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Abstract

Cost-based XML query optimization calls for
accurate estimation of the selectivity of path

expressions. Some other interactive and in-
ternet applications can also benefit from such
estimations. While there are a number of esti-
mation techniques proposed in the literature,
almost none of them has any guarantee on
the estimation accuracy within a given space
limit. In addition, most of them assume that
the XML data are more or less static, i.e.,
with few updates. In this paper, we present
a framework for XML path selectivity esti-
mation in a dynamic context. Specifically,
we propose a novel data structure, bloom his-

togram, to approximate XML path frequency
distribution within a small space budget and
to estimate the path selectivity accurately
with the bloom histogram. We obtain the
upper bound of its estimation error and dis-
cuss the trade-offs between the accuracy and
the space limit. To support updates of bloom
histograms efficiently when underlying XML
data change, a dynamic summary layer is used
to keep exact or more detailed XML path in-
formation. We demonstrate through our ex-
tensive experiments that the new solution can
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achieve significantly higher accuracy with an
even smaller space than the previous methods
in both static and dynamic environments.

1 Introduction

Both the amount of XML data and the number of
XML applications have exploded in recent years as
XML becomes the de facto standard for information
representation and exchange. Consequently, there is a
great demand for efficient XML data management sys-
tems for managing complex queries over large volumes
of local and Internet-based XML data.

&1:dblp

&9:title

&7:theorem

&6:appendix

&10:paper&8:paper

&5:title&3:title

&4:paper&2:paper

&11:title

Figure 1: A sample XML data tree (Each node is la-
beled with a unique ID and its tag)

Efficient query processing requires accurate selectiv-
ity estimation of path expressions, which are com-
monly used in XML query languages to locate a sub-
set of XML data. A query optimizer needs such esti-
mation to judiciously select the most efficient query
execution plan among alternative ones. For exam-
ple, given the sample XML data in Figure 1, the fol-
lowing XPath query selects titles of all the papers
that have at least one theorem appearing in their
appendix: /dblp/paper[appendix/theorem]/title.
According to the data, it might be most efficient
to retrieve the paper that has a theorem in its
appendix first, and then, for the only one quali-
fied paper, retrieve its title. In other words, as
is widely adopted in relational query processing, we
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should process the most selective (path) predicates
first—/dblp/paper/appendix/theorem in our exam-
ple. With a path selectivity estimator, we can retrieve
such selectivity information effectively without refer-
ring to the source data. In addition, accurate path
selectivity estimation is desirable in interactive and
internet applications as well. The system could warn
the user that his/her query is so coarse that either
the amount of results will be overwhelming for manual
processing or the query will consume a large amount
of system resources. Another important application
is approximate query answering. The estimated value
could be returned as an approximate answer to aggre-
gate queries using the COUNT function.
Desiderata of any data structure that is capable of

estimating the selectivity of path expressions can be
summarized as follows:

• The estimate should be highly accurate. A bad es-
timate may mislead the query optimizer to choose
a bad plan, whose cost could be orders of magni-
tude higher. Ideally, the estimation error should
be upper bounded. This is particularly important
for approximate query answering.

• The estimator should be space efficient. When the
data structure is to be loaded into main memory
during the query optimization phase, it must be
small in size. In addition, a smaller size often
implies less estimation time, which in turn helps
reduce the query optimization time. Finally, if
we consider internet-scale applications, both the
storage and scalability of the system are depen-
dent on the size of the estimator.

Summarizing the distribution of XML path selectiv-
ities is a substantially different problem from most
statistics estimation problems considered in the re-
lational context. Therefore, the traditional tech-
niques designed for flat relational data cannot be di-
rectly applied to tree-structured XML data. Some
work has recently appeared in the XML literature
[6, 1, 14, 9, 17, 18]. However, all the work is ad hoc in
the sense that no theoretical guarantee on the accuracy
of the proposed methods is given and the trade-offs
between accuracy and space limit are unknown. An-
other crucial drawback is that most of them consider
only the case where data are static.
In this paper, we propose a two-layer solution that

is capable of estimating the selectivity of XML path
expressions for dynamic data. At the heart of our new
solution is a bloom histogram, a compact yet high accu-
rate estimator for XML path expressions. A bloom his-
togram provides better approximation for the original
value-frequency distribution by sorting on the frequen-
cies and using bloom filters to record values within
each bucket. Several encouraging results are obtained
about the bloom histogram: it occupies much less
space than that is required by the previous methods,

and its estimation error is small and can be bounded
probabilistically. We also present optimal construc-
tion algorithms for the bloom histogram. To handle
data updates, we employ in our solution a dynamic
summary, which keeps an exact or approximate de-
scription of the necessary information for histogram
updates. The dynamic summary is typically larger
than the bloom histogram, yet it is still much smaller
than the XML data and is easily maintainable. New
histograms can thus be recomputed from the dynamic
summary, without the costly process of accessing the
huge XML data itself.

Our contributions can be summarized as follows:

• We propose a compact yet highly accurate esti-
mator, the bloom histogram, which has theoreti-
cal upper bound on its estimation error. Further-
more, we analyze the trade-offs between accuracy
and space requirement for the bloom histogram so
that it becomes possible to set appropriate space
limits based on specific estimation accuracy re-
quirements in real applications. We note that the
bloom histogram is an interesting data structure
in its own right and might find applications in
other domains.

• We consider the problem of maintaining the
bloom histogram when underlying data change
and propose to use the dynamic summary with
a controllable size to track approximate or ex-
act changes of path selectivities. The bloom his-
togram can then be rebuilt without the costly pro-
cess of accessing the source XML data. This so-
lution can be generalized to work with previously
proposed estimators as well.

• We complement our analytical results with an ex-
tensive experimental study. Our results indicate
that the new method can indeed estimate the
selectivity of XML path expressions accurately
within a small space in both static and dynamic
environments.

The remainder of the paper is organized as follows.
We define formally the path-expression selectivity es-
timation problem in Section 2. We also provide an
overview of our proposed solution. Sections 3 and 4
discuss the two major components of our system:
the estimator and the dynamic summary, respectively.
Specifically, bloom histogram, a new data structure
and method to accurately estimate path selectivity for
XML data is presented in Section 3, and Section 4
discusses two solutions to dealing with data updates.
Section 5 presents our experimental results. Related
work is presented in Section 6. Section 7 concludes the
paper.
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2 Problem definition and overview of
our solution

In this section, we first define the problem and then
present an overview of our solution. More technical
details of our solution will be presented in Sections 3
and 4.

2.1 Problem definition

XML documents are usually modeled as a node-
labeled, rooted tree, such as the one shown in Figure 1.
In XQuery data model1, seven types of nodes are de-
fined: document, element, attribute, text, namespace,
processing instruction, and comment nodes. In this
paper, we only consider element nodes and attribute
nodes. Text nodes are treated as the values of their
parent element nodes. For any element or attribute
node, the tags on its root-to-node path form its label

path. For example, in Figure 1, the label path for the
node &6 is /dblp/paper/appendix.
XPath is a common query language for locating a

subset of nodes in an XML data tree. In this paper,
we only deal with simple path expressions in the form
of /t1/t2/ . . . /tn and //t1/t2/ . . . /tn, where ti is a tag
(i.e., element or attribute) name. We will focus on the
former type of simple path expressions in this paper
for the ease of illustration. Nonetheless, our method
can be extended to handle the latter type of simple
path expressions.
Given a simple path expression p, it may match with

a set of label paths lpi (1 ≤ i ≤ k). Let c(lpi) be
the number of nodes whose label paths are lpi and
N be the total number of nodes in the XML data
tree, then the selectivity of p is defined as: sel(p) =
1
N

∑

1≤i≤k c(lpi). Since N can be easily maintained,

we only need to estimate the c(lpi) values. There-
fore, the static path-expression selectivity problem is
to build a data structure within a space limit and
support estimating the selectivity of path expression
queries accurately. The dynamic version of the same
problem studies the case when the underlying XML
data are dynamic due to updates.

2.2 Overview of the solution

Figure 2 illustrates our proposed solution for XML
path selectivity estimation in a dynamic environment.
There are three components in the system: the data
file, the dynamic summary and the estimator. The lat-
ter two components form our two-layer solution. Data
files are typically large, in the magnitude of megabytes
or gigabytes. The estimator is responsible for accu-
rately and efficiently estimating the selectivity of path
expression queries. Typically, the estimator is of sev-
eral kilobytes in size. The dynamic summary compo-
nent is designed to keep necessary information about

1http://www.w3.org/TR/xpath-datamodel

the changing data so that the estimator can be up-
dated without the need to access the data file.

XML Data

Dynamic Summary

(sketch or full path table)

Estimator

(bloom histogram, path

tree or Markov table, etc.)

Update

10-100MB 10-100K 1-10K

construction

update

Figure 2: System overview

There are two types of activities in the system: con-

struction and updating. In the construction phase, dy-
namic summaries are built from source XML data files
and used to create the estimators (corresponding to
data files). During updating, updates to XML data
files are delegated to the dynamic summaries to re-
flect the latest data distribution. The estimators will
be recomputed either periodically or on demand from
the dynamic summaries.
In this paper, we focus on a new estimator, the bloom

histogram. However, previous methods, such as Path
Tree and Markov Table, can be used in our system as
well.

3 The bloom histogram

In this section, we propose the bloom histogram, a
new estimator for selectivity estimation. Compared to
other alternatives, such as Path Tree and Markov Ta-
ble, it is of smaller size yet offers superior accuracy.
We present the basic structure of a bloom histogram,
and the algorithms to estimate the selectivity of XML
path expressions using bloom histograms. The algo-
rithm for constructing a bloom histogram with mini-
mum estimation error is also presented.

3.1 The basic bloom histogram

The bloom histogram keeps counting statistics for
paths in XML data. The design objective of the bloom
histogram, like all other histograms, is small size yet
high estimation accuracy.
Given an XML document D, it is always possible

to construct a path-count table T (path, count) such
that for each path pathi in D, there is a tuple ti in
T with ti.path = pathi and ti.count = counti, where
counti is the number of occurrences (also referred to
as frequency) of pathi in D. Given a path p, we can
then use T to obtain the selectivity of p. A histogram
is a commonly used data structure to approximate
data distribution of a given attribute—or, the target

attribute. In the context of XML path selectivity esti-
mation, the target attribute is the path attribute of T .
A histogram H for D is therefore a two-column table
H(paths, v) where paths represents a set of paths in D
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and v is a representative value for the frequency values
of all pathi in paths. Given a path p, we can find from
H a tuple Hi with p ∈ Hi.paths and return Hi.v as an
estimation of the frequency of p in D. Different from
the path-count table T , the table H usually contains a
fixed number, b, of tuples (often referred as buckets).
To design a good histogram, we need to choose an ap-
propriate b and the way in which the value range of
the target attribute is divided into the given b buckets
so that both the size of H and the accuracy of estima-
tion are acceptable. When we construct a histogram
for XML paths, a new issue arises. That is, how to
represent paths so that the bucket that contains the
count for a given path can be quickly identified.

Path Count
/a 10

/a/f 10
/a/e 499
/a/c 501
/a/b 999

/a/d 1001

Bloom Filter Count

BF(/a, /a/f) 10

BF(/a/c, /a/e) 500

BF(/a/d, /a/b) 1000

Figure 3: An example path-count table and its bloom
histogram. BF(P ) is a bloom filter for a set of paths.

To provide an elegant solution to all the above de-
sign issues, we adopt a new type of histograms, bloom

histogram, to maintain approximate counts for XML
paths. The bloom histogram has two novel features:

1. Instead of dividing the value range of the target
attribute into buckets, we sort the frequency val-
ues and then group paths with similar frequency
values into buckets so that the estimation errors
can be reduced; and

2. Bloom filters are used to represent the set of paths
in each bucket so that, for a given path, the
bucket containing the frequency of the path can
be quickly located.

Figure 3 shows an example path table and a corre-
sponding bloom histogram. There are 6 distinct paths
in the path table. In the bloom histogram, they are
grouped into 3 buckets based on their frequencies. The
first column of the histogram contains bloom filters,
BF (P ), where P is a set of paths.
A bloom filter is a succinct data structure that rep-

resents a set and supports approximate set mem-

bership queries [2]. Specifically, given a set P =
{p1, p2, . . . , pn}, a bloom filter is a bit array of length
m with k independent hash functions h1, h2, . . . , hk;
and the hash functions are assumed to be able to hash
xi into a random number uniformly over range [1,m].
The bit array is initially set to 0. To insert a data ele-
ment p to a bloom filter, k hash functions are applied
to the value of p and the bit at position hi(p) is set to
1. To test whether a query element q is in the set rep-
resented by a bloom filter, the same k hash functions
are applied to the value of q. The result is true only if

every bit in the bloom filter at position hi(q) is set to
1, for all 1 ≤ i ≤ k.
A good feature of a bloom filter is that it only has

false positive error, i.e., errors due to incorrectly iden-
tifying that an element y belongs to the set S while
it does not. In addition, the probability of its false
positive error (denoted as ε) can be controlled by the
parameters k and m:

ε =

(

1 −

(

1 −
1

m

)kn
)k

≈
(

1 − e−kn/m
)k

Since the approximation is very accurate, we will use
it to represent the actual error in our study. Further
analysis also shows that ε is minimized by choosing
k = ln 2 · m

n . Let l = m
n be the load factor. The

optimal ε is 0.6185l.
In the next, we first discuss how to use a bloom his-

togram to estimate the selectivity of a path expression
and the possible estimation errors. We then discuss
the construction of an optimal bloom histogram.

3.2 Selectivity estimation using bloom his-
tograms

In this section, we first give the algorithm that searches
a bloom histogram to return the frequency of a given
path from which the path selectivity can be estimated.
We then analyze the estimation errors.

3.2.1 Selectivity estimation

Algorithm 1 QueryBloomHistogram(BH, p)

1: count = 0; k = 0;
2: for i = 1 to b do

3: if IsMember(p, BH.BF [i]) then

4: count+ = BH.count[i];
5: k++;
6: end if

7: end for

8: if k > 0 then

9: return count/k;
10: else

11: return 0;
12: end if

With a bloom histogram BH, we can obtain the ap-
proximate frequency for a given path p. The algorithm
is outlined in Algorithm 1. In line 3 of the algorithm,
function IsMember(p, BF ) takes a path and a bloom
filter for a set of paths as input, and returns TRUE if p
is in the set of paths. As mentioned previously, this can
be done by applying k hash functions to check whether
all bits corresponding to hi(p), 1 ≤ i ≤ k are set. Al-
though a path should be a member of the path set of
at most one bucket, multiple bloom filters may report
that the path belongs to them. In such cases, the fre-
quency returned is the average frequency of those sets
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(lines 7-8). Note that, this is one type of error intro-
duced by the bloom filters, and the probability that
a path belongs to more than one set is very low and
bounded by bε. The error can be further minimized
by our optimization techniques discussed later.

Algorithm 1 needs to calculate b · k hash functions.
As k = O(log 1

ε ), the time complexity of the algorithm

is O(b log 1
ε ).

3.2.2 Errors in selectivity estimation

We now analyze the errors in selectivity estimation us-
ing bloom histograms. We use absolute error as the
error metric. The absolute error eX of an estimate X
is the absolute difference between the estimated value
and the real value X̂, i.e., eX = |X−X̂|. The absolute-
error metric has been used in previous XML path se-
lectivity work as well. The main reasons are (a) the
relative error is meaningless for queries which have an
empty result set; and (b) the relative error with san-
ity bound is sensitive to the value of the sanity bound
parameter.

During our analysis, we assume the full path-count
table has n entries; and the bloom histogram has b
buckets and the bloom filter error rate is ε. The count
values in the bloom histogram are within (0,M ], for
some constant M ; and the count value in bucket i is Vi,
1 < Vi ≤ M . Let V be the actual frequency of a path.
Query workload on selectivity can be divided into two
types according to V of the query path. Those queries
with V = 0 are referred as negative query workload,
and those with V > 0 are referred as positive query

workload. We assume queries in the workload are dis-
tinct and have the same frequency. It is easy to gen-
eralize our method for skewed workload.

Estimation error for negative query workload

For negative query workload, the estimation error
comes from one or more buckets incorrectly report-
ing that the given query belongs to them. Let ek de-
note the absolute error when k buckets report that a
query path with frequency V belongs to them. We

have ek =
∣

∣

∣

1
k

∑k
i=1 Vi − V

∣

∣

∣
where Vi is the count value

in bucket i (and V = 0 for negative query workload).
It is obvious that 0 ≤ ek ≤ M . Then, the expected
error for negative queries can be calculated by sum-
ming over all possible errors when k buckets incor-
rectly report that the given query belongs to them, for
0 ≤ k ≤ b.

E[e] = 0 +

b
∑

i=1

(

b

i

)

εi(1 − ε)b−i · E[ei]

< bε · M (1)

By Markov Inequality, for any given γ ≥ 0:

Pr[e ≥ γ] ≤
bε · M

γ

Therefore, we have the following theorem that
bounds the error of a bloom histogram for negative
queries.

Theorem 3.1. For any given γ and δ, there exists

a bloom histogram such that with probability at least

1 − δ, the estimation error of the bloom histogram for

the negative queries is within γ, i.e., Pr[|X − X̂| ≤
γ] ≥ 1 − δ holds.

Estimation Error for Positive Query Workload

For positive queries, the expected estimation error is

E[e] = (1 − ε)b−1 · E[|V − V∗|]

+

b−1
∑

i=1

(

b − 1

i

)

εi(1 − ε)b−1−iei+1

where V and V∗ are the actual and returned frequency
values of the query, respectively. In the above equa-
tion, the first term is the error due to histogram ap-
proximation when the correct bucket is located; and
the second term is the error due to the conflict reso-
lution method when a query is reported to belong to
multiple buckets. Again, since ei is bounded by M , we
have

E[e] < (1 − ε)b−1 · E[|V − V∗|] + (b − 1)ε · M (2)

Similarly, by Markov Inequality, we have the follow-
ing theorem that bounds the error of a bloom his-
togram for positive queries.

Theorem 3.2. For any given γ and δ, there exists

a bloom histogram such that with probability at least

1 − δ, the estimation error of the bloom histogram for

the positive queries is within γ, i.e., Pr[|X − X̂| ≤
γ] ≥ 1 − δ holds.

With those relationships established, we are ready to
discuss our optimal histogram construction algorithm,
which directly minimizes the error for positive queries.

3.3 Optimal histogram construction

Given a bloom histogram with b and ε parameters,
in order to minimize the expected error for the pos-
itive workload, we need to minimize E[|V − V∗|] in
Equation 2. This is the goal of our optimal histogram
construction algorithm.
We assume that all the paths and their counts are

stored in a table sorted in the non-decreasing order
on their counts, as shown in Figure 3; otherwise an
additional sorting is required. For simplicity, we use
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count[k], 1 ≤ k ≤ n, to denote the count of the kth

path with count[1] ≤ count[2] ≤ . . . count[n]. We note
that:

E[|V − V∗|] =
1

n

b
∑

i=1





e[i]
∑

j=s[i]

(|count[j] − Vi|)





where s[i] and e[i] are the start and end indexes of
the path table for the set of paths in the ith bucket,
respectively.

Because this error metric is different from that in
traditional histograms, such as the sum of square er-
ror in V-optimal histogram [13], we cannot directly
apply previous algorithms. However, we can follow
the same spirit in [13] when devising our optimal his-
togram construction algorithm. There are two main
tasks: (1) to determine the optimal bucket boundaries
efficiently; and (2) to select appropriate count values
for each bucket.

We first address the second issue, i.e., to select ap-
propriate Vi values for the buckets after the bucket
boundaries have been fixed. To minimize E[|V − V∗|],
we only need to choose Vi to be the smaller median
value in each bucket, based on the following observa-
tion: the median value of the data points in a bucket

minimizes the function
∑e[i]

j=s[i](|count[j] − Vi|).

Next, we investigate how to determine the optimal
bucket boundaries efficiently. We leverage the dynamic
programming paradigm, due to the following observa-
tion:

OPT [n, b] =
n−1
min

i=b−1
{OPT [i, b − 1] + f(i + 1, n)} (3)

where OPT [x, b] denotes the sum of errors when b
buckets are used to approximate the first x data points
in an optimal way. f(x, y) is the error of a single bucket
comprising of data points within the index range [x, y].
The näıve computation of f(x, y) takes O(y − x + 1)
time and will increase the running time of the dynamic
programming algorithm. We observe that

f(x, y) = PSUM [y] + PSUM [x − 1]

−2PSUM [t] + (2t − x − y + 1)count[t]

where PSUM [] is the prefix sum array and t is the
index of the median value. Hence we can compute
f(x, y) in constant time by building the prefix sum
array for all the data points.

Algorithm 2 shows the optimal histogram-
construction algorithm based on dynamic pro-
gramming. Lines 1–4 initialize the PSUM [] array,
which helps to compute f(x, y) function in constant
time. Lines 5–7 initialize the OPT [] for the special
case of 1 bucket. Lines 8–15 are the dynamic pro-
gramming part: We compute OPT [j, b] according to
the recurrence equation (Equation 3). Optimal bucket
boundary can be reported by additional bookkeeping,

Algorithm 2 BuildHistogram(x[], n, b)

1: PSUM [1] = x[1]
2: for i = 2 to n do

3: PSUM [i] = PSUM [i − 1] + x[i]
4: end for

5: for i = 1 to n do

6: OPT [i, 1] = f(1, i)
7: end for

8: for k = 2 to b do

9: for j = 1 to n do

10: OPT [j, k] = +∞
11: for i = k − 1 to j − 1 do

12: OPT [j, k] = min(OPT [j, k], OPT [i, k−1]+f(i+
1, j))

13: end for

14: end for

15: end for

16: return OPT [n, b]

which is omitted in the algorithm. The total errors of
the optimal histogram, OPT [n, b], are returned.
The time complexity of the algorithm is O(bn2). The

space complexity is O(n).
We note that E[|V −V∗|] is exactly 1

n ·OPT [n, b], thus
it can be computed after the building of the histogram.
Therefore, given a dataset, the expected error for both
positive and negative queries can be determined once
the parameters b, ε and M are fixed.

3.4 Space bounded bloom histograms

In this subsection, we analyze the space requirement
of our bloom histogram and discuss how to construct
a bloom histogram within a space limit. The relation-
ship between the space limit and the expected error of
the resulting bloom histogram is also discussed.
The size of a bloom histogram is the sum of the

sizes of b bloom filters for n paths and b approxi-
mate count values. The total size of b bloom filters
is l ∗ (

∑

1≤i≤b ni) ≈ 0.2602 · ln 1
ε · n, where l is the

load factor defined in Section 3.1 and each bucket con-
tains ni values. Therefore, the total size of a bloom
histogram is 0.2602 · ln 1

ε · n + 4b.
The minimum size of a bloom filter with a fixed ε

parameter is therefore Smin = 0.2602 · ln 1
ε · n + 4, if

we use only one bucket. Since the maximum number
of buckets needed is upper bounded by the number of
distinct values of path counts, the maximum size of a
bloom filter, Smax, is in turn bounded by 0.2602 · ln 1

ε ·
n + 4n.
Given a space limit S,

• If S > Smax, we can either use less space by set-
ting b to the number of distinct path counts, or
choosing a smaller ε to utilize the additional space
and reduce the estimation error.

• If S ∈ [Smin, Smax], we fix the number b of buckets
to S−Smin

4 .
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• If S < Smin, we need to increase ε. Another pos-
sible solution is to prune paths with the smallest
count values, thus reducing n. This is similar to
the No-* pruning strategy used in [1].

Therefore, by replacing the parameter b with the
function of space limit S in Equations 1 and 2, we can
establish the association between the space a bloom
histogram uses and the expected estimation errors.
This is a desirable feature and enables users to have a
better understanding of the trade-offs.
We note that in practice, we do not always choose the

largest possible b under a given budget. The rationale
is that, although a larger b can reduce the error due to
value distributions within each bucket, it will increase
the errors by misclassifying a path into multiple buck-
ets (see, Equation 2). This is reflected in our exper-
iments, especially when ε is not small enough. Since
the term E[|V −V∗|] cannot be explicitly expressed as
a function on b, currently we can only find the optimal
b value empirically by considering all possible b values.
Compared to the previous Path Tree estimator [1],

the space requirement of a bloom histogram is ex-
tremely small. Assume there are n distinct paths. A
full path tree will occupy at least 16n+16 bytes. This
translates to the following statement: a full path tree
is always larger than the worst-case bloom histogram
unless ε < 9 × 10−21.

4 Dynamic summary

In this section, we discuss the dynamic summary com-
ponent, which enables us to maintain the histogram
under updates. Two alternative solutions are proposed
and compared.

4.1 Overview

The dynamic summary component is an intermediate,
small-sized data structure from which the bloom his-
togram can be recomputed periodically or upon re-
quest. The component can be described as follows:

• When updates arrive, we update not only the
XML data, but also the dynamic summary.
Specifically, all the paths are extracted from the
updates and then grouped. In general, the dy-
namic summary takes as input a sequence of
primitive update operations denoted as Ui(pi,∆i),
where ∆i is the amount of relative change of the
frequency of path pi. Note that such primitive
update operations can express both insertion and
deletion.

• The dynamic summary processes the sequence of
primitive update operations. Depending on the
actual data structure of the dynamic summary,
either approximate or exact value distribution can
be maintained.

• The dynamic summary supports a rebuild oper-
ation to recompute a new bloom histogram from
an approximate or exact path-count table main-
tained by the dynamic summary.

Next, we discuss some of the technical details that are
related to the implementation of the above operations.

4.2 Two candidate data structures

Here, we consider two alternative data structures
that implement the dynamic summary interface: the
Count-Min Sketch based method and the Full Label-

Path Table based method.

Count-min sketch based method

Our count-min sketch based method comprises of two
parts:

1. A list of hashIDs, in the domain of [0, N ].
2. A count-min sketch built for a length-N array of

values.

The count-min sketch is proposed recently as an ef-
ficient and versatile synopsis structure for an array
of n values [8]. Given parameters ε and δ, it em-
ploys d = dlog 1

δ e pair-wise independent hash func-
tions. Each hash function can map an incoming value
into a random position within an array of d 2

εe inte-
gers. With probability at least 1 − δ, point query,
range query and inner product of two arrays can all be
well approximated by the sketch. Its advantages over
previous proposals (e.g., backing sample [10] or other
sketches [11]) are (a) it supports deletion; and (b) the
size requirement of count-min sketch is smaller than
other synopses both in theory and in practice. The size
of a count-min sketch is exactly 4d e

εedln
1
δ e + 8dln 1

δ e

bytes, while other sketches use space linear to 1
ε2 with

some constant hidden in the O() notation.
The update and rebuilding operations can be sup-

ported as follows:

• To process the update operation Ui(pi,∆i), we
first obtain an integer IDi by hashing the path pi;
and then invoke the standard update procedure
of the count-min sketch that accepts an (IDi,∆i)
pair. We add IDi into the hashID list if it does
not exist in the current hashID list.

• An approximate path-count table can be recon-
structed to rebuild the bloom histogram: we it-
erate through the hashID list and issue a point
query to retrieve the approximate count value for
each hashID.

We note that the rationale to use the hashID list is
to save space. A näıve solution without using hashing
would need to store the entire list of paths, which is
usually much larger. One subtle thing is that those
hashIDs should be treated as “paths” when building
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Table 1: Statistics of datasets
Dataset Size #Path M | Path Table | |Path Tree| | MT (m = 2) | Comment

DBLP 184M 155 666920 3069 3100 1384 Regular
XMark 111M 548 59486 14578 10860 1584 Irregular

MathML 110K 734 23 49393 14680 1248 Extremely Irregular

the bloom filters for the bloom histogram and the same
hash function needs to be applied when querying the
resulting bloom histogram with a real path.
Update and rebuilding overhead: The update

overhead for the count-min sketch based method can
be shown to be O(ln 1

δ ). Let R(n, b) be the cost of the
bloom histogram construction algorithm (exclusive of
the sorting cost). The cost of rebuilding is O(n ln 1

δ +
n log n + R(n, b)). The rebuilding cost can be further
reduced by computing on samples only.

Full label-path table based method

A full label-path table records the count values for all
distinctive label paths in the XML data tree. There-
fore, both the update and rebuilding operations can
be supported in an exact manner:

• To process the update operation Ui(pi,∆i), we
simply use a hash lookup to locate and then up-
date the corresponding entry in the full label-path
table.

• The full label-path table is exactly the path-count
table that can be fed into the bloom histogram
construction algorithm.

Update and rebuilding overhead: The update
overhead for the full label-path based solution is O(1).
Let R(n, b) be the rebuilding cost of the bloom his-
togram construction algorithm (exclusive of the sort-
ing cost). The total rebuilding cost is O(n log n +
R(n, b)).

4.2.1 Discussions

The two methods mainly differ in the update overhead,
the size, and the quality of the resulting bloom his-
togram. In terms of size, the count-min sketch based
solution takes 4d e

εedln
1
δ e + 8dln 1

δ e + 4n space, while
the full label-path table based solution takes (4 + k)n
space, where k is the average length of the paths.
Therefore, the count-min sketch based method will
take less space when n or k is large. An empirical
comparison of the two methods is included in the ex-
periment section.

5 Experiment

We describe in this section the result of extensive ex-
periments we have conducted to compare our method
to previous ones. We first describe the experiment
setup and then present results that address different
aspects of the proposed solution.

5.1 Experiment setup

We implemented our dynamic XML path selectivity
system in C++. The hardware is a PC with AMD
Atholon 900MHz CPU, 512M memory and 30G hard
disk. The operating system is Windows XP Pro-
fessional. We implemented the proposed two-layer
solution. For the estimator component, we imple-
mented the bloom histogram, Path Tree (with sibling-
* pruning strategy) and Markov Table algorithms
(with suffix-* pruning strategy). They are abbreviated
as BH, PT and MT, respectively. For the dynamic
summary component, we implemented the CM-Sketch
based approach and the Full Label-Path Table based
approach. They are abbreviated as CM and LP, re-
spectively.

The performance metric used in the experiment is
the average absolute error, defined as 1

n

∑n
i |Xi − X̂i|,

where Xi is the real selectivity of the i-th query in the
workload and X̂i is its estimated selectivity. For the
BH method, we take the average of its average absolute
errors over 10 runs.

Both synthetic and real-world datasets were used in
our experiments. In this paper, we present results
on DBLP, XMark and MathML datasets. DBLP is
a real-world dataset describing computer science bib-
liography information. The structure of the DBLP
dataset is relatively shallow and non-recursive. XMark
is a commonly used XML benchmark dataset, simulat-
ing an auction database. The structure of the XMark
dataset is relatively deep and recursive. Another real-
world dataset, the MathML dataset2, is deliberately
chosen as an extreme dataset, because its structure is
very deep and highly recursive. Some statistics about
the datasets are listed in Table 1, including the size
of the dataset, number of paths, the maximum path-
count value, size of the Path Table, size of the Path
Tree, size of the Markov Table.

We generated both the positive and negative work-
loads as follows. For the positive workload, we ran-
domly chose 1000 paths from the label-path table. For
the negative workload, we chose random tags from the
set of distinctive tags and concatenated them into a
path. We controlled the distribution of the length
of the generated paths to follow a zipf distribution of
α = 0.4, with the lengths varying from 2 to 4. A gener-
ated path was discarded if its selectivity was not 0. We
will describe the generation of the update workload in
Section 5.4.

2Available from http://support.sciencedirect.com/

tectext_sgml.shtml.
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We chose the load factor l of the bloom histogram
to be a multiple of 8, so that the resulting bloom his-
tograms are aligned at the byte boundary. Table 2
gives the corresponding error probability ε for different
choices of load factors. The space budgets are always
chosen to be between Smin and Smax (see, Section 3.4).

Table 2: Load factor vs. error probability

l ε = 0.6185l

16 4.59 × 10−4

24 9.82 × 10−6

32 2.10 × 10−7

5.2 Accuracy

In this set of experiments, we study and compare the
accuracy of different estimators. Figures 4(a)—(c)
show the accuracy of three estimators for the positive
queries on the DBLP, XMark and MathML datasets.
Figures 4(d)—(f) show the accuracy of three estima-
tors for the negative queries on the three datasets. We
fix the load factor parameter l to 24, thus the bloom
filter error rate ε is fixed at 9.82 × 10−6. We vary the
space limit and plot the estimation errors. In all the
figures, X-axis is the space limit and Y-axis is the error
metric (in logarithm scale).
The range of the size limit is chosen to be starting

from slightly greater than the minimum size of the
bloom histogram to a size much larger than the max-
imum size of the bloom histogram. For example, in
DBLP dataset, the minimum size of the bloom his-
togram is 469 and the maximum size of the bloom his-
togram is 801. Our current BH implementation does
not use the extra space beyond its current maximum
size.
For all the datasets, the accuracy of BH is almost

always better than the other two estimators for all the
positive queries. The main reasons are as follows.

• BH method is space efficient. Thus, for a given
space limit, other methods need to perform sig-
nificant amount of pruning which sacrifices their
accuracy.

• On the other hand, our BH method is guaran-
teed to find the best grouping of all the paths and
this directly minimizes the estimation error. The
pruning methods of PT and MT, however, are ad

hoc in nature.

For the negative queries, BH outperforms PT and
MT on DBLP and MathML datasets. It also achieves
reasonably good accuracy on the XMark dataset, as
its errors are almost always below 10.
There are two interesting findings here:

• Comparatively speaking, the BH method has
greater accuracy advantages than PT and MT on

DBLP and MathML datasets. This is because the
number of paths in DBLP is smaller, thus we only
need to use a smaller number of buckets (i.e., b is
small); and the maximum value of the MathML
dataset is very small (i.e., M is small). According
to the formulae for the errors of BH, these all lead
to a smaller estimation error.

• There are some spikes and fluctuations on the
curves. This is because when space budget in-
creases, the number of buckets b also increases. As
discussed in Section 3.4, the misclassification error
due to a large b value will increase. This part of er-
ror is probabilistic in nature and leads to the fluc-
tuations. On the other hand, such error is scaled
by M , the maximum path-count value. As a re-
sult, fluctuations are more significant on DBLP
and XMark datasets than those in the MathML
dataset.

5.3 Effect of the bloom filter error (ε)

In this subsection, we investigate the effect of the
bloom filter error ε on the accuracy of the BH method.
Figure 5 shows the accuracy of both the positive and
negative queries for the DBLP datasets, with different
ε values ranging from 0.618532 to 0.618516. As our es-
timator error formulae predict, the smaller the ε value
is, the smaller the estimation error will be. Our ex-
periment results agree with this prediction well. For
the largest ε = 0.618516, BH does not have signifi-
cant advantages over the other estimators for both the
positive and negative queries. Furthermore, the accu-
racy of BH fluctuates a lot. If we decrease the ε to
0.618524, BH clearly outperforms other estimators for
the positive queries. The accuracy for the negative
queries is greatly enhanced as well, with infrequent
spikes and fluctuations. If we take ε = 0.618532, BH is
then the consistent winner for both query workloads.
In terms of storage space, we note that the additional
increase in space consumption due to the decrease of
ε is moderate: the ranges of the bloom histograms for
the three cases are [314, 646], [469, 801] and [624, 956],
respectively.

5.4 Handling dynamic data

In order to test our proposed methods for dynamic
data, we designed an update workload to simulate the
process of populating an initially empty XML database
in k batch updates. The estimator is rebuilt k times
from the dynamic summary. Specifically, we gener-
ate the update and querying workloads as follows. We
start with a final XML data file: for each distinctive
path pi, its count value is denoted as counti. We ran-
domly pick k−1 integers as cut points within the range
[0, counti]. After sorting the k− 1 cut points (denoted
as vij

and specify vi0 = 0), we can generate the k up-
dates for this path pi as U(pi, vij

− vij−1
). We repeat

this process for all paths and thus generate k batch
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Figure 4: Comparison of different estimators (ε = 0.618524 for BH)
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Figure 5: Effectiveness of ε
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updates. The generation of both the positive and the
negative query workloads is the same as previous ex-
periments.
We compared the following two experimental config-

urations: LP + BH and CM + BH. Notice that CM
is only an approximation of the real path-count dis-
tribution, while LP records the exact distribution. In
the interest of space, Figure 6 only shows the result
of the positive queries. We used five batch updates
and fixed the δ parameter for the CM to be 0.013.
Figures 6(a) and (b) are obtained by fixing the space
limit of the BH estimator to 1700 and 2400 bytes, re-
spectively. For each case, we vary the other parameter
of CM, ε, from 0.003 to 0.008. Therefore, the X-axis
in Figures 6(a) and (b) is the ε value, and the Y-axis
is the estimation error. As we can see from both fig-
ures, CM’s error is very sensitive to the ε parameter,
which determines how well the CM-Sketch approxi-
mates the original data distribution. In Figure 6(a),
for ε = 0.003, CM can achieve almost the same accu-
racy as LP, which is optimal as the exact path-count
distribution is preserved. However, for ε > 0.003, the
estimation errors of CM are significantly larger. Simi-
lar observation can be made for the case when the size
limit is set to 2400. This time, the cut point of the ε
parameter is 0.004 instead. We note that for all the
cases, CM occupies less space than LP. This is shown
in Figure 6(c). Specifically, the relative sizes of CM
over LP with ε equal to 0.003 and 0.004 are about
73% and 55%, respectively.

In summary, the experiment results indicate that

• The bloom histogram is the most accurate esti-
mation method under small space budgets.

• Reasonable accuracy for dynamic XML data can
be achieved by choosing an appropriate dynamic
summary and building bloom histograms period-
ically.

6 Related work

6.1 Statistics estimation for XML data

There has been some recent work to estimate the se-
lectivity of path expressions for XML data. Most
existing approaches solve the problem in a top-down

manner, by capturing the full structure of the XML
data tree (or graph) with a small-sized synopsis struc-
ture and pruning it until a given space constraint is
satisfied. [1] proposed two techniques, namely path
trees and Markov tables. The path tree approach
starts with a trie of all sub-paths and their associ-
ated counts; The Markov table approach starts with
the full path-selectivity table of paths length up to m.
A set of greedy pruning rules are proposed, and they
differ mainly in the amount of information preserved
in the pruning process. XPathLearner [14] used the

Markov Histogram, an variant of Markov table which
additionally captures value distribution. Their focus
is on the learning methods of the Markov Histogram
though. XSketch [17] exploited localized graph sta-
bility in a graph-synopsis model to approximate path
and branching distributions in an XML data graph.
Its successor, XSketches [18], integrates support for
value constraints as well, by using multidimensional
synopsis to capture value correlations. For tree struc-
tured data, XSketch synopsis is just a path tree in
[1]. [9] proposed StatiX, which takes advantage of
XML schema types and builds both structural and
value histograms as statistical summaries. However,
the effectiveness of StatiX is highly dependent on the
quality of system-generated OIDs. [6] proposed corre-
lated subpath tree (CST), which is a pruned suffix tree
with set hashing signatures that help to determine the
correlation between branching paths when estimating
the selectivity of twig queries. CST is usually large in
size and has been outperformed by [1] for simple path
expressions.

6.2 Traditional statistics estimation methods

Histogram is one of the most important statistics es-
timation data structure in relational DBMSs. [12] of-
fers a latest, comprehensive survey on this subject. In
particular, V-optimal histogram was proposed as the
optimal histogram under the sum of square error met-
ric [13]. Its optimal construction algorithms were also
presented.
Maintaining histogram for dynamic data is a hard

task. For one-dimensional histograms, [5] proposed
to recompute the histogram periodically or under re-
quest by using samples from the base relation. [10] and
[11] proposed to maintain a secondary data structure,
backing sample, and a sketch, respectively, from which
histograms can be recomputed. Similar approaches are
adopted for maintaining multidimensional histograms,
as in [20]. Another fundamentally different approach
to construct and maintain histograms for dynamic
data is to build histograms solely from query feed-
back, without looking at the data [4, 19, 15]. They
are usually termed dynamic histograms or self-tuning
histograms.

6.3 Bloom filter

Bloom filter was first proposed in [2] as a space effi-
cient data structure for answering approximate mem-
bership queries over a given set. It was used in Bloom
Join in [16]. [3] is a recent survey of various appli-
cations of bloom filters in the network domain. Most
recently, a spectral bloom filter was proposed that gen-
eralize the original bloom filter to answer queries re-
garding the multiplicity of an element for a multiset
[7]. Our bloom histogram can be viewed as a further
compressed spectral bloom filter, which occupies even
much smaller space.
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7 Conclusion

In this paper, we studied the problem of dynamically
estimating the selectivity for XML path expressions.
We proposed a two-layer solution consisting of an es-
timator component and a dynamic summary compo-
nent. A novel bloom histogram was proposed as a
compact yet highly accurate estimator for XML path
expressions. One unique feature is that the estima-
tion error can be theoretically bounded by its size.
We investigated both approximate and exact forms of
the dynamic summary and discussed how they assist
in updating the bloom histogram. Our extensive ex-
periment results demonstrated the effectiveness of our
proposed solution compared to the previous methods
under both static and dynamic environments.
This paper presents our first endeavor towards solv-

ing the selectivity estimation problem for general XML
queries. Some future work can be pursued hereafter.
We are investigating the appropriate way to general-
ize our method to support other types of path expres-
sions (e.g., with value predicates and branching sub-
expressions). On the other hand, we are also seeking
opportunities to apply the bloom histogram method
in other database applications.
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