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Abstract

Different models have been proposed recently
for representing temporal data, tracking his-
torical information, and recovering the state
of the document as of any given time, in XML
documents. We address the problem of index-
ing temporal XML documents. In particular
we show that by indexing continuous paths,
i.e. paths that are valid continuously during a
certain interval in a temporal XML graph, we
can dramatically increase query performance.
We describe in detail the indexing scheme,
denoted TempIndex, and compare its perfor-
mance against both a system based on a non-
temporal path index, and one based on DOM.

1 Introduction

The topic of representing, querying and updating tem-
poral information in XML documents has been receiv-
ing increasing attention from the database community,
leading to proposals aimed at defining, querying and
managing temporal XML documents, i.e. XML docu-
ments that can be navigated across time.

In a separate paper [23], we propose a model for
temporal documents and a query language called TX-
Path. TXPath extends XPath [25] for supporting tem-
poral queries (i.e. queries over temporal XML docu-
ments.) This abstract data model represents the tem-
poral document as a data graph which has time inter-
val information on its paths. Navigating this temporal
data graph is a key part of the TXPath query evalu-
ation. However, simply scanning the whole document
in search of those paths that satisfy a given temporal
query is highly expensive.
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Several index structures have been proposed in
order to optimize path query evaluation over non-
temporal data graphs. Some of the more recent
works on path indexing in the XML context include
[12, 18, 7, 17, 14]. Most of these indexing schemes
keep record of the paths in the XML data by sum-
marizing label path information. Although indexing
label paths on temporal documents helps reduce the
search space, our experiments show that computing
paths within a given time interval is quite expensive
even in the presence of traditional path indexes. One
possible solution is to integrate the temporal dimen-
sion into the indexing scheme in order to obtain better
performance. Our proposal, denoted TempIndex, ac-
complishes this integration by summarizing label paths
together with temporal intervals and continuous paths
(i.e. paths that are valid continuously during a certain
interval.)

1.1 Temporal XML documents

In Section 3 we review the temporal XML model that
we use. We give an example here. The graph de-
picted in Figure 1 is an abstract representation of a
temporal XML document for a portion of the NBA1

database. The league is composed of franchises, which
maintain teams, such that each team has a set of play-
ers that may change over time. Some franchises may
have players directly associated to them, not included
in teams. The database also records some statistics
for each player. For instance, in this database, node 16
represents a player (McGrady), playing for the Toronto
Raptors between instants ‘0’ and ‘20’. After that, he
played for the Orlando Magic (represented by node 2),
from instant ‘21’ to the present time (note the edge
between nodes 2 and 16.) Notice that in spite of the
change of franchise, there is only one node for Mc-
Grady. Thus, regardless of the franchise he played for,
the graph shows that he scored eleven goals between
instants ‘0’ and ‘30’, and twelve goals from instant ‘31’
to the present time. This information is encapsulated

1National Basketball Association, a professional basketball
league
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Figure 1: Example database

in a sequence that we denote versioned node (see Sec-
tion 3), represented by the box enclosing the two nodes
labeled ‘19’.

1.2 Contributions

In this paper we describe in detail the TempIndex
indexing scheme. In addition, we present the re-
sults of our experiments, which show that an index
summarizing temporal intervals and continuous paths
clearly outperforms traditional path indexes on tem-
poral query evaluation.

The remainder of the paper is organized as follows:
in Section 2 we comment on previous efforts in XML
path indexing and temporal XML. In Section 3 we
review the main features of the data model and the
TXPath query language. In Section 4 we present the
details of the proposed indexing scheme while in Sec-
tion 5 we show how a TXPath query is processed using
TempIndex. Finally, Section 6 discusses the results of
our experiments. We conclude in Section 7.

2 Related Work

Index structures for XML data have been proposed
in recent years in order to optimize path query eval-
uation. Most of these indexing schemes keep record
of the paths in the XML data by summarizing path
information in different ways. Examples of such in-
dex structures are dataguides [12], 1-indexes and T-
indexes [18], and more recently, Index Fabric [7], XISS
[17], ToXin [20], F&B-Index and F+B-Index [14], and
A(k)-index [16]. On a different vein, adaptive indexes
are based on query workloads that may change over
time, such as APEX [6] and D(k)-index [19]. Finally,

Kaushik et al [15] discuss fast updating of structure
indexes.

Dataguides are a summary of the path structure
of the database in which every label path starting
at the root appears exactly once. The nodes in the
data graph are grouped into sets according to the la-
bel paths they belong to (each node may appear more
than once in the index). The 1-index, T-index, F&B-
Index and F+B-Index, on the other hand, partition the
data graph nodes into equivalence classes so that each
node appears only once. The partition is computed in
different ways: based on the label paths that reach the
nodes (1-index) or further refined into smaller classes
according to the label paths of any length (F&B-Index)
or of a fixed length (F+B-Index) that leave from the
nodes. The size of the index can also be reduced by
indexing only the class of paths specified by a given
path template (T-index), or making the index approx-
imate for paths longer than a given k (A(k)-index). All
these indexes either store a limited class of paths or the
number of equivalence classes grows to a point in which
evaluating generic XPath queries is no longer efficient.
Other two approaches (XISS and ToXin) use separate
structures for storing nodes. Both implement different
join algorithms to efficiently reconstruct paths of any
length. In addition to that, ToXin keeps a dynamic
schema of the document for query optimization. Index
Fabric, in a completely different approach, summarizes
paths and data values together, and encodes them as
strings.

In the temporal XML field, many efforts [1, 8, 3, 4]
have proposed data models and query languages for
representing the histories of XML documents. Most of
them create a new physical version each time an up-
date occurs, leading to large overheads when process-
ing temporal queries that span multiple versions. A
version index for managing multiple versions of XML
documents was proposed by Chien et al [5]. The TX-
Path temporal data model, on the other hand, main-
tains a single temporal document from which ver-
sions can be extracted when needed. Gergatsoulis
and Stavrakas [11] introduced a model for representing
changes using an extension to XML denoted MXML
(Multidimensional XML), where dimensions are ap-
plied to elements and attributes.

Closer to TXPath ideas, Gao et al [9, 10] intro-
duced an extension to XQuery, called τXQuery, that
supports valid time while maintaining the data model
unchanged. Queries are translated into XQuery, and
evaluated by an XQuery engine. Even for simple tem-
poral queries, this approach results in long XQuery
programs. Moreover, translating a temporal query
into a non-temporal one makes it more difficult to ap-
ply query optimization and indexing techniques par-
ticularly suited for temporal XML documents.

In this work we will take advantage of the structure
of the temporal XML document, showing that it is pos-
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sible to index temporal continuous paths rather than
nodes, enhancing query performance dramatically.

3 Temporal XML

A temporal XML document is a directed labeled graph
with different kinds of nodes: the root of the docu-
ment, denoted r, such that r has no incoming edges;
Value nodes, representing text or numeric values; At-
tribute nodes, labeled with the name of an attribute,
plus possibly one of the ‘ID’ or ‘REF’ annotations; and
Element nodes, labeled with an element tag, and con-
taining outgoing links to attribute nodes, value nodes,
and other element nodes. Each node is uniquely iden-
tified by an integer, the node number, and is described
by a string, the node label. Edges in the document
graph can be either containment edges or reference
edges. Containment edges connect element, attribute
or value nodes, while reference edges represent IDREF
to ID references. Each edge e is labeled by a time in-
terval Te that represents the valid time of the edge, i.e.
the interval during which the edge was valid. Time is
discrete, with instants represented by positive integers.
The lifespan of a node is the union of all the contain-
ment edges incoming to the node. If an edge e is la-
beled with a temporal label Te, we will use Te.TO and
Te.FROM to refer to the endpoints of the interval Te.
Temporal XML documents also support the concept
of versioned nodes, which encapsulate a sequence of
consecutive element or attribute nodes (of type other
than ID or REF).

A temporal XML document must verify some con-
sistency conditions. The key ones are: the union of
the temporal labels of the containment edges outgoing
from a node is contained in the lifespan of the node;
the temporal labels of the containment edges incom-
ing to a node must be consecutive; and, for any time
instant t, the sub-graph composed of all the contain-
ment edges e such that t ∈ Te is either empty or a tree
with root r (we call such a subgraph a snapshot of the
document at time t.)

Example 1 In Figure 1 the fact that McGrady played
for the Orlando Magic from instant ‘21’ to the current
time, is represented by the containment edge e(2, 16).
The lifespan of node ‘16’ is the union of the elements
[0,20] (the temporal label of the incoming node edge
from node 5) and [21,Now] (the label of the contain-
ment edge incoming from node 2). The boxes in bold
line represent versioned nodes, composed in this case
by two nodes of type goals, associated with the ele-
ment nodes Stats. To simplify the figures, we omit
all temporal labels of the form [t0, Now], and represent
containment edges currently valid by solid lines; other
containment edges are represented by dashed lines.

There are different ways of mapping the abstract
graph to an XML document [23]. For the rest of this

paper, except for the experimental results, it does
not matter which representation is used. We sketch
below the representation we used for the experiments.
A node n is physically nested within its “oldest”
parent. If n was contained in some other parent p
during interval T , an element with the same tag as n,
annotated with T , and pointing to the ID for node n,
is nested within node p. Below, we show a portion of
the XML document resulting from mapping the graph
in Figure 1:

<NBAdb>
<franchise ID=‘1’[0,Now]>

<name[0,Now]>Raptors</name>
<team[0,Now] ID = ‘5’ >

<player[23,Now] IN = ‘14’/>
...
<player[0,20] ID=‘16’>

<name[0,Now]>Tracy McGrady</name>
<stats[0,Now]>

<SEQUENCE>
<goals[0,30]>11</goals>
<goals[31,Now]>12</goals>

</SEQUENCE>
</stats>

</player>

The inclusion of the element <player [23,Now]
IN = ‘14’/> within node 5 means that the player
represented by node 14, whose oldest parent is node 2,
was contained in node 5 between 23 and Now. For the
sake of clarity we use a simplified syntax for the XML
documents. For example, <franchise ID = ‘1’
[0,Now]> would actually read <franchise ID=‘1’
Time:FROM = ‘1999-01-01’ Time:TO = ‘Now’>.

TXPath Overview

The TXPath query language extends XPath 2.0 [25]
with temporal features. In non-temporal XPath 2.0,
the meaning of a path expression is the sequence of
nodes at the end of each path that matches the ex-
pression. In TXPath, the meaning is a sequence of
(node,interval) pairs such that the node has been con-
tinuously at the end of a matching path during that
interval. To make this precise, we define the notion
of continuous path, which we will be using throughout
the paper, and maximal continuous path.

Definition 1 (Continuous Path) A continuous
path with interval T from node n1 to node nk in a
temporal document graph is a sequence (n1, . . . , nk, T )
of k nodes and an interval T such that there
is a sequence of containment edges of the form
e1(n1, n2, T1), e2(n2, n3, T2), . . . , ek(nk−1, nk, Tk),
such that T =

⋂
i=1,k Ti. We say there is a maximal

continuous path (mcp) with interval T from node n1

to node nk if T is the union of a maximal set of
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Figure 2: Maximal Continuous Path

consecutive intervals Ti such that there is a continuous
path from n1 to nk with interval Ti.

Example 2 Consider Figure 2. There is only
one mcp from node team(t1) to goals(g3), with
interval [99, 02]. There are 2 mcp’s from node
team(t1) to player(p1), with intervals [01, Now] and
[95, 97]. There are 3 continuous paths from the root
to player(p1), with intervals [95, 97], [98, 00], and
[01, Now]; since these are consecutive, they produce a
single mcp with interval [95, Now].

Figure 3 shows the semantics of the most common
TXPath constructs, adapting the formal XPath se-
mantics introduced by Wadler [24]. The meaning of
a TXPath expression is specified with respect to a
context pair (node,interval). We define three semantic
functions: S,Q and QT such that S[[p]]x denotes the
sequence of pairs (node,interval) (or values, as we will
see below) selected by pattern p when x is the context
pair. The boolean expression Q[[q]]x denotes whether
the qualifier q is satisfied when the context pair is x.
Finally, another boolean expression QT [[qT ]]x denotes
whether a temporal condition qT is satisfied.

In order to give the flavor of the language, let us
show the query “Player nodes for players with the
Toronto Raptors on October 10th, 2001” in TXPath:

NBAdb/franchise[name=’Raptors’]//players
[@from ≥ ‘10/10/01’ and @to ≤ ‘10/10/01’]

Assuming that the date October 10th, 2001 is rep-
resented by instant 15, the result is the sequence
{6, [0, 20]; 10[0, Now]; 16, [0, 20]}. Note that the order
of the answer corresponds to the document order at
the time asked for in the query. If the query had not
asked for a particular instant, the result would have
been listed in arbitrary order.

Document order

In a non-temporal XML document, there is a total or-
der between the nodes. A temporal document does not

S
S[[/p]]x = S[[p]]root(x) ;
S[[//p]]x = {x2 | x1 ∈ subnodes(root(x)), x2 ∈ S[[p]]x1 };
S[[p1/p2]]x = {(v2, I1 ∩ I2)|(v1, I1) ∈ S[[p1]]x,

(v2, I2) ∈ S[[p2]](v1, I1) };
S[[p1//p2]]x = {x2 | x1 ∈ subnodes(x), x2 ∈ S[[p]]x1 };
S[[p[q]]]x = {(v, I)|(v, I) ∈ S[[p]]x,Q[[q]](v, I) };
S[[n]]x = {(v, I) | isElement(v), child(x) = (v, I),

name(v) = n };
S[[@n]]x = {(v, I) | isAttribute(v), child(x) = (v, I),

name(v) = n };
S[[@from]]x = {f | (v, I) ∈ S[[p]]x, I = [f, t] };
S[[@to]]x = {t | (v, I) ∈ S[[p]]x, I = [f, t] };
S[[ p[qT ] ]]x = {(v, I) | (v, I) ∈ S[[p]]x,QT [[p]](v, I) };
Q
Q[[p = s]]x = {(v, I) | (v, I) ∈ S[[p]]x, value(v) = s} 6= ∅;
Q[[p]]x = {x1 | x1 ∈ S[[p]]x} 6= ∅;
QT

QT [[d IN (@from,@to)]]x = {x | x = (v, [@from, @to]),
d ≥ @from, d ≤ @to} 6= ∅;

QT [[ @from op d]]x = {x | r ∈ S[[@from]]x,
r op d} 6= ∅;

QT [[ @to op d]]x = {x | r ∈ S[[@to]]x,
r op d} 6= ∅;

subnodes(y) = {(v, I) | ∃ an mcp from y to v with
interval I};
root(x) is the (root, interval) pair of the tree in which
x is a (node, interval) pair;
child(x) = {(v, I) | there exists an mcp of length 1 from
x to v with interval I}.

Figure 3: Formal semantics of TXPath

necessarily impose a total order among its nodes, but
for any instant t there must be a total order, denoted
<t, among the nodes of each snapshot D(t) of docu-
ment D at time t. In general, for any pair of nodes
n1 and n2, we may have n1 <t1 n2, and n2 <t2 n1, in
two different instants t1 and t2. However, we can show
that there is an interval during which the relative or-
der between n1 and n2 does not change. If I1 is the
interval on a continuous path from the root to n1, and
similarly I2 for n2, then the ordering between n1 and
n2 is the same for any instant t in the interval I1 ∩ I2.
This is formalized in the following proposition.

Proposition 1 Let D be a temporal XML document;
n1 and n2 two nodes in D; p1 = (r, . . . , n1, I1) and
p2 = (r, . . . , n2, I2) two continuous paths to n1 and
n2 with intervals I1 and I2, respectively; then, either
n1 <t n2 for every t ∈ I1 ∩ I2, or n2 <t n1 in every
such t.

4 Temporal Indexing Scheme

As we mentioned in Section 1, efficiently querying tem-
poral XML documents requires the ability to find the
paths in the graph that were valid at a given time (i.e.
the continuous paths in the document.) This ability
is not provided by traditional path indexes. Our pro-
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posal adds the time dimension to path indexing by
indexing continuous paths to element or value nodes.

The standard notion of label paths can be easily
extended to continuous paths. Let p = (n1, . . . , nk, T )
be a continuous path with interval T. The label path
of p, denoted λ(p) is the concatenation of the labels of
the ni in p.

Traditional path indices [12, 18] often define equiva-
lence classes of nodes that are reachable from the root
by a path with the same label. In TempIndex, we de-
fine equivalence classes of pairs 〈node, interval〉 such
that for all the pairs 〈n, I〉 in a class, there is a contin-
uous path from the root to n, with interval I and the
same label. This classes are stored in tables called cp
and cp+value, which we will define next.

Definition 2 (CP and CP+Value Tables)
Consider the set of all labels λ(p) such that p is a
continuous path from the root of document d to some
node in d. For each string l in this set, let [l] be the
equivalence class of all pairs 〈n, I〉 such that n is a
node in d, I is an interval, and there is a continuous
path from the root of d to n with interval I and label
l. For each class [l] in d there is a cp table in which
each tuple t has attributes parent, child, from and
to such that there is a continuous path from the root
of d to t.child with interval [t.from, t.to] via
t.parent. When t.child has a value v associated
to it, the cp table is called cp+value table and has
an extra attribute named value, where t.value=v.
Tuples in the cp and cp + value tables are sorted by
child.

In other words, each cp and cp+value table cor-
responds to a path label l and encodes the last
edge of all the continuous paths in d labeled by l.
The parent-child relationship contained in each tu-
ple is used during query evaluation to traverse con-
tinuous paths with a given label and interval (see
Subseccion 5 for more details). Figure 4 shows the
cp table for the path /NBA/franchise/player/stats
and 5 shows the cp+value table for the path
NBA/franchise/player/name.

Indexing intervals

Since cp’s in the cp and cp+value tables are clustered
by label and sorted by the child attribute, we need
additional structures to index the intervals and to cap-
ture the node ordering at any given instant (as defined
in Proposition 1). There are many proposals in the lit-
erature for indexing temporal intervals. Some of them
are based on the methods proposed by Bozkaya et al
[2] and Salzberg et al [21], where a B+ tree indexes the
FROM value in the intervals being indexed, and each in-
ternal node is augmented with the information of the
maximum TO value in an interval of the corresponding
subtree. We propose a different scheme, embodied in

Parent Child From To
14 13 0 22
16 18 21 Now
24 22 0 Now

Figure 4: cp table NBA/franchise/player/stats

Parent Child From To Value
16 17 21 Now McGrady
24 23 0 Now Garrity
14 30 0 22 Williams

Figure 5: cp+value table NBA/franchise/player/name

a set of tables called δk tables, that are based on the
notion of temporal depth.

Definition 3 (Temporal Depth) For each node n
in d such that there exists a continuous path cp =
(r, . . . , n, I) in d, δ(n, I) = length(cp) is a function
called the temporal depth of n during the interval I.
(Note that, due to the consistency conditions of Sec-
tion 3, there is at most one continuous path with in-
terval I from the root to each node n).

For each temporal depth k, we define the nodes that
are valid at that depth during an interval I as follows.

Definition 4 (Node Validity) A node n is valid at
temporal depth k in an interval I iff there exists an
interval I ′ such that δ(n, I ′) = k and I ⊆ I ′.

Thus, δ(n, I) defines an equivalence relation be-
tween the nodes in the temporal XML graph where
for each pair 〈n, I〉 in a class the length of the contin-
uous path from the root to n is the same. For each
temporal depth k, we will define a table called δk ta-
ble, listing the nodes that are valid at certain intervals
and their relative order. These intervals are obtained
by taking all the intervals that label some continuous
path of length k and partitioning them as needed to
obtain a set of pairwise-disjoint intervals. This is for-
malized with the notion of interval partition.

Definition 5 (Interval Partition) The interval
partition P of a set of intervals I1 . . . In is the smallest
set of intervals P = P1 . . . Pm such that all the Pi’s
in P are pairwise disjoint and P contains a partition
of every interval Ij.

Definition 6 (δk Tables) For each temporal depth k
in a document d there is a table called δk table. Each
tuple t in a δk table has two temporal attributes, from,
to, and a list-valued attribute valid. Let I1 . . . In be
all the intervals such that there is a cp of length k
labeled by one of the Ij’s, and P1 . . . Pm be the inter-
val partition of I1 . . . In. Each Pk is represented by
a tuple t in δk. The t.valid attribute contains the
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From To Valid
0 19 {9, 11, 19}
20 22 {9, 11}
23 Now {9, 11, 12}

Figure 6: δ5 table

list of all nodes at temporal depth k that are valid in
the interval [t.from, t.to). The nodes in t.valid
are ordered by the order relation defined in the interval
[t.from, t.to]. (Note that, according to Proposition
1, this order relation is always defined for all nodes in
[t.from, t.to]). Tuples in the δk tables are indexed
by from and to.

For example, Figure 6 shows the δ5 table for the
running example.

The δk tables can be used for computing snapshots
efficiently. When creating a snapshot at time i we
simply have to find the tuple t in the δk tables such
that i is contained in t’s interval. In addition, the δk

tables support efficient retrieval of all nodes that are
valid during a given interval. In the next section we
will explain query processing using the cp, cp+value
and δk tables in detail.

Space Requirements

The size of the index is proportional to the number
of cp’s. Our experiments in Section 6 show that, for
the NBA database, the number of cp’s is about three
times the number of nodes in the temporal graph. We
support three types of updates, insertion, deletion and
modification. When the XML graph is a tree, i.e. be-
fore any update is performed, for each edge in the tem-
poral graph there is one tuple in the cp/cp+value ta-
bles. Furthermore, since there is only one interval of
relevance, [0, Now], there is only one tuple t in each
δk and the list of its valid nodes contains all nodes
at temporal depth k. As updates are performed, the
number of cp’s in the document – and consequently
the number of tuples in the tables – increases. The
tables affected by an update are those that index de-
scendants of a node at the update point, so the closer
the update is to the root, the larger the increase in the
index size. Occasionally, an update may also create a
new partition in a δk table, in which case the nodes
from the last partition that are still valid in the new
partition have to be replicated.

There are several ways to reduce the space require-
ments for the index. In many applications, we expect
most updates to occur close to the leaves, so that the
size of the index will grow linearly in the size of the
document. Our experiments so far confirm that expec-
tation: the main-memory representation of TempIn-
dex has a size comparable to that of the DOM rep-
resentation (see Section 6) for both document sizes
tested.

NBA

franchise

player

name
stats

goals

team

name

player

name

last
stats

goals

Figure 7: Temporal Schema

Another typical property of temporal applications
is that there is a great deal of skew in the distribution
of queries, with recent instants being accessed more
frequently than older ones. In a space-constrained sit-
uation we could exploit this property by limiting how
far the temporal window extends back in time, and
periodically reindexing to take this into account.

Finally, there is a lot of room for compression in the
main memory TempIndex structures. For example,
the Java date datatype that we are currently using
consumes a lot more space than a typical application
would need. We have made no attempt yet to optimize
space usage by the index.

5 Query processing in TXPath

In this section we will introduce the query evaluation
algorithms. The evaluation of a TXPath query is di-
vided into stages based on its filter sections. The filter
sections of a TXPath query (also called filters) are
the expressions that appear between brackets in the
query. A filter is a predicate which is applied to the
pairs (node, interval) that are at the end of the cp’s
that match the path expression before it. For sim-
plicity, we consider in this section TXPath expressions
without nested filters. After each filter section, the
evaluation of the rest of the query continues only for
those pairs (node, interval) that satisfy the filter.

Before giving the query evaluation algorithms we
will need the notion of temporal schema.

Definition 7 (Temporal Schema) Consider the [l]
classes from Definition 2. The temporal schema S(d)
is a tree with a node for each class [l]. The root of the
tree corresponds to the class for the root label. There is
an edge from [l1] to [l2] in S(d) iff there is an element
name e in the document such that l2 = l1.e (where “.”
is the concatenation symbol). Each node n in S(d) has
either a cp or a cp+value tables associated to it.

We decompose each TXPath query into a sequence
of calls to evaluation procedures called navigate(),
pathFilter() and tempFilter(). Each procedure
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receives as a parameter a set of temporal schema
nodes N and a list of pairs (child, interval) from the
cp/cp+value tables associated to the nodes in N . In
addition, procedure pathFilter() receives a path ex-
pression and a value selection, tempFilter() a tem-
poral predicate and navigate() a path expression be-
tween filters. All procedures return a set M of tem-
poral schema nodes and a list of pairs (child, interval)
from the cp/cp+value tables associated to the nodes
in M . For simplicity, we consider in this discussion
only filters that contain either path/value selections
or temporal predicates, but not both. Based on these
procedures, a query of the form:

PathExp1[PathExp2=Val][TempPred]...PathExpn

Will be decomposed as follows:

list.add(graph root, interval);
set.add(schema root);
navigate(set, list, PathExp1);
pathFilter(set, list, PathExp2, Val);
tempFilter(set, list, TempPred);
...
navigate(set, list, PathExpn);

Next, we will give the algorithms for navigate()
and pathFilter(); the one for tempFilter() is sim-
ilar.

5.1 Query Evaluation

Algorithm 1 (navigate) Input/Output: nodeSet,
pairList. Input: PathExpr, V alue.

1. Compute the NFA P corresponding to PathExpr.

2. Determine the cp and cp+value tables that partic-
ipate in the evaluation and navigate among them
as follows:

2.1. We view the temporal schema as an automa-
ton T whose states correspond to the schema
nodes. Each of T ’s transitions corresponds
to an edge in the schema, and is labeled by
the label of the edge’s target node. An auxil-
iary node with the root as its only child pro-
vides the start state of T . All states of T ,
except the start state, are final. Let X be
the product of the P and T automata. Each
schema node and cp/cp+value table is there-
fore associated to a transition in X.

2.2. Navigate the product automaton X and fol-
low the parent-child reference chains in the
cp/cp+value tables associated to the transi-
tions.

3. When visiting a final state of X via a transi-
tion s in the navigation, add to pairList all pairs
(t.child, [t.from, t.to]) such that t is a tuple in a
cp/cp+value table associated to s and t.child is at
the end of some parent-child reference chain.

Parent Child From To Value
1 4 0 Now Raptors
2 15 0 Now Magic
3 25 0 Now San Antonio

Figure 8: cp + value table NBA/franchise/name

4. When visiting a final state of X via a transition s
in the navigation, assign to nodeSet the schema
nodes associated to s.

Algorithm 2 (pathFilter) Input/Output: nodeSet,
pairList. Input: PathExpr, V alue.

1. Perform steps 1 and 2 from algorithm 1.

2. When visiting a final state of X via a transition s
in the navigation, add to pairList all pairs (n, I)
such that there is a tuple t in a cp+value table
associated to s, where t.child is at the end of some
reference chain starting at n, and t.value=V alue.

3. Assign to nodeSet all schema nodes with a
cp/cp+value table T such that there is a tuple t
in T and a pair p = (n, I) in pairList such that
t.child = n.

We now present an example of how a TXPath
query can be processed using TempIndex and the
document in Figure 1. Consider the query “name of
the players playing for the Toronto Raptors, and the
corresponding seasons”. This is written in TXPath as:

//franchise[name=‘Raptors’]//player/name

The evaluation process begins following the path
NBA/ franchise/name in the temporal schema. From
the cp + value table of Figure 8, we obtain that
node 4, with parent 1, between 0 and Now satis-
fies the condition (note that in Figure 1 the names
of the last two teams have been omitted for clarity
reasons.) Thus, we must look in the franchise with
node 1, and find its players. In the cp + value ta-
ble in Figure 9 we find the team corresponding to
franchise in node 1 (node 5). However, according to
the temporal schema, we must also look for node 4
in the cp table for NBA/franchise/player, depicted in
Figure 10 (node 4 is not present in this table). Fi-
nally, we join the table NBA/franchise/team, with
the tables NBA/franchise/team/player (cp table) and
NBA/franchise/team/player/name (cp + value table),
in this order (Figures 11 and 12, respectively), tak-
ing into account the time intervals. Note that player
‘Carter’ is not included in the table of Figure 12, be-
cause it is the value of an element last, rather than
name. Also notice that the value for the player in node
7 in Figure 1 (not shown in that figure) is ‘Oakley’.
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Parent Child From To
1 5 0 Now

Figure 9: cp table NBA/franchise/team

Parent Child From To
2 14 0 20
2 16 21 Now
2 24 0 Now

Figure 10: cp table NBA/franchise/player

Now, consider the query “name of the players play-
ing in the NBA in 2002”. This is written in TXPath as:

//player[@from ≤ 2002 and @to ≥ 2002]/name

Navigating the temporal schema, we find that the
players are in two different cp + value tables. The
process is analogous to the one described above. How-
ever, as there is a temporal condition, we will use the
δ2 and δ3 tables to obtain the players that were active
in 2002.

5.2 Ancestor-Descendant encoding for tempo-
ral XML documents

So far we have used node numbers for identifying nodes
in the XML graph. However, we will show that we can
encode nodes in order to improve the performance of
some queries in TXPath when using the TempIndex
indexing scheme. We devised the temporal interval en-
coding, which is an ancestor-descendant encoding in-
spired by the interval scheme first presented by San-
toro and Khatib [22]. In this scheme, the leaves of a
tree are numbered from left to right and each internal
node is labeled with a pair of numbers corresponding
to its smallest and largest leaf descendants. All known
ancestor-descendant encoding schemes (see [13] for a
recent survey) are variations of Santoro and Khatib’s
interval scheme. The average label length of these class
of schemes has an upper bound of 2 log n, n being the
number of nodes in the XML graph. In our index, the
integration of the encoding with other index structures
allows us to encode the ancestor-descendant relation-
ship using only one number instead of two (the end of
each interval is implicitly stored in the order of the δk

tables).
The main idea for the temporal interval encoding is

based on taking advantage of three facts: (a) again, we
are indexing continuous paths, not just nodes; (b) the
intervals of all the continuous paths in which a node
n participates are disjoint; (c) the graph representing
a snapshot of a temporal XML document is acyclic.
Thus, we can encode the nodes in a way such that
each node has as many encodings as continuous paths
it is part of.

Parent Child From To
5 6 0 20
5 10 0 Now
5 14 23 Now
5 16 0 20

Figure 11: cp table NBA/franchise/team/player

Parent Child From To Value
6 7 0 20 Oakley
14 30 23 Now Williams
16 17 0 20 McGrady

Figure 12: cp + value table
NBA/franchise/team/player/name

In order to formally define the temporal interval
encoding, we need to define first a total order relation
among the continuous paths in the data graph.

Definition 8 Let p1 = (root, . . . , v, T1) and p2 =
(root, . . . , w, T2) be continuous paths in d. The total
order relation ≺ is defined as follows:

1. If pi is a proper subpath of pj, then pi ≺ pj

2. Otherwise, let q1 = (root, . . . , n, T ′1) be the short-
est subpath of p1 that is not a subpath of p2 and
let q2 = (root, . . . ,m, T ′2) be the shortest subpath
of p2 that is not a subpath of p1.

(a) If T ′1
⋂

T ′2 = ∅ then p1 ≺ p2 iff T ′1.FROM <
T ′2.FROM .

(b) If T ′1
⋂

T ′2 6= ∅ then p1 ≺ p2 iff n < m, where
< is the order relation defined in Proposition
1 in T ′1

⋂
T ′2.

Definition 9 (Temporal Interval Encoding)
Let ≺ be the order relation from Definition 8,
succ≺ be the successor function in ≺, and gap be
a function assigning an integer to each continuous
path starting at the root. The temporal interval
encoding function τ is defined over pairs 〈node, cp〉
by τ(n, p) = τ(m, q) + gap(q) if there is a q such that
succ≺(q) = p, τ(n, p) = 0 otherwise.

Using the temporal interval encoding, Algorithm 1
can be optimized so that it does not need to follow
the parent-child reference chains, but instead, given a
node-interval pair (m, I), it computes the successor of
m, m′, and retrieves from the product automaton all
the tuples t associated with final state transitions such
that t.child is between m and m′.

Example 3 Consider for instance Figure 13. The
player node corresponding to ‘Williams’ has initially
been encoded as ‘67’. This number encodes the node
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Figure 13: Indexing intervals with temporal interval
encoding

in the interval [0, 22]. For the interval [23, Now], the
node’s number is ‘61’, because it became a descendant
of ‘13’, and must have a number less than ‘65’. In
other words, there are two continuous paths (with dis-
joint intervals) from the root to the node. For each
one of them, we use a different encoding for the same
node. Note that these different node numbers do not
imply a larger number of tuples in the cp tables, be-
cause there is always one tuple for each cp, as in the
encoding used so far. For example, a portion of the
NBA-franchise-player cp table using the encoding of
Figure 13 is shown below:

Child From To
87 21 Now
67 0 22
61 23 Now

...
98 0 Now

Note that the temporal interval encoding does not
require explicitly representing the parent of the target
node. Thus, we only keep the attribute ‘child’ in the
cp and cp + value tables.

Now, suppose we are asked for the goals scored
by players in the Toronto Raptors. The TXPath
expression will be:

//franchise[name=‘Raptors’]//goals/text()

Answering this query just requires finding
node ‘8’ in the NBA-franchise table, checking
that the succesor at any interval is node 65,

and looking up in the value table for the path
NBA/franchise/player/team/stats/goals the nodes
with numbers between 8 and 65.

6 Experiments

In this section we will show how indexing temporal in-
tervals and continuous paths improves TXPath query
evaluation. We compare TempIndex with two other
systems: one index-based and the other DOM-based.
We chose ToXin [20] as a representative of the non-
temporal XML index class. We choose this particular
scheme for convenience, since it is easily available to
us; but we believe the results would not be substan-
tially different using any of the other path indexing
schemes discussed in Section 2. The second compari-
son will be against a DOM representation of the base
data without any indexing.

Although using a non-temporal index reduces the
search space for TXPath queries – compared to the
DOM approach – it still does not help with the tem-
poral part of query evaluation. Both ToXin and DOM
materialize paths rather than continuous paths; there-
fore, these two non-temporal backends have to com-
pute the continuous paths involved in a query on-the-
fly during query evaluation time. Our experiments will
show how important indexing the temporal structure
of the data base is for TXPath queries.
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Figure 14: Query Q1 – log scale

For all our experiments we use query processing
time as the performance metric. We evaluate the per-
formance of the three systems on a set of five queries,
as shown in Table 24. Queries Q1 to Q4 are TX-
Path retrieval queries, Q5 and Q6 are TXPath update
queries, and SN is a document snapshot.

For inserting a node (Query Q5), we specify a time
instant t, the new node n′ to be inserted, and a cur-
rent node n (i.e. a node with an incoming contain-
ment edge where Tec .TO = Now). When deleting a
node n at time td, (Query Q6) ‘Now’ is replaced by td
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Figure 15: Query Q2 – log scale
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Figure 16: Query Q3 – log scale

in Tec .TO. The same occurs with all the containment
edges in the current subtree (the subtree with root n
where all the edges ec have Tec .TO = Now). Refer-
ence edges are deleted by setting Ter .TO = td in the
temporal label of the edge.

Queries that contain value and interval selections
(Q3 through Q6) were performed with ten differ-
ent combinations of values and intervals. For those
four queries we report the average results. We run
the queries over the NBA database, which we con-
sider to be a representative example of temporal
data. We loaded the data from the NBA web site
(www.nba.com) into a relational database (Microsoft
SQL Server 2000.) From this database we produced
two documents of 10 and 20 Megabytes. We ran all
queries over the two documents and the results are
reported in Figures 14 to 20. For the experiments we
used a Pentium 4 PC at 2Ghz with 1GB of RAM mem-
ory and a 60 GB hard drive.

In all retrieval queries TempIndex performed faster
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Figure 17: Query Q4 – log scale
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Figure 18: Query Q5: Insert – log scale

than ToXin. The TempIndex speed-up against ToXin
ranged from a minimum of nine times (Snapshot–
10MB) to a maximum of 210 times (Q2–20MB). Since
both systems index label paths and values, the differ-
ence in performance can be mostly attributed to the
indexing of continuous paths.

Q2 is one of the fastest in TempIndex but one of
the slowest in ToXin. The reason for that is that the
answer to Q2 is a whole class of continuous paths in
the temporal index, which is very easy to find and
retrieve using the TempIndex schema. Although in
ToXin we can narrow the search by following only
those label paths that match the regular expression
in the query, we still have to compute all continuous
paths over them.

The snapshot, in contrast, requires heavy compu-
tation even for TempIndex. We can still narrow the
search considerably by using the interval index to lo-
cate the classes corresponding to the instant in time
we are looking for. However, once these classes are
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Figure 19: Query Q6: Delete – log scale
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Figure 20: Snapshot – log scale

found we have to reconstruct a whole document nav-
igating back and forth over them. That being said,
TempIndex still is almost one order of magnitude
faster than ToXin and DOM. Since a path index is not
very efficient for document reconstruction operations,
the snapshot computation performance of ToXin and
DOM are quite similar.

Queries Q1 and Q2 do not contain either interval
or value selection predicates and have relatively large
answer sets. The answer set of Q1 is closer to the root
and smaller than that of Q2. This affects the query
processing time in ToXin because the continuous paths
to be computed are fewer and much shorter in Q1 than
in Q2, with the consequent impact on query evalua-
tion (Q2 takes almost twice the time than Q1). In
contrast, since the DOM implementation is not aware
of the label path structure of the data graph, it re-
quires the traversal of the whole temporal graph in
order to match the regular expression on both Q1 and
Q2. Consequently, the difference in query processing

Document data graph cp’s temporal
size nodes index nodes
10 MB 270150 847005 94
20 MB 540300 1694010 94

Figure 21: Data sets and index parameters

Doc. size TempToxin size DOM size
10 MB 105 MB 165 MB
20 MB 205 MB 330 MB

Figure 22: Main-memory structure sizes

time between Q1 and Q2 is minimal in DOM.
Queries Q3 and Q4 require the additional computa-

tion of value and interval selection, which is reflected in
the TempIndex results. In contrast, the size of the an-
swer set and the length of the continuous paths seems
to have a bigger impact on ToXin performance than
the selection operations, and almost no impact at all
in DOM. The reason for that seems to be that ToXin
spends most of the query processing time on contin-
uous path computations, while DOM does it on data
graph traversal.

Update queries Q5 (insert) and Q6 (delete) require
label path traversal in order to locate the update point.
Since no continuous path computation is involved, the
difference between ToXin and TempIndex is minimal
and can be mostly attributed to the extra time needed
to update the cp and cp+value tables. In contrast, the
DOM implementation has to traverse the whole tem-
poral graph in order to locate the update point, with
the consequent time difference against both ToXin and
TempIndex.

7 Conclusion and Future Work

We studied the problem of indexing temporal XML
documents. We formally described an indexing
scheme, denoted TempIndex, composed of three kinds
of structures: the temporal schema, the temporal
depth tables, and the cp and cp + value tables. We
showed that materializing continuous paths instead of
paths increases query performance by several orders
of magnitude when compared against index-based and
DOM-based implementations of TXPath, the tempo-
ral query language that we used. Even snapshots per-
form one order of magnitude faster, on the average.
This performance is due to the fact that the non-
temporal backends have to compute on-the-fly the con-
tinuous paths involved in a query during query evalu-
ation time.

Our future work includes extending the indexing
scheme presented here, in order to support a temporal
version of XQuery, and developing a disk-based index
for temporal XML documents supporting larger docu-
ments.
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Doc. size Answer size
Q1 Q2 Q3 Q4 Snapshot

10 MB 3009 7890 450 1300 15400
20 MB 6018 15780 900 2600 30800

Figure 23: Answer sizes of retrieval queries

Query TXPath template
Q1 //Player/Name
Q2 //APG
Q3 //Div[Name=‘X’]/Player[Interval=‘I’]
Q4 //SEQUENCE[APG≥‘n’ and Interval=‘I’]

/ancestor::Player/Name
Q5 for $p in //Player[Name=‘X’]

INSERT newNode $p//APG VALUE ‘V’
Q6 for $p in //Player[Name=‘X’]

DELETE node $p//stats
SN Snapshot

Figure 24: Benchmark queries
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