimization issues, and
XML data manageability.

3.1. Language Semantics

The main difficulty in running SQL queries over an
XQuery implementation is providing semantically correct
answers to the queries. Although SQL and XQuery have
similarities, there is an abundance of differences. First of
all, the languages are defined over different data models.
The SQL language is defined over the relational model
[SQL98], while the XQuery language is based on the
Query Data Model [FMM03] that represents XML data as
typed trees. SQL queries operate over column values,
while XQuery manipulates ordered, heterogeneous
sequences of values and node references. While a detailed
description of the differences is beyond the scope of this
discussion, in general, QDM is much more elaborate than
the relational data model. This is the core reason why
XQuery-to-SQL translation is unsuitable as a basis for a
fully functional XQuery system.

The languages also differ in their operational
semantics. The most quoted difference is the document
order preservation of XQuery vs. unordered semantics of
SQL. Furthermore, each language standard contains
precise descriptions of the language operators. These
specifications seldom match. For example, the
comparison operators in SQL use 3-value logic, operating
over Boolean operands and returning true, false or NULL.
The same XQuery operators (general comparison) operate
over sequences of nodes or values and return true and
false. There is no NULL value defined in the XQuery data
model. Another discrepancy stems from the different
definitions of the basic data types as decimals and date-
time. As many of the built-in functions operate over such
values, they might potentially return different results.

Despite these differences, XQuery is designed to be
able to manipulate structured data along with unstructured
[CFF03]. Therefore, there is an overlap in the
functionality of SQL and XQuery. While different in data
model and semantics, when constrained over structured
data, many XQuery operations have semantics close to
that of SQL, and under certain cardinality constraints
match the SQL semantics. For example both XQuery and
SQL numeric operations are based on the IEEE standard
and seem to be reconcilable. Furthermore the XQuery
arithmetic operators treat empty sequences in the same
manner as SQL operators treat the NULL values. This is
also true for the XQuery value comparison operators (eq,
gt, neq, etc.) which have 3-value logic (returning empty
sequence if any of the operators is an empty sequence) as
the comparison operators of SQL. Translating the SQL
comparison operators into XQuery value comparison

267

operators, we can achieve the same semantics as in SQL.
This allows pushdown of simple arithmetic and
comparison predicates from SQL to XQuery. While the
XQuery Boolean operators operate using 2-value logic, it
is simple to implement 3-valued Boolean operators in
XQuery that have same semantics as the SQL operators.
With such a small implementation effort, a large class of
SQL predicates over numeric types and strings can be
translated into equivalent XQuery predicates. However,
based on the current standards proposal for XQuery, it
seems that it will not be possible to translate all SQL
functions to existing XQuery functions. We envision this
necessary for SQL datatypes that are not subsumed into
XQuery datatypes, such as types representing date-time
and timestamps [SQX04].

3.2. Normalization

One of the key benefits of a native XML store is not
having to normalize the elements that make up a business
object by shredding them into tables. For example,
consider a common business object -- a purchase order,
which might contain some customer elements and one or
more line items describing each object being purchased:

Figure 2 – Purchase order in XML format

Since the purchase order arrives in XML format, it is
tempting to store the entire document as it comes into the
system, to minimize any processing. But is that the right
thing to do? Does the nesting of XML documents make
normalization of objects in databases obsolete? And if
not, what elements should be normalized and which
should not?

The answer is that normalization is still needed in
XML databases, for the same reason it was needed in
relational databases: redundancy of data and update
anomalies [DAT03]. In the above example, the line items
nested within an order are wholly owned by that order, so
they cannot suffer the update anomalies of shared sub-
objects. However, the customer information is a bit more
subtle. It is likely to be shared by many other orders, so
keeping it with each purchase order would both be
unnecessarily redundant and risk update anomalies. For
example, the customer address is on the purchase order,
but it's probably the same address as on hundreds of other
orders from the same customer. But if it suddenly
changed, this order might be sent to the address that was
in effect at the time the order was made, rather than the
address in effect when the order is shipped. Similarly for
other attributes of the customer. So pretty clearly the
customer information should be normalized. However,
some elements of the customer are really elements of the
interaction of the customer and this order. For example,
the order_discount element might depend upon the size of
the overall order and how valued this customer is. Hence
it cannot be normalized out of the purchase order.

The good news is that native storage of XML
documents permits denormalization when it makes sense
semantically (sub-objects are not shared), while still
retaining the option to normalize data, i.e. when sub-
objects may be shared and hence risk update anomalies.
 The database designer is thus free to do what best models
the data, rather than forcing the design into a large
number of overly-normalized, homogeneous tables. And,
as we shall see later, denormalization can also have
performance benefits by obviating the need for some joins
when the data is queried.

Today’s relational engines use data redundancy in
form of pre-joined relations to speed up evaluation of
queries [HAL01]. Materialized view techniques will also
be important in XML databases in general and with the
ROX model in particular. In section 5.3, we show that
data nesting that matches the query structure allow for
much better evaluation times. As opposed to relational
systems in which the materialized, pre-joined views are
flat tables, an XML engine allows these to be in non-first
normal form, similar to the proposal of [SPS87].

3.3. Performance

To achieve good query performance for the ROX model,
we must consider several issues. The storage of the XML

<order>
 <date>12 July 2003</date>
 <customer>
 <ID>43839</ID>
 <name>Slaghorn Bolts</name>
 <contact>Joyce Smith</contact>
 <address>
 53495 N. First St.
 Cleveland, OH 45678
 </address>
 <order_discount>
 0.10
 </order_discount>
 </customer>
 <line_item>
 <part_ID>RYZ04856-8945</part_ID>
 <quantity>33</quantity>
 <discount>0.12</discount>
 </line_item>
 <line_item>
 <part_ID>KFE389745-2248</part_ID>
 <quantity>15</quantity>
 <discount>0.05</discount>
 </line_item>
 <line_item>
 <part_ID>OI230988-2833</part_ID>
 <quantity>100</quantity>
 <discount>0.21</discount>
 </line_item>
</order>

268

tree could be sorted in either depth-first (document) or
breadth-first order. The depth-first order is advantageous
when the goal is efficient reconstruction of the XML.
However, if our XML documents have several levels of
hierarchy, queries referencing only data at the top levels
of the document will suffer.

Another concern is the overhead of storing the
structure of the document inline with the data being
represented. Although it is possible that the stored XML
document conformed to a stated XML schema, in general
our storage format must allow for XML documents which
lack a predefined schema. This storage overhead forces a
native XML store to consume more space for representing
a certain dataset than the relational storage. The absence
of an XML schema also forces data in the document to be
stored as text, which also adds storage overhead.

To facilitate efficient selection and value-based joins
between XML documents, an XML index is required. As
with relational systems, such an index will allow us to
find documents which contain a certain value in a certain
location. Many indexing strategies for XML have been
proposed, such as inverted lists of elements for structural
joins and path indexes.

3.4 Optimization

Compiling SQL queries on XML documents presents new
challenges for query optimization. Although
denormalized data in the form of materialized views and
join indexes is already widely exploited by relational
query optimizers, both the query and the denormalized
data are defined in relational terms, usually SQL. In
ROX, the optimizer must now match joins and predicates
in the SQL query to XPath expressions that define the
schema of XML documents (presumably the XML
documents manipulated by ROX will have a schema with
sufficient homogeneity to permit a tabular view of them).
Join predicates between documents must also be folded
into predicates at various points of an XPath expression,
depending upon the join order. In our experiments,
discussed below, we performed this mapping manually to
avoid the challenge of automating it. Having documents
with various schemas – or even no schema at all! – mixed
together in the same repository, called “schema chaos”,
negates the homogeneity that simplified the cost model
and the database statistics on which relational
optimization depended. And though the denormalization
of XML documents reveals correlations among objects, it
is not at all clear what database statistics are needed to
summarize those correlations and how those statistics can
be exploited to accurately estimate the number of
documents satisfying a particular SQL query. And this
doesn’t even consider the considerable challenges of
optimizing XQuery queries!

3.5 Manageability

Will a database of XML documents be easier or more
difficult to manage than relational tables?

Some would argue that management of XML
repositories should be child’s play. Since real-world
objects no longer need to be normalized into
homogeneous collections of rows (tables), the XML
repository can be reduced to a single, virtualized heap of
heterogeneous objects (documents), creating the relational
equivalent of the Universal Relation [MUV84]. In lieu of
perhaps tens of thousands of normalized tables, there
would be only one collection of documents to configure,
backup, recover, reorganize, collect statistics on, etc.
Database design would be trivial, normalization would be
unnecessary, and one index over this entire collection
would suffice to find any object in the database -- the
“Google model” applied to databases!

On the other hand, management of modern databases
entails far more than just deciding what tables and indexes
to create. As argued in Section 3.2 above, some
normalization will still be required to avoid update
anomalies, so logical database design may be less
constrained but certainly not obviated. Eventually, XML
systems will permit the definition of the XML equivalent
of materialized views, and deciding which to create will
surely be no easier than it is now for relational systems.
Even if all documents are in one monolithic collection,
administrators will probably have to define arbitrary
boundaries within that collection for administration
purposes, so that pieces can be maintained while the rest
of the database is available for querying and updating,
much as the rows of large tables are usually divided into
ranges for administrative purposes [IBM01]. And given
the increased challenges posed by optimizing queries
against these heterogeneous collections (see previous
section), it is likely that the database statistics required for
optimization will be far more extensive than for relational
systems. For performance reasons, we might still want to
cluster related documents together to exploit the larger
pre-fetching chunks that relatively slower disk arms
necessitate, or possibly de-cluster them to spread access
among multiple arms for greater I/O parallelism, rather
than simply append each new document to the end of the
heap.

4. Design for Experimentation

In Section 2, we described a number of architectural
alternatives for a mixed SQL and XQuery system,
including the ROX model. We now provide a description
of the implementation we chose for our experimental
framework.

A full implementation of the ROX architecture would
require a fully-functional XQuery DBMS, upon which a
thin SQL-to-XQuery translation layer would sit.
However, building a system like this would take a

269

significant number of person-years to implement. Instead,
we took advantage of a prototype XML store available to
us and implemented a much simpler mapping layer. This
experimental architecture is described in detail in the
following sections.

4.1 SQL to XQuery translation using the XML
Wrapper

For our experiments, we modified an existing product
called the XML Wrapper, which is part of the IBM DB2
Information Integrator, version 8.1. The unmodified XML
Wrapper provides a mechanism for presenting relational
views of XML data stored as text files on disk. Each
relational view defined over an XML document is called a
nickname, and utilizes syntax similar to the CREATE
TABLE statement.

In Figure 3 we show a possible CREATE
NICKNAME statement that DB2 would use in
conjunction with the XML Wrapper to query the XML
document shown in Figure 4. The product version of the
XML Wrapper uses the Xerces [XER03] XML parser and
the Xalan [XAL03] XPath evaluator to find data in the
XML document(s). Both Xerces and Xalan are
subprojects of the Apache XML project [APX04]. The
wrapper queries the XML and creates relational rows
conforming to the CREATE NICKNAME statement to
hand back to the database engine.

Because XML allows hierarchical nesting of elements,
entities may be stored physically together in the same
document. For example, you might store a Customer with
all of the Orders he has placed as child elements of the
Customer. To exploit this, the XML wrapper allows
special columns to be specified as the PRIMARY_KEY

or FOREIGN_KEY for a nickname. For example, a
column ‘fk’ in a nickname for ORDERS may be defined
as the FOREIGN_KEY of the PRIMARY_KEY column
‘pk’ in a nickname for CUSTOMER. When a SQL query
references these two nicknames with an equality join
predicate between fk and pk, the wrapper knows that any
Order information returned will be found as sub-elements
of the Customer in the XML document. Any paths
specified by the ORDERS nickname must be relative to
the XPATH specified for the CUSTOMER nickname.
The value for the pk column is simply a serialization of a
Xerces element reference.

For our experiments, we modified the existing XML
Wrapper to be an interface to a prototype XML store.
Since our data had been previously parsed and stored in
this native XML store, we removed the Xerces code.
Also, the Xalan XPath evaluator could not be used, since
it operates over in-memory DOM trees only. In its place,
we used a custom XPath evaluation engine that evaluates
paths over the prototype XML store. To implement the
PRIMARY_KEY column option, we used an internally
generated XML node identifier. We present an overview
of our experimental architecture in Figure 5.

One of the primary advantages of a native XML store
is that we have an opportunity to create one or more
indices over the loaded data. The prototype XML store
contains a path-based XML indexing module, but lacks
automatic XML index selection in the query optimizer.
To enable using each XML index created, we wrote
custom parameterized table functions that take a key
value as input and return relational rows that are the inner
join result for that key value. This works because the
XML index stores the same XML node reference value
that the XPath evaluator uses. This idea also allows us to
hand-optimize the join order for queries that refer to more
than two nicknames by using a column from the result of
one table function call as the input for another. For
example, if we want to force a scan of the CUSTOMER
nickname to be the outer entity in an index nested-loops
join with ORDERS, we would write the following SQL
query:

 SELECT O.O_ORDERDATE
 FROM CUSTOMER C, tfORDERS(C.C_CUSTKEY) O;

In this example, tfORDERS() is a user-defined table

function that takes as input a customer key and returns
columns from the ORDERS nickname from rows that
contain a matching O_CUSTKEY value. The XML
documents that match are found by performing a lookup
in the XML index to find all documents which contain the
path /ORDERS/O_CUSTKEY/text() = [C_CUSTKEY],
where C_CUSTKEY is the value passed to the table
function.

CREATE NICKNAME REGION(
 R_REGIONKEY int
 OPTIONS(XPATH ‘R_REGIONKEY/text()’),
 R_NAME char(25)
 OPTIONS(XPATH ‘R_NAME/text()’),
 R_COMMENT varchar(152)
 OPTIONS(XPATH ‘R_COMMENT/text()’))
FOR SERVER xml_server
OPTIONS(XPATH ‘/REGION’);

<REGION>
 <R_REGIONKEY>2</R_REGIONKEY>
 <R_NAME>ASIA</R_NAME>
 <R_COMMENT>sladfkj weoiu sdflkj
 </R_COMMENT>
</REGION>

Figure 4 - Sample XML document

Figure 3 - Nickname definition

270

4.2. Prototype Walkthrough

To illustrate the prototype ROX architecture, we will
describe how the following SQL query is executed:

 SELECT r_name,
 COUNT(n_nationkey) AS n_count
 FROM region, nation
 WHERE r_regionkey = n_regionkey
 GROUP BY r_name;

Logically, the input to the query optimizer is a SQL
parse tree. For our example query, it will contain
references to our nickname definitions for REGION and
NATION, as well as the R_REGIONKEY =
N_REGIONKEY predicate. Since DB2 only knows
about the definition, it must consult the server specified
by the CREATE NICKNAME statement, and therefore
our modified XML wrapper, to create alternate execution
plans and cost estimates. Plans enumerated include plans
for: REGION only, NATION only, a plan that pushes the
equality predicate into the wrapper and returns rows
containing both REGION and NATION columns, and a
plan for NATION which takes as input a context
R_REGIONKEY and returns rows with an equal
N_REGIONKEY column. We would accept this last plan
only if R_REGIONKEY was defined with the
PRIMARY_KEY option in the REGION nickname, and
N_REGIONKEY defined with the FOREIGN_KEY
option and referencing the REGION nickname. With a

full cost model in the wrapper, we could tell the optimizer
that one or more of these plans would provide the best
performance. For each plan the wrapper can accept, we
create a structure containing everything necessary to
execute the plan later at runtime, and return control back
to the optimizer. In the prototype, the structure would
contain an XQuery to be executed at runtime. For
example, we would create the following XQuery when
asked to scan the REGION nickname:

 for $a in /REGION, $b in $a/R_NAME
 return $a, $b;

Once the optimizer chooses a final query plan, the
query runtime takes control and begins to execute the
plan. Any operator in the plan containing a packed
structure created by the wrapper during optimization now
calls back into the wrapper requesting to open a cursor
based on the information contained in that structure. For
our example query, the first request might be to do a table
scan on the REGION nickname.

For each row returned from the wrapper for that scan,
a second cursor would be opened over the NATION
nickname, with an additional parameter containing the
value of the R_REGIONKEY column for the current
REGION row. Recall that the value of the
R_REGIONKEY column would be the internal XML
node identifier for the REGION element parenting the
NATION information to return. The XML navigation
would begin with the node identifier passed in, rather than
from the document root. If the XML nodes are stored on

XML node
reference

Lookup

XQuery

Result

Get node Node

Request

Reply

Fetch

Row

Relational
result set

Optimized plan

SQL parse tree

Query
Optimizer

Query
Runtime

XML
Store

XML
Index

XML Navigation

XML Wrapper

Figure 5 - Experimental Architecture

271

disk in document order, we likely have the relevant
NATION elements already in memory.

The prototype expects DB2 to perform the calculation
of the N_COUNT output column and to handle the
GROUP BY R_NAME clause. Note that better
performance could be achieved for this query by pushing
the aggregate down into the XML Wrapper, but the
prototype did not do so.

4.3. Experimental Dataset

We chose the TPC-H [TPC02] dataset for our
experiments. This dataset is well known throughout both
the industrial and academic research communities, and is
representative of a normalized relational schema that can
be adapted to the ROX model. The schema consists of
eight entities, namely REGION, NATION, SUPPLIER,
PART, PARTSUPP, CUSTOMER, ORDERS, and
LINEITEM. The PARTSUPP entity exists to allow a
many-to-many relationship between PART and
SUPPLIER.

For the corresponding XML schema of this dataset,
we have quite a few choices. As with the relational
schema, we discard any choice which results in data
duplication. Please refer to section 3.2 for our discussion
of data normalization. We compare three XML schemas
for our experiments, named Unnest, Nest2, and Nest3.

Our Unnest schema consists of one XML document
per relational row per relational table. The root element
of each document is the name of the relation from which
it came, each sub-element the name of a column from that
relation, and the text contained in each sub-element is a
value from the row that we used to generate the
document. Figure 4 shows an example XML document
created from one row of the REGION table. Our Nest2
schema stores LINEITEM elements nested within the
correct ORDERS element, and PARTSUPP within PART,
but leaves the remaining data as in the Unnest schema.
Finally, the Nest3 schema stores LINEITEM elements
within ORDERS elements, which in turn are nested
within the correct CUSTOMER element, with all other
data as in the Unnest schema. With the TPC-H schema, it
is not possible to create a semantically meaningful,
properly normalized document with four levels of nesting.

5. Experiments and Results

This section presents the experimental results we gathered
to validate the feasibility and performance of the ROX
model.

All experiments were executed on a quad processor
PowerPC-based machine running AIX 5.1, equipped with
16GB of main memory and SCSI disks. Data and indices
were loaded into separate DB2-managed tablespaces
striped across 22 5GB SCSI disks. All timings reported
in this section are an average of 5 runs. We calculated
that all timings for each average are within 1% of the
average value with 95% confidence.

All experiments are run using data generated at TPC-
H Scale Factor 0.1. This means our largest entity,
LINEITEM, has approximately 600,000 rows. The raw
data is nearly 100 MB on disk.

5.1. Storage Comparison

In this section, we examine the storage requirements of
both the relational and XML versions of the TPC-H data
set. The number of disk pages required to store the data
has a direct impact on the cost of any sequential scan. For
this experiment, we loaded several of the TPC-H relations
into both standard DB2 tables and our native XML
storage engine, and present the disk storage requirements
in Table 1.
Table 1 - Relational and XML Storage Requirements

for selected TPC-H relations, in KB
Relation(s) Relational XML
CUSTOMER 2656 13312
ORDERS->LINEITEM 100960 888832
PART->PARTSUPP 15904 66560

It is clear that a generic XML store generates

significant storage overhead when compared to the same
data stored relationally. These overheads are due mostly
to three factors. All text data is stored in Unicode format
in the prototype XML store. Although DB2 allows tables
to store Unicode data, it does not do so unless explicitly
asked to by the user. This is a factor of two size increase
for any text data in the TPC-H tables. Secondly, a generic
XML store must duplicate the document structure for
every relational record converted to XML format. For
XML documents with a high structure-to-data ratio, this
overhead is high. Finally, our XML storage engine
currently stores all XML data in text format. For any
numeric data, this adds significant storage overhead.
Storage for the element tags does not require significant
overhead, however. Each unique element and attribute
name is entered into a mapping table, which allows us to
store an integer tag ID for each document node.

5.2. Bufferpool Effects

As discussed in section 5.1, the storage required for the
XML schemas under test is significantly more than for the
relational load of the data into DB2. It therefore makes
sense to consider the effects of varying the size of DB2’s
bufferpool on query performance. We chose to run each
series of queries using four different bufferpool sizes.
The sizes were chosen to be 10%, 25%, 50%, and 100%
of the total storage (data and indices) required for the
schema. Using this definition implies that the 10% case
for the relational schema is a much smaller number of
pages than for the 10% XML schema case. Please refer to
Table 2 for the specific bufferpool sizes tested.

It may seem unfair to use different bufferpool sizes for
the tests. After all, when 100% of the relational data and
indices fit in memory, only 11% of the XML data and

272

indices fit. Further, given a specific memory budget, the
relational data has a size advantage and should benefit
from it. However, if the scale factor of the data increased,
we would not have a choice but to choose a bufferpool
size < 10% in both cases.

Table 2 - Tested bufferpool sizes (in number of 32K
pages)

Size Relational XML
10% 450 4000
25% 1125 10000
50% 2250 20000

100% 4500 40000

We present a graph in Figure 6 which illustrates the
effects that the bufferpool size has on the performance of
TPC-H query 10. The results presented are normalized to
the execution time when the 100% bufferpool size is used.
For the relational schema, additional memory directly
contributes to decreased query execution time. However,
additional memory does not give an advantage for queries
executed using the XML schemas. The additional CPU
cost of navigating through the XML schema and
converting the retrieved text to the correct column
datatype may be to blame, but additional experiments are
necessary. Similar results were obtained for the other
queries we tested.

0

1

2

3

4

5

6

Relational Unnest Nest2 Nest3
Schema (Bufferpool as % of DB size)

E
xe

cu
ti

o
n

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 1

00
%

B

u
ff

er
p

o
o

l P
er

 S
ch

em
a)

10%
25%
50%
100%

Figure 6 - TPC-H Q10 bufferpool effects. For each
schema, the execution times are normalized to the
100% bufferpool execution time. The percentages
listed are relative to the total size of the data and

indicies being tested.
When the number of bufferpool pages are roughly the

same for the relational and XML schemas, the relational
schema appears to be the clear winner. In Figure 7, we
present the results of two queries executed over all
schemas. The relational schema was tested at the 100%
bufferpool level of 4500 pages, while the XML schemas
used their 10% level of 4000 pages. For Q10, the best
XML schema is still a factor of about 19x slower than the
relational schema. For Q22, we see that the Unnest and
Nest2 schemas are about a factor of 5 slower.

0

5

10

15

20

25

30

35

40

45

TPC-H Q10 TPC-H Q22

Query

E
xe

cu
ti

o
n

 t
im

e
(N

o
rm

al
iz

ed
 t

o
 R

el
at

io
n

al

10
0%

 B
u

ff
er

p
o

o
l)

Unnest
Nest2
Nest3

Figure 7 - Bufferpool effects when all queries are
executed with approximately the same number of

bufferpool pages

5.3. Schema Variations

In this section, we discuss the measured effects of varying
the nesting of the XML schema. All experiments
discussed in this section assume a 10% bufferpool size.
As the level of nesting in each XML document is
increased, we encounter mixed performance results.
Consider the graph in Figure 8, which shows the
normalized execution times for two TPC-H queries for
our three XML schemas. TPC-H Q10 is called the
Returned Item Reporting Query. This query is
basically a four-way join between NATION,
CUSTOMER, ORDERS, and LINEITEM. This query fits
our Nest3 schema extremely well, and the results show
that this query is about twice as fast with Nest3 as with
either the Nest2 or Unnest schemas. One obvious
question, though, is why we don’t see any benefit from
the Nest2 schema, which has LINEITEM nested in
ORDERS. The answer lies in the fact that we are
utilizing the XML index to join CUSTOMER to
ORDERS in both cases, and also for ORDERS to
LINEITEM in the Unnest case. As we will see in the next
section, the XML index performs very well and brings
Unnest’s performance in line with Nest2.

Although Nest3 was the clear favorite for Q10, it
suffers for other queries such as Q22. This query scans
CUSTOMER looking for customers in specific countries
who have never placed an order but have a good account
balance. The country selection predicate is reasonably
selective, and so the join to ORDERS can be avoided for
most customers. The Nest3 schema performs very poorly
for this query due to the storage of each CUSTOMER’s
ORDERS and LINEITEM information – the very attribute
that made it much better for Q10. Since this query does
not use the ORDERS information very often and never
uses the LINEITEM information, we needlessly pay to
load them from disk. CUSTOMER information packs
much better in the Unnest and Nest2 schemas, as both
utilize the CUSTOMER-only XML document format.

273

These results suggest that the XML schema chosen
should factor in the expected query workload, if known.

0

2

4

6

8

10

12

14

16

Unnest Nest2 Nest3
Schema

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

TPC-H Q10
TPC-H Q22

Figure 8 - Schema Effects for two TPC-H queries,
normalized to the Relational time for each query

5.4. XML Index Exploitation

We now consider the benefits of utilizing the XML index
to aid in joining across documents. In all of our chosen
XML schemas, we maintain some normalization. For
example, all of our schemas keep PART and LINEITEM
unnested. To find the name of a part given a specific
lineitem, we must do a standard join. In this section, we
compare two types of joins – index nested loops join
using the XML index, and DB2’s hash join. In Figure 9,
we show results for TPC-H query 5 – the Local Supplier
Volume Query. This query joins six of the eight tables
using a total of six equijoin predicates. The extra join
ensures that the supplier and customer are from the same
nation. Here, we have normalized the results to the
execution time for the Relational schema. For this query,
utilizing the XML index provides a very tangible benefit.
The Unnest schema shows a much larger improvement
over the hash join plan than the Nest2 schema, with both
schemas at about 3 times the relational query time when
the XML index is used. In the Hash Join case, the
Unnest2 performs better because the plan executed still
takes advantage of the nesting of LINEITEM in
ORDERS, thereby obviating a very expensive join.

0

5

10

15

20

25

30

Unnest Nest2

Schema

E
xe

cu
ti

o
n

T
im

e
(N

o
rm

al
iz

ed
 t

o
 B

es
t

R
el

at
io

n
al

 T
im

e)

XML Index
Hash Join

Figure 9 - TPC-H Q5: Local Supplier Volume Query

These results show that our immature ROX prototype
can achieve performance within a factor of three of a
mature relational database system for an important
category of queries. With proper tuning and optimization
of the storage format, XML navigation, and XML index
utilization, even better results could be obtained.

6. Conclusions/Future Work

In this paper, we have discussed an alternate solution to
the problem of integrating relational and XML data
sources to support both new XQuery and legacy SQL
queries. We called this solution the ROX model, and
described the architectural tradeoffs involved. Our
solution allows existing SQL applications to continue to
run unmodified, and allows a gradual transition of some
or all data to the XML storage format. We created a
prototype to compare the performance of the ROX model
to the standard relational model, and found that it can
compete for an important class of queries. We found that
the choice of the XML schema to represent the relational
data can have a profound impact on performance. Also,
by utilizing an index over the XML storage, we could
achieve performance within a factor of three of a mature
relational DBMS for queries with many joins.

Many research questions remain open for future work.
Updates in a native XML storage system can pose
problems such as document order anomalies and subtree
locking issues. Further, an XML update standard (or even
a candidate specification) does not yet exist. It would be
interesting to consider the ROX model as the XML update
standard is created.

Storage overheads associated with general native
XML stores are a significant source of performance
problems when using the ROX model to perform
sequential scans. Identifying ways to store XML
compactly and exploring tree storage alternatives based
on document access patterns are interesting areas for
future research.

For a given query workload and XML schema, we
could utilize the query optimizer to create alternate plans
that would be possible if a different XML schema was
available, and use this information to automatically
suggest a better XML schema for that query workload,
much as was done in DB2’s Index Advisor [VZZ00] and
Design Advisor [ZIL04].

Resolving these questions will bring us closer to the
time when XQuery and SQL queries can both be
processed efficiently against both structured and semi-
structured databases.

Acknowledgement: In order to assemble the prototype,
we relied on components built by many contributors,
including Bert van der Linden, Brian Vickery, Tuong
Truong, Bob Lyle, George Lapis, Bobbie Cochrane, Chun
Zhang and others. We would also like to thank Kevin
Beyer and Matthias Nicola for useful discussions and

274

support provided while performing the experimental
evaluation.

7. References

[APX04] The Apache XML Project:
http://xml.apache.org/

[BCF03] Boag, Scott D. Chamberlin, M. Fernandez, D.
Florescu, J. Robie, J. Simeon: XQuery 1.0: An XML
Query Language (Working Draft). November 2003.
http://www.w3.org/TR/xquery

[BFH00] P. Bohannon, J. Freire, J. Haritsa, M. Ramanath,
P. Roy, J. Simeon, LegoDB: Customizing Relational
Storage for XML Documents, In Proc of VLDB 2000,
Septermber 2000

[CFF03] D. Chamberlin, P. Fankhauser, D. Florescu, M.
Marchiori, J. Robie: XML Query Use Cases, W3C
Working Draft, November 2003,
http://www.w3.org/TR/xquery-use-cases/

[DAT03] C. Date: An Introduction to Database Systems,
Eighth Edition, Pearson Addison Wesley, 2003.

[EDO01] L. Ennser, C. Delporte, M. Oba, K. Sunil:
Integrating XML with DB2 XML Extender and DB2
Text Extender, IBM Redbooks, 2001,
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg
246130.pdf

[FMM03] M. Fernandez, A. Malhorta, J. Marsh, M.
Nagy: XQuery and XPath 2.0 Data Model, W3C
Working Draft, November 2003,
http://www.w3.org/TR/xpath-datamodel

[HAL01] A. Y. Halevy: Answering queries using views: A
survey. The VLDB Journal 10(4), 2001.

[IBM01] DB2 for z/OS and OS/390 Version 7 Using the
Utilities Suite, IBM Red Book, http://publib-
b.boulder.ibm.com/Redbooks.nsf/0/03b3f70ce5666be
c85256a5300663f26?OpenDocument

[JAC02] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L.
V. S. Lakshmanan, A. Nierman, S. Paparizos, J.
Patel, D. Srivastava, N. Wiwatwattanan, Y. Wu, C.
Yu: Timber: A Native XML Database, In Proc of
VLDB 2002, September 2002

[JS03] V Josifovski, P. Schwarz: Querying XML data
sources in DB2: the XML Wrapper. In Proc of ICDE
2003, Banglore India, 2003.

[JFB04] V. Josifovski, M. Fontoura, A. Barta: Querying
XML Streams, to appear in the VLDB Journal, 2004

[KM99] C. Kanne, G. Moerkotte: Efficient Storage of
XML Data, In proc of ICDE 1999, 1999

[MUV84] David Maier, Jeffrey D. Ullman, Moshe Y.
Vardi: On the Foundations of the Universal Relation

Model. ACM Trans. Database Syst. 9(2): 283-308
(1984)

[MSF00] Microsoft SQL Server 2000 SDK
Documentation, Microsoft 2000,
http://www.microsoft.com

[NDM01] J. Naughton, D. DeWitt, D, Meier et al.: The
Niagara Internet Query System, IEEE Data
Engineering Bulletin, volume 24, number 2, June
2001, pp. 27-33.

[ORC04] Oracle: http://www.oracle.com/solutions/

[PSW04] Peoplesoft:
http://www.peoplesoft.com/corp/en/products/ent/inde
x.jsp

[SAP04] SAP: http://www.sap.com/solutions/erp/

[SB00] M. Scardinia, S. Banerjee: XML Support in
Oracle 9i, Oracle Corporation, December 2000.

[SIB04] Siebel: http://siebel.com/products/index.shtm

[SKS01] J. Shanmugasundraram, J. Kiernan, E. Shekita,
C. Fan, J. Funderburk: Querying XML Views of
Relational Data. In proc of VLDB 2001, September
2001.

[SPS87] M. Scholl, H.-B. Paul, H.-J. Schek: Supporting
Flat Relations by a Nested Relational Kernel. In proc
of VLDB 1987, September 1987.

[SQL98] Database Language SQL – Part 2: Foundations
(SQL/Foundations), ISO Final Draft International
Standard, ISO 1998.

[SQX04] A. Eisenberg, J. Melton: SQL/XML is Making
Good Progress. SIGMOD Record 31(2), 2002.

[TPC02] TPC Benchmark H, Transaction Processing
Performance Council, San Jose, CA 2002.
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf

[VZZ00] G. Valentin, M. Zuliani, D. Zilio, G. Lohman,
A. Skelley: DB2 Advisor: An Optimzer Smart Enough
to Recommend its Own Indexes, In proc of ICDE
2000, San Diego, CA, 2000.

[XAL03] Xalan an XSL Processor,The Apache XML
project,http://xml.apache.org/xalan-c/index.html

[XER03] Xerces: a validating XML Parser, The Apache
XML project, http://xml.apache.org/xerces-
c/index.html

[ZIL04] D. Zilio et al.: Recommending Materialized
Views and Indexes with IBM’s DB2 Design Advisor,
To appear in proc of ICAC 2004.

[ZKO04] N. Zhang, V. Kacholia,, M. T. Özsu: A Succinct
Physical Storage Scheme for Efficient Evaluation of
Path Queries in XML, In proc of ICDE 2004, Boston,
MA, March 2004.

275

