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Abstract

Recent applications are seeing an increasing
need that publishing XML documents should
meet precise security requirements. In this pa-
per, we consider data-publishing applications
where the publisher specifies what information
is sensitive and should be protected. We show
that if a partial document is published care-
lessly, users can use common knowledge (e.g.,
“all patients in the same ward have the same
disease”) to infer more data, which can cause
leakage of sensitive information. The goal is
to protect such information in the presence
of data inference with common knowledge.
We consider common knowledge represented
as semantic XML constraints. We formulate
the process how users can infer data using
three types of common XML constraints. In-
terestingly, no matter what sequences users
follow to infer data, there is a unique, max-
imal document that contains all possible in-
ferred documents. We develop algorithms for
finding a partial document of a given XML
document, without causing information leak-
age, while allowing publishing as much data
as possible. Our experiments on real data sets
show that effect of inference on data security,
and how the proposed techniques can prevent
such leakage from happening.
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1 Introduction

With the fast development of the Internet, there
is an increasing amount of data published on the
Web. Meanwhile, recent database applications see the
emerging need to support data sharing and dissemina-
tion in peer-based environments [2, 12, 17, 20, 24], in
which autonomous sources share data with each other.
In these applications, the owner of a data source needs
to publish data to others such as public users on the
Web or collaborative peers. Often the data owner may
have sensitive information that needs to be protected.
As illustrated by the following example, if we publish
data carelessly, users can use common knowledge to in-
fer more information from the published data, causing
leakage of sensitive information.

A hospital at a medical school has XML documents
about its patients and physicians. Fig. 1 shows part of
such an XML document represented as a tree. Each
patient has a name (represented as a pname element),
suffers from a disease (a disease element), and lives
in a ward. Each physician has a name (phname), and
treats patients identified by their names. For instance,
physician Smith is treating patient Cathy, who has a
leukemia and lives in ward W305. (We add a super-
script to each node for later references.)

The hospital plans to provide the data to another
department at the same school to conduct related re-
search. Some data is sensitive and should not be
released. In particular, the hospital does not want
the department to know the disease of patient Alice
(leukemia) for some reason. One simple way is to hide
the shaded leukemia'’) subtree of Alice. But if it is
well known that patients in the same ward have the
same disease, then this common knowledge can be used
by the department users to infer from the seen docu-
ment that Alice has a leukemia. It is because Alice
and Betty live in the same ward W305, and Betty has
a leukemia. The users can do the similar inference us-
ing the information about patient Cathy, who also lives
in ward W305. As a consequence, hiding the shaded
leukemia® branch cannot protect the sensitive infor-
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Figure 1: An XML document of hospital data. The shaded subtree is sensitive data. The dashed line shows a

functional-dependency link.

mation due to this common knowledge.

One solution to this information-leakage problem is
that, in addition to hiding the leukemia®) branch of
Alice, we also hide the Alice(") branch, so that users do
not know the name of this patient. Another solution
is to hide the ward number W305() of patient Alice,
or the ward branches of both Betty and Cathy, so that
the users cannot infer the disease of Alice. A third
option is to hide the disease branches of both Betty
and Cathy. There are other solutions as well.

In general, publishing XML data with security re-
quirements faces a multitude of challenges when users
can infer data using common knowledge. First, how
do we model data inference using common knowledge
in XML documents? Such common knowledge can be
represented as semantic constraints, which specify re-
lationships that must be satisfied by the nodes. For
instance, the common knowledge in the hospital exam-
ple can be represented as a functional dependency from
the ward elements to their corresponding disease ele-
ments. We thus need to understand the data-inference
effects of different constraints. Some effect could be
very subtle, e.g., we show in Section 3 that users could
infer the existence of a new branch, even though its
exact position is unknown. Such a branch could still
contain sensitive information.

A second problem is: how do we compute all possi-
ble inferable data? Since users can apply constraints in
arbitrary sequences to infer different documents, it is
not clear what inferred documents we should consider
to test if sensitive information is leaked.

A third problem is: how do we compute a partial
document to be published without leaking sensitive
information, even if users can do inference? As there
are many possible partial documents that do not cause
information leakage (a trivial one is the empty docu-
ment), it is natural to publish as much data as possi-
ble without leaking sensitive information. Meanwhile,
there are various kinds of constraints, and the inference
result of one constraint could satisfy the conditions of
another. Thus it is challenging to decide which nodes
in the document should be published.

In this paper, we study these problems and make
the following contributions.

e We formulate the process of data inference using
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common knowledge represented as semantic XML
constraints. We show that there is a unique, maxi-
mal document users can infer using the constraints,
which contains all possible inferred documents. We
also develop a validation algorithm for testing if a
partial document can leak sensitive information.
We propose algorithms for computing a partial
document to be published without leaking infor-
mation, while to release as much data as possible.
We conducted experiments using real data sets to
evaluate our proposed techniques.

The rest of the paper is organized as follows. Sec-
tion 2 gives the preliminaries on data security in XML
publishing. In Section 3 we consider three kinds of
common XML constraints, and show how each con-
straint can be used to infer data. Section 4 studies
what data can be inferred by users using multiple con-
straints. We formally define information leakage, and
give an algorithm for testing if a partial document is
secure. In Section 5 we develop algorithms for calcu-
lating a valid partial document. Section 6 provides
our experimental results on two real data sets. We
conclude in Section 7.

1.1 Related Work

Recently there has been a large amount of work on
data security and privacy. Miklau and Suciu [18] show
a good diagram (shown in Fig. 2) to classify different
settings for related studies based on trust domains.
In Scenario A with a single trust domain, there are no
main security issues. For client-server access control in
Scenario B, the data is owned by the server. A lot of
work in this setting has focused on how to respond to
user queries without revealing protected data [4, 5, 15,
26]. Scenario C assumes that the client (data owner)
does not trust the server, and a main problem is how
to allow the server to answer clients’ queries without
knowing the exact data [11, 13].

In the data-publishing case (Scenario D), we mainly
focus on how to publish data without leaking sensi-
tive information. Several data-dependent approaches
have been proposed [6, 7, 16]. Some existing ap-
proaches specify sensitive data by marking positive
and/or negative authorizations on single data items.
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Figure 2: Different scenarios of database security
based on trust domains [18].

These approaches consider each sensitive node individ-
ually. One limitation of this way of defining sensitive
data is that it is not expressive to define some sensitive
data such as “Alice’s disease” that is independent from
the specific position of the data. Another related work
is [28], which shows how to compress documents to
support efficient access control of sensitive XML data.
Recently, Miklau and Suciu [18] study XML publish-
ing, and develop an encryption-based approach to ac-
cess control on publishing XML documents. They use
an extension of XQuery to define sensitive data in a
published document.

There have been works on inference control in rela-
tional databases [5, 8, 14, 23]. There are also studies
on XML security control (e.g., [3, 10, 15, 28]), and they
do not formally consider the effect of XML constraints.
Our work formulates the process that users can infer
data in XML publishing, and formally studies what
additional data should be hidden in order to prevent
information leakage. Notice that when we say “hide
a branch in a document,” we could either remove the
branch from the document, or encrypt the branch and
provide a key to the users who are allowed to access
the branch. Therefore, our approach is orthogonal to
whether encryption techniques are used to hide sensi-
tive information [18].

2 Data Security in XML Publishing

We review basic concepts of data security in XML pub-
lishing. We view an XML document as a tree. An
interior node represents either an ELEMENT or an
ATTRIBUTE. A leaf node is of the string type, rep-
resented as a system-reserved symbol S, which corre-
sponds to PCDATA for an ELEMENT parent node or
CDATA for an ATTRIBUTE parent node. We do not
consider the sibling order in the tree.

When publishing an XML document tree D, some
nodes are sensitive and should be hidden from users.
In our running example, the disease name of patient
Alice is sensitive and should be protected. We assume
such a sensitive node is specified by an XQuery, called
a requlating query. For simplicity, we represent an
XQuery as a tree pattern [1], with two types of edges:
(1) a single edge represents an immediate-subelement
relationship between a parent and a child (called a
“c-child”); (2) a double edge represents a relationship
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between a node and a descendant (called a “d-child”).
The tree pattern specifies the conditions to be satisfied
when matching with the document. It has one special
sensitive node, whose entire subtree should not be pub-
lished. The sensitive node is marked with a symbol “*”
in the regulating query. We make this single-sensitive-
node assumption for the sake of simplicity. In general,
we could allow multiple sensitive nodes in a regulating
query. Such a query could be translated to multiple
queries, each of which defines a single sensitive node.

A mapping p from the nodes in a regulating-query
tree A to the nodes in the document tree D is defined
as follows: (1) if a leaf node n in A has a type or a
value, then so does the corresponding node p(n) in D;
(2) if a node n is a c-child (resp., d-child) of another
node v in A, then p(n) is a child (resp., descendant) of
w(v) in D. Under mapping p, the target subtree of the
sensitive node in A is called the ezcluded subtree of A
under p. All the excluded subtrees of A under differ-
ent mappings in the document are denoted as A(D).
According to regulating query A, all these excluded
subtrees A(D) should not be published.

A set of regulating queries A = {A;,...,A4,,} de-
fine a partial document that can be published. Such a
document is calculated by removing every subtree in
each A;(D). Formally, we define the set of excluded
subtrees A(D) = U™, A;(D), which represent the sen-
sitive items in the XML tree that should not be pub-
lished. The remaining document of document D un-
der these regulating queries A, denoted by D,.(D, A),
is the remaining subtree after those subtrees in A(D)
are removed, i.e., D, (D, A) = D — A(D).

patient hospital

7\ I

Alice disease pname*

\
Cathy

S*
(a) Regulating query A1 (b) Regulating query A2

Figure 3: Example regulating queries.

For instance, the sensitive information “Alice’s dis-
ease” in the hospital example can be specified by the
regulating query A; in Fig. 3(a). The shaded subtree
leukemia® in Fig. 1 is the corresponding excluded
subtree. Suppose we have another regulating query
Az as shown in Fig. 3(b), which specifies that the sub-
tree of pname® of Cathy is sensitive. Given the set
A= {A;, A>} of the two regulating queries, the corre-
sponding remaining subtree D — A(D) should exclude

both subtree leukemia’) and subtree pname®).

3 Data Inference Using Single XML
Constraints
We consider the case where users can do data inference

using common knowledge represented as XML con-
straints. Such constraints for an XML document spec-



ify relationships that must be satisfied by the nodes in
the document. XML constraints can be defined us-
ing XML schema languages, such as XML DTD, XML
Schema [25], and UCM [9]. In this section, we for-
mulate three common constraints, and show how they
can be used individually to infer data.

3.1 XML Constraints

An XML constraint can be represented in the form
“conditions — facts.” It means that if the conditions
on an XML document are satisfied, then those facts
must also be true for the document. We focus on the
following three types of common constraints.

o A child constraint, represented as 7 — 7/7', means

every node of type 7 must have a child of type 7.

o A descendant constraint, represented as 7 — 7/ /7',
means that every node of type 7 must have a de-
scendant of type 7’.

A functional dependency, represented as p/p; —
p/p2, where p, p1, and ps are finite non-empty sub-
sets of paths conforming to the document. It means
that for any two subtrees ¢; and ¢ matching path
p/p1, if they have equal values in their p; paths,
then (1) both of them have non-null, (value) equal
subtrees that match p/ps; or (2) neither of them
has a subtree that matches p/p.!
Fig. 4 shows a few constraints for the hospital docu-
ment. The child constraint C; says that each patient
element must have a child of type pname. The descen-
dant constraint C, says that each patient element
must have a descendant of type disease. The func-
tional dependency Cs3 says that if two subtrees have
the same //patient/ward value, then they must have
the same //patient/disease value, i.e., patients in the
same ward must have the same disease.

Cy:  //patient — //patient/pname
Cy:  //patient — //patient//disease
C3: //patient/ward — //patient/disease

Figure 4: Example constraints.

3.2 Data Inference Using a Single Constraint

Given a partial document P of the original document
D and a constraint C, if P does not satisfy C, then
users can use the condition in C' to match the partial
document. Whenever there is a match, users may infer
more data in the document that is supposed to exist.
Let C(P) denote the inferred document after applying
constraint C' on the partial document P. We study
the inference effect of different constraints.

A child constraint can be used to expand a partial
document by adding one more branch. In this case,

IPersonal communication with Marcelo Arenas and Leonid
Libkin.

99

users know the exact location of the new branch. For
instance, suppose the partial document in Fig. 5(a)
is published to users. From the child constraint Cq,
users know that there must be a pname branch, and
they know the exact location of this branch, which is
under the patient?) element. Fig. 5(b) shows the new
document C; (P).

hospital hospital
patient(1) patient(2) patient(1) patient(2)
pname(!D) disease(l) ward() ward(?) pname() disease(!) ward() ward(®) pname
! \ 7 ! \
leukemia‘” w305 w305 leukemia® w305 w305
(a) Partial document P (b) Ci(P)
hospital hospital
patient()) patient(2) patient()) patient®
/) Y N
\
pname(D) disease(!) ward() ward® | pname(D disease(!) ward() ward(®) disease
\
' \ N ' \

leukemia’ w305 w305 disease  leukemia W305") w305 leukemia

(c) C2(P) (d) Cs(P)
Figure 5: Inferred documents using constraints. The
shaded areas represent inferred branches. The dotted
edge in C5(P) represents a floating branch.

A descendant constraint can also be used to ex-
pand a partial document by adding a branch. In this
case, however, users may not know the exact loca-
tion of the new branch. Consider again the partial
document in Fig. 5(a) and the descendant constraint
C,. With this constraint, users know there exists a
disease branch, but they do not know its exact lo-
cation under node patient®. Users can thus add the
branch to node patient®, and let it “foat” in the tree,
as shown in Fig. 5(c). Such an inferred branch is called
a floating branch, represented using a dotted edge.?

To allow floating branches in XML documents, we
need to relax the definition of XML well-formedness
by allowing dotted edges between elements to repre-
sent floating branches. Correspondingly, we define a
mapping from a tree-pattern regulating query to an
XML document (possibly with floating branches) in
a straightforward way, similarly to the definition of
“mapping” from an XQuery tree to a standard XML
document. The only subtlety here is that the XML
document could have a floating (descendant) edge,
which can be the mapping image of another descen-
dant edge in the query.

A functional dependency can also help users ex-
pand a tree. For a functional dependency p/p; —
p/p2, if there are two branches t; and t that match
p/p1, then users can use the subtree ps of t; to expand

2A floating edge is similar to a descendant edge in XQuery.
Here we use the word “floating” to emphasize the fact that the
location of the subtree in the XML document is unknown.



ta, i.e., users can copy the subtree p, of ¢; as a subtree
of t2. (Some branches of the subtree may have already
existed.) Fig. 5(d) shows the resulting document after
applying the constraint Cs to infer data.

4 Data Inference Using Multiple XML
Constraints

Now we study how users can use multiple constraints
to infer data, which could potentially leak sensitive
information. Formally, we consider a partial docu-
ment P of the original document D, a set of regulating
queries A, and a set of constraints C known by users.

4.1 Equivalent Documents of Different Infer-
ence Sequences

Since users can do data inference with arbitrary se-
quences of constraints, different users could infer dif-
ferent results. For instance, consider the partial doc-
ument in Fig. 5(a) and the two constraints Cs and
Cs above. Fig. 6(a) shows the document after apply-
ing the sequence (Cs, Cy) on the document. In par-
ticular, after applying C3 first, we cannot use Cs to
infer any new branch, since the current document al-
ready satisfies C5. The sequence (C., C3) expands the
document P to the one shown in Fig. 6(b). Specif-
ically, after applying C, to infer the floating branch,
constraint Cs can still be used to infer the disease
subtree of node patient®). Even though these two re-
sulting documents look different, essentially they have
the same amount of information. Intuitively, the float-
ing branch in Fig. 6(b) says that there exists a disease
somewhere under node patient®. Since the document
already has a disease element under the patient(?)
node, this floating branch does not carry any addi-
tional information.

hospital

patient(l) patient)

"

pname(! disease(!) ward(h) ward® disease

! \ Y

leukemia® w305 W305%|eukemia

(a) Result of sequence <Cs, C>

hospital

patient®

~
/ \oszmp
pname(! disease(!) ward() ward)disease disease

leukemia® w305 w305 leukemia

patient(1)

(b) Result of sequence <C>, Cs>

Figure 6: Inferred documents using different con-
straint sequences.

To formulate this notion of equivalence (or more
generally, containment) between XML documents with
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floating (descendant) branches, we define the following
concepts. (Notice this containment relationship is dif-
ferent from the subtree relationship.)

Definition 1 Let Dy and Dy be two XML documents
with possibly floating edges. We say Dy is m-contained
in Dy if the following is true. If Dy is treated as an
XQuery, there is a mapping from query D1 to docu-
ment Dy. Such a mapping is called a document map-
ping. The two documents are called “m-equivalent” if
they are m-contained in each other.

The “m” in “m-containment” represents “map-
ping.” Clearly any subtree of a document is m-
contained in the document. The document in Fig. 5(c)
is m-contained in that of Fig. 5(d). The two docu-
ments in Fig. 6 are m-equivalent. In particular, there
is a document mapping from Fig. 5(b) to Fig. 5(a),
which maps the floating edge to the edge from the
patient®) node to its disease child. Intuitively, a con-
taining document D- has at least the same amount
of information as the contained document D;. Since
floating branches in D; can be mapped to the branches
in Ds, they do not really represent additional informa-
tion, and could be eliminated to make the document
more concise.

Even though different sequences of applying the
constraints to do data inference can result in differ-
ent documents, there is a unique, maximal document
that m-contains all these documents.

Theorem 1 Given a partial document P of an
XML document D and a set of constraints C =
{C4,...,Ck}, there is a document M that can be in-
ferred from P using a sequence of constraints, such
that for any sequence of the constraints, its resulting
document is m-contained in M. Such a document M
is unique under m-containment.

The document M is called the mazimal inferred
document of P using C. The proof is in the full version
of this paper [27]. Its main idea is to show the following
algorithm, called CHASE, can compute a sequence of
constraints that produces a document M. This docu-
ment m-contains any possible inferred document. The
CHASE algorithm iteratively picks a constraint to ap-
ply on the current document. If the resulting docu-
ment is not m-equivalent to the old one (e.g., new in-
formation has been inferred), the algorithm continues
to apply the constraints. The algorithm terminates
when no constraint can be applied to get a document
that is not m-equivalent to the old document.

4.2 Information Leakage

Since users could use arbitrary sequences of constraints
to do data inference, we need to prepare for the worst
scenario, where a user could get the maximal in-
ferred document. Now we formally define informa-
tion leakage. Given a set of regulating queries A =



{44,...,A,}, aset of constraints C = {C1,...,C},
and a partial document P of the original document D,
consider the maximal inferred document M. If there
is a regulating query A;, such that M can produce a
nonempty answer to the query, then we say that this
partial document causes information leakage. A par-
tial document is called wvalid if it does not cause infor-
mation leakage. To be consistent with the definition
of “remaining document” D, (D, A) = D — A(D) in
Section 2 in the case without constraints, we require
that a valid document must be a subtree of D,.(D, A).

For instance, consider the XML document in Fig. 1
and the regulating query A; in Fig. 3. The remain-
ing document excludes subtree leukemia'). Suppose
users know all the constraints in Fig. 4. Then remov-
ing the Alice™® node from the remaining document
can yield a valid partial document. Alternatively, we
can remove node W305() node of patient Alice, or re-
move the W305 nodes of both Betty and Cathy. Then
users cannot use the functional dependency Cs to infer
the leukemia value of Alice.

5 Computing a Valid Partial Docu-
ment

Given a document with sensitive data specified by reg-
ulating queries, in the presence of constraints, we need
to decide a valid partial document to be published.
There are many such valid partial documents, e.g., the
empty document is a trivial one. Often we want to
publish as much data as possible without leaking in-
formation. In this section, we study how to compute
such a valid partial document. Since there are mul-
tiple partial valid documents, when in deciding what
partial document should be published, we also need
to consider application-specific requirements. For in-
stance, if the application requires certain information
(e.g., “Betty’s ward number”) to be published, then
among the valid documents, we should publish one
that did not remove this node. Here we mainly focus
on finding one valid document assuming no such re-
striction. In case the application does require certain
information be published, our solutions can be modi-
fied to take this requirement into consideration.

For simplicity, we mainly focus on the case of a sin-
gle regulating query A, and the results can be extended
to the case of multiple regulating queries. Fig. 7 shows
the main idea of our approach. We first get the remain-
ing document D, = D — A(D) by removing the sensi-
tive elements A(D) that match the sensitive node spec-
ified in A, possibly under different mappings. These
sensitive elements are shown as shaded triangles in
A(D). Then we compute the maximal inferred doc-
ument M using the CHASE algorithm in Section 4.1,
and check if this document leaks any sensitive data
(Fig. 7(a)). If not, we do not need to do anything,
since D, is already a valid document with maximum
amount of information. Otherwise, we need to remove
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more nodes. As shown in Fig. 7(b), we consider each
leaf node in the tree pattern A, and try to remove its
target in M under a mapping, so that the mapping
becomes “broken” after this removal. If some of the
image nodes are inferred using the constraints, when
removing such a node, we also need to “chase” back
the data-inference process, and remove other branches
to prevent such an inference (Fig. 7(c)). During the
chase-back process, we find the subtree that matches
the condition of the utilized constraint, and decide the
branches that need to be removed.

A(D)

e A

A A

AA A

A A A(D) break mapping
(a) Users in- (b) Remove (c) If a leaf node
fer sensitive nodes to break to be removed is
data using all mappings inferred, chase
constraints. from A to back the infer-
the inferred ence process to
document. remove other
nodes.

Figure 7: Computing a valid partial document.

One key challenge is deciding how to break map-
pings from the regulating query to the inferred doc-
ument, and how to chase back the inference steps.
In this section we present an algorithm for finding a
valid partial document by constructing an AND/OR
graph [21]. We first use an example to explain
AND/OR graphs. We then discuss how the algorithm
constructs such a graph, and uses the graph to find a
valid partial document.

5.1 AND/OR Graphs

An AND/OR graph is a structure representing how a
goal can be reached by solving subproblems. In our
case, such a graph shows how to compute a valid par-
tial document to satisfy the regulating query A. We
use the following example to explain such a graph.
Consider the hospital document in Fig. 1, the regu-
lating query A; in Fig. 3(a), and the constraint Cj :
//patient/ward — //patient/disease. The shaded
part in Fig. 1 should be hidden from users. Fig. 8
shows part of the corresponding AND/OR graph for
the problem of finding a valid partial document.

The graph has a special node called START, which
represents the goal of computing a valid partial doc-
ument. The graph has nodes corresponding to nodes
in the maximal inferred document M. Such a node in
the graph represents the subproblem of hiding its cor-
responding node n in M; that is, this node n should
be removed from M, and it cannot be inferred using
the constraints and other nodes in M. For example,



START

|

OR
Alice leukemia'”
AND AND
OR OR OR OR

leukemia® W3052 w305 w305 leukemia®
Figure 8: AND/OR graph.

the node leukemia'") in Fig. 8 represents the subprob-
lem of completely hiding the node leukemia®) in M;
that is, we need to not only remove this node from
the XML tree, but also make sure this node cannot be
inferred using the constraint.

An AND/OR graph contains hyperlinks, called con-
nectors, which connect a parent with a set of successors
(nodes or connectors). (To avoid confusions, we use
“nodes” in the AND/OR graph to refer to the START
state and other vertices corresponding to some ele-
ments in the document M, while we use “connectors”
to refer to those vertices representing AND/OR rela-
tionships between a parent and its successors.) There
are two types of connectors. An OR connector from
a parent p to successors si,... , S represents the fact
that, in order to solve problem p, we need to solve one
of the subproblems si,...,s;. For instance, the OR
connector below the START node in Fig. 8 shows that,
in order to achieve the goal, we can either hide node
Alice™™ or hide node leukemia*). An AND connec-
tor from a node p to successors si,... ,Si represents
the fact that solving problem p requires solving all the
subproblems sq,...,s;. For instance, the AND con-
nector below the leukemia®) represents the fact that
hiding node leukemia") requires solving two subprob-
lems. The first one, represented as an OR connector,
is to hide one of the nodes W305"), W305®), and
leukemia®. This subproblem is due to the fact that,
with the constraint C3, users can use these three nodes
to infer leukemia™ (from Betty’s information). Sim-
ilarly, the second subproblem, also represented as an
OR connector, is to hide one of the nodes W305(1).
W3053), and leukemia®. Both nodes leukemia(?
and leukemia(® have an AND connector similar to
that of leukemia(!). For simplicity we do not draw

the AND-connector structure of node leukemia(®.

To compute a valid partial document, we first search
in the graph for a solution graph, which has the follow-
ing properties: (1) It is a connected subgraph including
the START node. (2) For each node in the subgraph,
its successor connectors are also in the subgraph. (3)
If it contains an OR connector, it must also contain
one of the connector’s successors. (4) If it contains an
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AND connector, it must also contain all the successors
of the connector. After computing a solution graph
G, for each non-connector node in G, we remove the
corresponding node in the XML tree M. In addition,
we remove the nodes in A(D), due to the assumption
that these nodes must be removed (see Section 4.2).
The final tree is a valid partial document.

Fig. 9 shows two solution graphs for the hospi-
tal AND/OR graph. The first one corresponds to a
valid partial document that excludes the Alice™) node.
The second one corresponds to a valid partial docu-
ment that excludes nodes leukemia®), W305(3), and
W3053). By default, the corresponding partial doc-
uments do not include the node leukemia(!) due to
assumption that this sensitive node must be removed.

START

|

OR
START

J leukemia"
OR AND
Alice'” OR OR

w3052 w305%

(a) Solution graph 1 (b) Solution graph 2

Figure 9: Solutions graphs for the hospital example.

In the rest of the section we give details of how to
construct such an AND/OR graph, and how to find a
valid partial document by using a solution graph.

5.2 Constructing an AND/OR Graph

Consider a document D, a set of constraints C, and a
regulating query A. Let M be the maximal inferred
document that causes information leakage, i.e., there
is at least one mapping from A to M. We construct
an AND/OR graph in three steps.

Step 1: To avoid information leakage, we need to
break all the mappings from A to M. If there is only
one such mapping u, as illustrated by the example in
Fig. 8, we introduce an OR connector from the START
node to a set of nodes, each of which corresponds to
the image node (under p) of a leaf node in A. (We
choose leaf nodes of A in order to remove as few nodes
as possible.) If there are more than one such mapping,
for each of them we introduce an OR connector to its
successor nodes in a similar manner. We then add an
AND connector from the START node to these OR
connectors, representing the fact that we must break
all these mappings.

Step 2: For a node n in the AND/OR, graph, its
corresponding node in M could be inferred due to the
constraints. In this step, we chase back these data
inferences, and add nodes to the AND/OR graph to
show how to break such an inference. Now we give



the detail of how to break the inference of each type
of constraint.

Child constraint: If node n can be inferred using a
child constraint 7 — 7/7', then n must be of type 7/,
and its parent p node in M must be of type 7. In order
to break this inference, we need to remove the parent
node p. Therefore, in the AND/OR graph we add an
AND connector from node n to a new node p. (If an
AND connector connects a node a to only one node
b, for simplicity we can replace this connector with a
single edge from a to b.)

Descendant constraint: If node n can be inferred
using a descendant constraint 7 — 7//7', then n must
be of type 7/, and it must be a floating branch in the
inferred document M from a node a of type 7. In
order to break this inference, we need to remove the
node a. Therefore, in the AND/OR graph we add an
AND connector from node n to a new node a.

Functional dependency: Consider the case where
node n can be inferred by a functional dependency
p/t1 — p/ts. That is, node n is of type p/t; in the in-
ferred document M, and there exist nodes no, n’, and
nly, of types p/ta, p/t1, and p/ts, respectively, such that
ny is equal to n} (as values) and n is equal to n' (as
values). In this case, in order to break this inference,
we need to remove one of ns, n', and n). Thus we
add an OR connector from node n in the AND/OR
graph to new nodes of ns, n', and n). Notice that
the functional dependency can be used to infer node
n with different sets of ny, n', and n}. In this case, as
illustrated by the example in Fig. 8, we introduce an
AND connector from the node n to the corresponding
OR connectors, each of which corresponds to such a
set.

In the process of breaking the inferences, we may
need to add new nodes (and connectors) to the
AND/OR graph. If the nodes are already in the
AND/OR graph, we can just add the necessary links
to these existing nodes. In addition, for each newly
added node, we still need to check if it can be inferred
using constraints. If so, we need to repeat this process
by adding necessary nodes and connectors. This step
will repeat until each node in the graph either cannot
be inferred, or have the necessary successors to break
possible inferences for this node.

Step 3: In this step, we consider the fact that re-
moving a node from the inferred document M also
requires removing all its descendants. Thus we iden-
tify the ancestor-descendant relationships among all
the nodes in the AND/OR graph, add an AND con-
nector from each node to its descendant nodes (if any).

We use another example to show how to construct
an AND/OR graph. Consider the document shown in
Fig. 10(a), the regulating query in Fig. 10(b), and the
following constraints.
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Figure 10: A document and a regulating query.

Ci: [/w—[]w]y;
Co: /o= //p]]Y;
Cs: [Ip—//p/z.

START START

| J

AND AND

PN N
A= AN
AN SIAN

W e - W) /(z> Y@ Ww®)
pY we P /'Wm
AND
(a) After steps 1 and 2 (b) After step 3

Figure 11: AND/OR graph for Fig. 10.

The corresponding AND/OR, graph after steps 1
and 2 is shown Fig. 11(a). In particular, in step 1,
we consider the two mappings from A to the maxi-
mal inferred document (i.e., the whole document in
this example). The images of leaf nodes in A under
the two mappings are {z(?), y*), w(®} and {22, y®,
w(s)}, respectively. Thus we add one AND connec-
tor and two OR connectors to show the need to break
both mappings. In step 2, we consider all constraints
that can infer these nodes. Constraint C5 can be used
to infer node z(? from p*). Thus we add an AND
connector (simplified as a single edge) from node z(*)
to p") in the graph. Similarly, we add an AND con-
nector from node y* to w® due to constraint Cj.
Notice that node y*) cannot be inferred from p() us-
ing constraint Cs, since this constraint can only infer
a floating branch of y® from p(!), and this branch has
already been merged with the path from p(!) to y(*4).

In step 3, we add those ancestor-descendant links,
and the final graph is shown in Fig. 11(b). In partic-
ular, node p(!) is an ancestor of nodes z?), w®), and
y® | and we add an AND connector from this ancestor
to these descendants. Node w® is a parent node of
y™®, so we add an edge from w® to y*).

5.3 Computing a Valid Partial Document Us-
ing the AND/OR Graph

We search within the constructed AND/OR graph for
a solution graph, which can be used to produce a valid



partial document. We want to remove as few nodes
as possible. If it is computationally expensive to find
a solution graph with the minimum number of nodes
to remove, we can use heuristics to search for a solu-
tion graph. For instance, we can adopt the depth-first
search strategy as follows. Initially we add the START
node to the solution graph G. We mark it SOLVED
and add it to a stack. In each iteration, we remove the
top element e from the stack. There are four cases:
(1) e is a node without any successors. Then we do
nothing. (2) e is a node with successors. We add
these successors and the corresponding edges to the
solution graph G. For each of the successors that is
not marked SOLVED, we mark it SOLVED and add
it to the stack. (3) e is an AND connector. We add all
its successors and the corresponding edges to G. For
each of its successors that is not marked SOLVED, we
mark it SOLVED and add it to the stack. (4) e is an
OR connector. Then we choose one of its successors,
add this successor and the corresponding edge to G. If
the successor is not marked SOLVED, we then mark
it SOLVED and add it to the stack. We repeat the
process until the stack becomes empty.

After finding a solution graph, for each of its nodes,
we remove the corresponding node in the maximal in-
ferred document M. We also remove the nodes in
A(D), and the final document is a valid partial docu-
ment. For example, Fig. 12 shows a solution graph for
the AND/OR graph in Fig. 11(b).

START
AND
/ \
OR OR
/ \.
W W)

Figure 12: A solution graph.

Remarks: So far we have described how to construct
a complete AND/OR graph and then search for a so-
lution graph. Often we only need to find just one so-
lution graph. Thus we can find a such solution graph
without constructing the complete AND/OR graph.
That is, we search for a solution graph as we con-
struct the AND/OR graph “on the fly.” There has
been a lot of work on heuristic searches in AND/OR
graphs [21, 22], such as GBF, GBF*, AO, AO*, and
etc. These heuristics can be adopted for efficiently
finding a solution graph.

6 Experiments

We conducted experiments to evaluate the effect of
data inference on security and the effectiveness of our
proposed techniques. In this section we report the ex-
perimental results.
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6.1 Setting

Data sets: We used two real XML data sets. The first
one was from the University of Illinois.® It had a file
“course_washington.xml” with course information. It
contained 3,904 course elements with 162,102 nodes
including elements and text nodes. The second data
set is from DBLP.# It contained more than 427,000
publications (at the time of the experiments), repre-
sented as an XML file with about 8,728,000 nodes,
including elements, attributes, and their text nodes.

XML Constraints: In general, constraints known
to users are defined according to common knowl-
edge [19] or the possible schema of the application
domain. We analyzed the two data sets, and found
that many constraints were valid. In the experiments,
we used the constraints shown in Fig. 13 as exam-
ples. They were assumed to be common knowledge
known to users. For instance, in data set 1, each
course must have a title, represented as the constraint
“/[course — //course/title.” In data set 2, two pa-
pers with the same title should have the same authors.
(Some conference papers were also published as jour-
nal articles with the same title and authors.) Such a
fact could be represented as a functional dependency
“//dblp/pub/title — //dblp/pub/author,” when we
treated different types of publications as a single type
called “pub.”

Data set 1: course_washiongton.xml

Child constraints

//course — //course/title

//course — //course/section

//session — //session/day

//session — //session/time

//session — //session/place
Descendant constraints

//course — //course//credits

//course — //course/ /instructor

Data set 2: dblp.xml

Functional dependency
//dblp/pub/title — //dblp/pub/author

Figure 13: Sample constraints.

Which part of an XML document is sensitive de-
pends on the application. In our experiments, we
considered sensitive information defined by two types
of regulating queries. The first type of regulating
queries (“Type 1”7) were manually defined as XQuery
expressions after we analyzed the semantics of differ-
ent nodes. The following are two examples.

e A;: In course_washington.xml, hide codes of all
courses.
e As: In dblp.xml, hide authors who published pa-

pers in 2001.

3anhai.cs.uiuc.edu/archive/data/courses/washington/
4yww.informatik.uni-trier.de/~1ley/db/



The second type of regulating queries (“Type 2”)
were generated by randomly marking a set of nodes in
the document as sensitive data. The goal is to see the
relationship between the percentage of sensitive nodes
and the amount of leaked information.

6.2 Amount of Leaked Information Defined by
Regulating Queries of Type 1

We first evaluated how much sensitive information was
leaked due to constraints. The information was de-
fined using regulating queries of type 1. We measured
the number of sensitive nodes defined by each regulat-
ing query of type 1, and the number of leaked nodes
after the user does data inference. For example, in
the course_washington.xml document, 3,904 code el-
ements were defined as sensitive. However, using the
given constraints, no information can be inferred be-
cause no constraint can be used to infer any code el-
ement. In the dblp.xml document, there were 63,653
authors who published papers in 2001, and their names
were defined as sensitive by regulating query As. If we
just published the document by removing these sensi-
tive names, users could use the functional dependency
“//dblp/pub/title — //dblp/pub/author” to infer 977
such author names. In particular, the corresponding
publications of these inferred authors have been pub-
lished in year 2001, whereas there exist some other
(journal) publications that have the same title of these
publications, but they were published in other years.
Using the functional dependency, users can infer some
of these hidden author names.

6.3 Amount of Leaked Information Defined by
Regulating Queries of Type 2

We let the percentage of sensitive nodes specified by
regulating queries A of type 2 vary from 0 to 100%.
We assumed that users know the constraints in Fig. 13.
We measured how much information can be leaked if
the system just published the document D — A(D) by
removing the sensitive nodes A(D) (their subtrees).
We used the validation approach discussed in Section 4
to compute the number of leaked sensitive nodes. We
considered different factors that can affect the amount,
such as the types of constraints, the number of con-
straints, and the number of nodes that satisfy the con-
ditions in the constraints. The percentage of leaked
nodes is calculated as

number of leaked sensitive nodes

number of nodes in the whole document’

Effect of Different Constraints

Fig. 14 shows the relationship between the number of
leaked nodes and the number of sensitive nodes for
different types of constraints.

Child and descendant constraints: Fig. 14(a) shows
the results for the child and descendants in Fig. 13 for
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Figure 14: Effect of different kinds of constraints.

document course_washington.xml. As the percentage
of sensitive nodes increased, the percentage of leaked
nodes increased to a peak (about 2.8%), when the per-
centage of sensitive nodes was around 82%. The rea-
son for this increase is that more nodes inferred by
users could be sensitive. If the number of sensitive
nodes further increased, then the number of leaked
nodes started to drop. The result is not surprising,
since there were fewer nodes in the remaining docu-
ment, and it became less likely for users to do data
inference, causing less information to be leaked.

Functional dependencies: We used dblp.xml to
test the effect of the functional dependency shown in
Fig. 13. Since the number of nodes satisfying the func-
tional dependency was relatively small compared to
the document size, we chose a subdocument by us-
ing a subset of the represented publications, such that
the subdocument had 8% of its publications satisfy-
ing the functional dependency. We then varied the
number of sensitive nodes in the subdocument. The
result is shown in Fig. 14(b). Similarly to the previous
case, as the percentage of sensitive nodes increased,
the percentage of leaked nodes increased quickly to a
peak value of 1.4%, when the corresponding percent-
age of sensitive nodes was around 26%. The number of
leaked nodes also started to drop as we increased the
percentage of sensitive nodes, for the similar reason
as in the case of child/descendant constraints. Notice
that in this case, the percentage of sensitive nodes that
yielded the peak value was smaller than that of the
previous case. The main reason is that functional de-
pendencies often need more nodes to be satisfied than
child/descendant constraints.

Effect of Number of Constraints

We then evaluated the effect of the number of con-
straints (corresponding to the amount of common
knowledge) on data inference. We chose different num-
bers of constraints and tested how they affected the
number of leaked elements. We considered two cases
for the document course_washington.xml.



e Using 4 constraints: We assumed that users know
the first three child constraints and the first one
descendant constraint in Fig. 13.

e Using 7 constraints: We assumed that users know
the five child constraints and the two descendant
constraints in Fig. 13.

The results in Fig. 15 are consistent with our intu-
ition. As the number of constraints increases, there is
more common knowledge known by users. Then they
can infer more data, causing more information to be
leaked. For both cases, as the percentage of sensi-
tive nodes increased, the percentage of leaked nodes
increased to reach a peak before it started to drop.
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Figure 15: Different numbers (4 and 7) of constraints
in course_washington.xml.

Effect of Nodes Satisfying Constraints

Different partial documents could have different num-
bers of nodes that satisfy the conditions in the con-
straints. We studied the effect of this number on data
inference and information leakage. In the experiments,
we chose a subdocument of the dblp.xml document
with about 800, 000 nodes as a test document. We ad-
justed the number of nodes satisfying the condition in
the functional dependency in Fig. 13. We adjusted this
number to about 40,000, 64,000, and 80,000, by re-
moving some of the represented publications. Fig. 16
shows the results, where V is the number of nodes
satisfying the condition in the functional dependency.
Not surprisingly, as we increased V, the percentage of
leaked nodes increased, since more such nodes can help
users infer more sensitive nodes.

% of leaked nodes

100

% of sensitive nodes

Figure 16: Effect of number of nodes satisfying the
condition in the functional dependency.
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6.4 Removing Nodes to Prevent Leakage

We used the method described in Section 5 to compute
a valid partial document without information leakage.
In this experiment we measured how many nodes the
algorithm decided to remove to compute a valid par-
tial document. Based on the analysis in Section 6.2, we
know that the nodes that need to be removed highly
depend on the regulating queries. If there are many
ways the conditions in the regulating queries can be
mapped to the document, then many nodes are sensi-
tive and should be hidden. Whereas, if the conditions
are very selective, few nodes satisfying these condi-
tions, and few nodes need to be hidden. Furthermore,
different kinds of constraints have different effects on
what nodes should be removed.

We considered the constraints in Fig. 13. We con-
sidered regulating queries that have a condition that
is either a single element (the element is sensitive) or
a path (the root of the path is sensitive). We ran-
domly chose certain percentage of the nodes as sensi-
tive nodes, and applied our algorithm to decide what
nodes should be removed to avoid information leak-
age. We could choose a node in a mapping image of
the regulating query to remove, or we could chase back
the process from an inferred sensitive node and remove
other nodes as well. In the case there were different
ways to remove nodes, we randomly selected one solu-
tion. For each solution, we measured how many nodes
needed to be removed. We ran 10 rounds to compute
the average percentage of nodes that can be removed.
When we removed an interior node, we also counted
its descendants in the number of nodes.
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(a) Course data set (b) DBLP data set

Figure 17: Additional removed nodes to get a valid
partial document.

Fig. 17 shows the results for both data sets. The
document course_washington.xml with child and de-
scendant constraints required relatively more nodes to
be removed compared to that of document dblp.xml
with a functional dependency. The reason is the fol-
lowing. For the child/descendant constraints, when we
chased back their inference process, we had to choose
a parent or ancestor to remove, which can remove a
lot of child/descendant nodes. On the other hand, for
the functional dependency, when we chose a node to



break the inference process, we could often find a leaf
node (or a node close to leaf nodes) to remove, thus
the total number of removed nodes was smaller.

Summary: Our experiments show that sensitive
information could be leaked during XML publishing
if common knowledge (constraints) is not considered
carefully. The amount of leaked information depends
on the number and type of regulating queries, the num-
ber and type of constraints, and the number of nodes
satisfying the conditions in the constraints. Our pro-
posed techniques can measure how much sensitive data
is leaked, and can also compute a valid partial docu-
ment without information leakage.

7 Conclusions

In this paper, we studied the effect of data inference
using common knowledge (represented as XML con-
straints) on data security in XML publishing. We for-
mulated the process how users can infer data using
three types of common XML constraints. We showed
that there is a unique, maximal document that con-
tains all possible inferred documents. We developed
algorithms for finding a partial document of a given
XML document without causing information leakage.
Our experiments on real data sets showed that effect
of inference on data security, and how the proposed
techniques can avoid such leakage.
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