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Abstract data multiple times in different queries.” We illustrate this
redundancy with a two query example in Figure 1.

I Uscless join tuples

7777777) Result of Query 1

Eiinmn] Result of Query 2

Sharing has emerged as a key idea of static and
adaptive stream query processing systems. Inher-
ent in these systems is a tension betwskearing
common workand avoidingunnecessary work
Increased sharing has generally led to more un-

necessary work. : ' 7 . 7]  Intersection of results
Our approach oprecision sharingaims to share Figure 1: Sharing 2 queries: redundancy and waste
aggressivelithoutunnecessary work. We show In the example, the queries’ result sets overlap. With-

why “adaptive” tuple lineage is more generally out sharing, the overlapping tuples are produced twice -
applicable and use it for precisely shared static 3 redundancy. In attempting to avoid redundancy, how-

dataflows. We also show how “static” ordering  ever, current shared schemes produce too much data. In
constraints can be used for precision sharing in  the figure, a shared scheme from the literature (such as Ni-
adaptive systems. Finally, we report an experi-  agaraCQ) would produce the tuples in the entire rectangle,
mental study of precision sharing. including the “useless tuples” in the two darkly shaded re-
) gions. Thus, it would appear that sharing has to balance the
1 Introduction inherent tensions of:

Data streaming systems support long running continuous e Repeated workcaused by applying an operation mul-

queries. Since many queries are concurrently active over tiple times for a given tuple, or its copies.

common streams, shared processing is very attractive. e Wasted work caused by the production and removal
Two approaches to shared stream processing have of “useless tuples”.

emerged. In systems like NiagaraCQ [6], Aurora [3] and

STREAM [14], tuples flow througtstatic dataflow net-

works. In contrast, the idea @idaptivequery processing

has led to approaches like CACQ [12], PSoup [4], Tele-

graphCQ [5] and “distributed eddies” [18] where tuples are

variably routed through an adaptive network.

. Sh?rlng in streams, as in classical systems (Sellis [16]&1 Precision Sharing

aims “to limit the redundancy due to accessing the samé
*This work was funded in part by the NSF under ITR grants IIS- PrECiSiO.n sharings away 1o characterize any Shal’ed query

0086057, SI1-0122599, 11S-0205647 and I1S-0208588, by the IBM FaculyPrOCESSINg scheme. We show that when sharing is precise,

Partnership Award program, and by research funds from Intel, Microsoftjt iS possible to avoid the overheads of repeated wawk

and the UC MICRO program. well asthat of wasted work. Precision sharing applies to

Permission to copy without fee all or part of this material is granted pro- Static and adaptive streaming systems, and is orthogonal

vided that the copies are not made or distributed for direct commercialtg query optimization. It can also be used with traditional

advantage, the VLDB copyright notice and the title of the publication and iNla i At
its date appear, and notice is given that copying is by permission of themUItIpIe query optimization (MQO) schemes.

Very Large Data Base Endowment. To copy otherwise, or to republishStatic shared dataflows

While existing systems have taken this tension for
granted, the goal of our paper is to show that this ten-
sion is not, in fact, irreconcilable; to design and implement
techniques that resolve the tension in static and adaptive
dataflows; and to experimentally verify these techniques.

requires a fee and/or special permission from the Endowment. We first show how NiagaraCQ's static shared plans are
Proceedings of the 30th VLDB Conference, imprecise. We then consider tuple lineage, an idea from
Toronto, Canada, 2004 the adaptive query processing literature. While lineage has
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been thought of as useful in highly variable environmentsyelational algebra operators. Figure 2 shows an example of
our insight is that it is more generally applicable. Specif-a static dataflow that represents two shared queries.
ically, we show how to use tuple lineage to make static

shared dataflows precise. We call our approadi.IP, or O“A“J' O"Ath
TUple Lineage in Plans. e
Adaptive shared dataflows Split
Next we show how the CACQ shared adaptive dataflow .
system is also imprecise. Our strategy toward adaptive pre- R/ ™ s
cision sharing is to borrow from the static world. We show
how we can place constraints on how tuples are routed in Figure 2: Static shared dataflow example
an adaptive scheme to ensure that sharing is precise. Our
approach iCAR, or Constrained Adaptive Routing. When new tuples arrive in the system they are driven

We implemented both schem@$/LIP andCAR, inthe  through the network according to an operator scheduling
TelegraphCQ system that we are building at Berkeley. policy. While different operators may be executed at dif-
ferent times, th@athstaken by a tuple from a given stream
1.2 Contributions to its various destinations are always the shnSharing is
thus determined entirely by sub-expressions that are com-
mon to individual queries. This model has been adopted

1. Argue that the tension between avoiding the overhead8Y NiagaraCQ, Aurora, and STREAM. NiagaraCQ [7, 6]
of repeated work and wasteful work in sharing is notdescribes ways to formgroupedplans for multiple queries. _
irreconcilable, and definprecision sharingto show _There are in general two approaches to MQO: (a) opti-
how both overheads can be reduced in tandem. mize each individual query and then look for sharing op-

2. Demonstrate the general utility of tuple lineage be_portunities _in the access plans, and (b) globally optimize
' all the queries to produce a shared access plan.

yond adaptive query processing, and show how it can i . ) . .
be used to achieve static precision sharing. _The first approach is easier to employ and is used in
, ) S . NiagaraCQ to group together plans for queries with sim-
3. Show how to implement adaptive precision sharingjjar structure. When new queries enter the system they are
with proper operator routing. attached to an existing group whosignatureit matches
4. Validate our claims experimentally. closely. A query that has many signatures is merged into

. . . .. multiple groups in the system.
The rest of this paper is organized as follows. We briefly

describe relevant work on shared stream processing in Sec-

tion 2. Next, in Section 3, we define precision sharing and2.2 Adaptive shared dataflows
explain pitfalls in prior art. This is followed by a descrip-
tion of TULIP in Section 4 and a study of its performance
in Section 5. We then preseGfAR in Section 6 followed
by more experiments in Section 7. We end with a summar
of our findings in Section 8.

Our contributions in this paper are to:

The second approach we review is based on the idea
of adaptive tuple routing and used in TelegraphCQ [5],

ACQ [12] and PSoup [4]. In this approach too, a set of
gueries are decomposed into a dataflow of relational alge-
bra operators. The major differences are: (a) the dataflow
. is adaptive and can route tuples in a variety of different
2 Shared queries on streams ways, (b) tuples are extended to carry their “lineage” con-
In this section we briefly describe the two major approachesisting of “steering” and “completion” vectors, and (c) the
to sharing: static query plans and adaptive dataflowsoperators are aware of the completion vector of each input
While sharing has also been studied in the multiple-quenjuple - in other words two otherwise identical tuples with
optimization (MQO) literature [16], there has been compar-different completion vectors may be processed differently.
atively less work on shared processing of queries over dat¥/e discuss adaptive dataflow technology in more detail in
streams and the related topic of pipelined MQO [8, 17].  Section 6.

As has been well noted[12, 14], pipelined join operators

are a natural fit for streaming query processors. For thi . :
reason we assume the exclusive use of symmetric join ops‘—)’ Precision Sharing

erators for the rest of this paper. This also simplifes then this section we introduce and explain the importance of

MQO problem by limiting the choice of join operators.  precision sharing, a way to characterize the overheads of
) shared query processing. We then show how current sys-
2.1 Static shared plans tems result in plans that are not precisely shared. We begin

The first approach we describe is the logical extension oY defining precision sharing in terms of all operations per-
traditional pipelined query plans to shared data stream prol©rmed on tuples in a shared dataflow.

cessing. Here, a set of continuous queries is processed Us-1york [10] on dynamism in static plans has generally been limited to
ing a single static query plan that is a dataflow network ofone-timelate-bindingbased on query parameters.
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Precision sharing: A sharing scheme where for all stream PS2 is obeyed as each tuple from each join operator must
inputs, the following propertielsoth hold: satisfy at least one query.

Selection pull-up (Figure 3(a)), on the other hand, vio-
es PS2. For example, the output of the join operator can

PS2 No operator shall produce a “zombie” tuple; that is, include an(r,, s,) tuple wherer, fails both predicates;

a tuple whose presence or absence in the dataflow hfé’dﬁ' satisfying n_elther query. The tup(e@ s3) IS an
no effect on the result of any query, irrespective of any.examIOIe of a zombie tuple, and shows hOV\.’ increased shar-
other possible input ' ing can cause wasteful work. Note that this plan has only

. one join operator that produces the common sub-expression
A plan that does not satisfy PS1 suffers from redun-r 5 and has no redundancy. Since no operation is ap-
in the wastefulproductionand subsequerglimination of We have seen how both pull-up and push-down violate
zombies. We say that a given planpiecisely sharedf it 5 |east one of the properties of precision sharing. A third
satisfies both th_e properties PSl and PS2 for all inputs. alternative, however, was proposed in later work on Nia-
Approaches in the MQO literature [16, 17, 8] have all yaracQ [7]. This is a variant of pull-up callittered pull-
assumed that reducing redundancy is paramount, witho p which creates and then pushes down predicate disjunc-
considering its side-effects. This definition of precision ions ahead of the join. In this example, the disjunctive
sharing lets us characterize the nature of such Side'eﬁeCtEredicate(rl V 12) is pushed down between the join and

and is essential to limiting unnecessary work for the querfne scan oz, Such a plan is shown in Figure 4.
processor.

PS1 For each tuple processed, any given operation may th
applied to it, or any copy of it, at most once. a

We now consider examples of imprecise sharing of join Outg, Outq,
gueries in the presence of selections on individual sources. o o
We build on an example studied in NiagaraCQ [6, 7). o
A
3.1 Imprecise sharing in action o ) \S
Consider the following scenario involving two queriés, »
and@-, each of which join the streanfd and.S and apply
a unique selection predicate éh Figure 4: Precisely shared filtered pull-up
e Q1:0,(R)X S Unlike pull-up, the filtered pull-up plan for this example
e Q2:0,,(R)x S satisfies PS2. This is because evAriupler, that reaches

the join operator must have passed at least one ofithad

NiagaraCQ suggests the two alternate plans for thesg, predicates. So every join tup(e,, s,.) must also satisfy
queries. The plan in Figure 3(a) useslection pull-ugo  at least one of the queri€g, andQ-. Filtered pull-up also
share theRS join. In Figure 3(b) we seselection push- satisfies PS1 here for the same reasons as selection pull-up.
downwhere tuples in are split according to the predi-  The filtered pull-up plan for this example satisfies both
cates first and then run in separate join groups. In actuakhe properties PS1 and PS2. We now have an example of
ity, NiagaraCQ combines ti&plitoperator and its immedi- a sharing scheme that is precise. It is not surprising that
ate downstream filters together, using an index for the filtekhe experimental and simulation results in NiagaraCQ [7]
predicates. We separate them for ease of exposition. Alsgenerally show this plan as the most efficient. It is reason-
we useOut to represent a generic output operator that isable to ask if a filtered pull-up plan will always be precisely
equivalent tofriggerActionin NiagaraCQ. shared. It turns out that the answer is no, and we explain
why in the next section.

Outq, Outq, Outg, Outq,
A A A A
Ory Try X

- P " \<T 3.2  Why filtered pull-up is not good enough
Split or

A 'y We now show why a filtered pull-up strategy is not pre-
P " ~_ S?’Al” =8 cisely shared in general. We demonstrate this with an ex-
R s R ample where two queries); and @y, join the streamsR
() Selection pull-up (b) Selection push-down andS and apply unique selection predicatesbmth R and

S. Notice that the only differences from the previous ex-

Figure 3: Imprecise sharing of joins with selections ample are the selection predicatessan

Selection push-down (Figure 3(b)) violates PS1 in two
ways. First, a tuple, from R that passes both predicatgs ® Q3:0.,(R) X o5 (9)
andr, will be processed in both join operators, producing e Q4 : o, (R) X 04,(S5)
identical join tuples. Second, every tuple frasnwill be
inserted twice in each join operator (assuming symmetric The filtered pull-up technique suggests that we pick the
hash joins). Note that in this selection push-down exampleplan in Figure 5. The behavior of this query plan is shown
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Figure 5: Imprecisely shared filtered pull-up

in Figure 6. In the figureR; and R, are respectively de-

fined aso,, (R) ando,,(R). Similarly, S; and S are re- Figure 7: Zombies with many queries

spectively defined as;, (S) ando, (5). nificant. In fact, it becomesxponentiain the number of
= s participating streams. We see more examples of this in the
A B next section.

Tl 3.3 Disjunctions on intermediate results

[ E RIS
R Ri % //% We have shown how filtered pull-up can cause the produc-

tion of zombie tuples, violating property PS2. Now, we

Rz will show how zombies cause further inefficiencies when
Q= Ra PRI they participate in later join work, producing even more
zombies. Consider what happens when the queries in the
\/ s example from Section 3.2 above also involve a third stream
b QS 2 O0py (R) X Oy (S) M oy (T)
-< S - e Qs :0p,(R) X 0,(S) X oy, (T)
S A solution based on the pull-up strategy is to reuse the
Figure 6: Filtered pull-up and zombies shared plan of); and@,4 from Figure 5 and attach a join

) o operator withT" to each ofOutg, and Outg,. That ap-
Observe that the inputs to the join operator are the setgroach, however,could result in substantial duplicate join
Ry U Ry andS; U Sy, and the join operator produces the processing if there is significant overlap in the result sets
set(R; U Rp) ™ (51U S2). Notice that this is a superset of (), and(@,. This causes the appearance of a PS1 viola-
of (Q1 U @), our desired result. These extra tuples aretjon, which was not present in either of the pull-up schemes
zombies and are indicated in the figure as the two darklyf the previous section. Given that the push-down plan

shaded areas inside the smaller rectangle. already suffered from a PS2 violation, the resultant plan
With two queries, it is easy to see the relationship be-would be very inefficient.

tween result set commonality and waste. When the inter- The alternative is to discard the split from the plan
section ofQ; and @, (result set commonality) is larger, shown in Figure 5 and use its input, complete with zom-
the wasted work is less and vice versa. When more queriesies, in another shared join wifA. This, however, exacer-
are added to the system, however, situations with high compates the zombie situation as the zombies that are input to
monality and high waste are easily possible. In Figure 7 wehe join cause even more zombies to be produced. These
show an illustration of such a scenario. The lightly shadeduples will still ultimately be eliminated by the conjuncts
areas represent results of individual queries. The darklgvaluated at the top of the plan. Note that in this situation’s
shaded areas denote zombie tuples that are produced for p@rst case, the number of zombie tuples, is the product of
utility. In such cases, when there is both redundancy anghe cardinality of the filtered sets of each source. With three
waste, both the push-down and pull-up models are expersources, this overhead is cubic.
sive. This situation, i.e. the effects of zombies, can be ame-

The upshot of this example is that in spite of pushingliorated by pushing @artial disjunctiondown between the
down disjunctions, in the presence sifaring a join can RS and ST join operators, assuming a left-deep strategy
produce unnecessampmbietuples that have to be elimi- with an RST join order. In this case, this partial disjunc-
nated later in the dataflow. With many queries this wastedive predicate will bgr; A s1) V (12 A s2). the planis as
work can increase significantly. shown in Figure 8.

In this example, the worst case overhead of lost preci- Note that this plan still produces zombies after g
sion is the maximal area of the region identified as the outjoin operator and still is in violation of PS2. In addition, a
put of the shared join operator, i.€R; U Ra| x|S; U Sa|.  careful examination of this plan, reveals that the predicates
With two streams, the overhead is quadratic. As the nums, 72, s; ands, are each applied three times andandts
ber of streams increase, the overhead becomes more sityvo times. This is a violation of PS1. With more streams
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OU;Qs 0“{@6 however early they can be eliminated. We summarize and

i meints Tramsnts then consider in turn each of these problems to guide us to
et our solution.
Split
ix 1. PS1 violation in push-downWhen identical tuples
Coronie A)/Y \m 5 reach different upper-level join groups the build and
R N probe operations on the tuples are duplicated.
/N\ g 2. PS1 violation in filtered pull-up:The issue is that a
Trives Tsvsy predicate evaluation on a tuple, when successful, is
fz 2 likely to be repeated, potentially many times for com-
plex queries.
Figure 8: Eliminate zombies through disjunctions 3. PS2 violation in pull-up: In both the filtered pull-

up and pull-up strategies, join operators can produce
zombie tuples that have to be subsequently processed
and eliminated.

being joined, the disjunction push-down scheme becomes
increasingly complicated, suggesting that this approach is
not very scalable.

Now suppose further that we are executing the queries
Qs and Qg along with the querie§)s andQ4. In keeping
with our stated aim to share aggressively without genera

With problem (1), the only time we can expect push-
t(_jown to be competitive is when a very few upper-level

. ; . - i tivated for each base tuple. This obser-
ing zombies, we need to modify the plan in Figure 8 to proJ0' 9roups are activated Ic .

duce the plan shown in Figure 9(a). Clearly the plan geté""‘t'On was also made in NiagaraCQ [7]. The filtered pull-
increasingly complicated with a lot of work being spent re- P strategies are the best way to reduce these overheads of
peatedly re-evaluating predicates — the predicatel and repeated work and should be part of our solution.

S are each potentially evaluated four times for a given tu- Problem (2) arises because in static plans we throw away
ple. the results of earlier predicate evaluations. This makes

In addition to these violations of precision sharing, ef- sense in clas_sical non-shared systems when predicates are
ficient execution of the Split operator is not easy. Recallenerally conjuncts and the presence of a tuple above a fil-
that in actuality the Split operator is combined with all the (" IS €nough to deduce that the tuple passed every conjunct
predicates that are executed immediately after it. Thes@' the f|_|ter. Wwhy notm_emmzethe effect of each predicate
predicates are built into a query index that the Split con-€valuation and reuse it subsequently ? o
sults to route tuples. When the predicates involve more, Problem (3) is again the result of discarding informa-
than one attribute, as is the case here, this index will hav&on on predicate evaluation. If, for each tuple, the infor-
to be multi-dimensional. mation on each predicate evalution is memoized with the

In this section we showed how the standard technique&/PI€; then a smart join operator can easily avoid producing
of shared query processing are not precise. In an attempMpie tuples. _ _
to efficiently reuse common work, they can end up produc- W!th this problem analysis we are ready to describe our
ing useless data that can be exponential in the number §olution.
streams involved. Not only is the production of such use-
less tuples wasteful, the work done to eliminate them is ad.2 Tuple Lineage

waste. . . .
added waste We now consider the use of “tuple lineage” to accomplish

] . . memoization of predicate evaluation. To date, tuple lineage
4 TULIP: Tuple Lineage in Plans has been used profitably only in adaptive query processing

Based on the observations above, we profdselP: TU- schemes. Our insight is that tuple lineage is more generally

ple Lineage in Plans, an approach that uses tuple lineage fPPlicable, and is in fact useful in static dataflows.
static plans to achieve precision sharing. As described in CACQ, all tuples that flow through the

system carry lineage information that consists of: (1) a
steering vector [1] that describes the operators in the
dataflow that have been visitedofe) and are to be vis-
We saw in Section 3.3 why disjunctions on intermediateited (ready) and (2) a completion vector [12] that describes
results can lead to complicated query plans with repeatethe queries in the system that are “dead” for this tuple, i.e.,
predicate re-evaluation. Worse, these predicates evaluatéldose that this tuple cannot satisfy. In CACQ, the distinc-
on intermediate results are disjuncts of conjuncts — e.gtion between these parts of lineage was blurred while in
(r1 A s1) V (r2 A s3) — and more expensive to evaluate truth they have two distinct roles. The steering vector is
than those that are disjuncts of simple predicates on basmtirely used as a tuple routing mechanism. Apart from the
relations. This is especially the case, when the number afouting infrastructure, such as an Eddy operator, no other
queries is very large. We also saw how the filtered pull-upoperator must use its contents. In contrast, the completion
approaches can cause join operators to produce zombiegector is a query sharing mechanism, should be entirely

4.1 Areview of imprecise static sharing
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Figure 9:To precisely share, or not to precisely share

opaque to the routing fabric (the Eddy) and can be used bjunction would do. Apart from the disjunction it also sets
the other non-Eddy operators. up things so that the clauses of the disjunct need never be
The storage and manipulation costs of these vectors repe-evaluated. This is not dissimilar to index OR-ing strate-
resent a major overhead in the tuple routing schemes. Thaies [13] for disjunctive predicates that are used in classical
completion vectors are particularly profligate in memory systems.
consumption — a bit per tuple per query results in spac&ombie-killing symmetric join: To eliminate the zombies
overhead that is linear in the product of the number ofof problem (3), we need to (a) ensure that tuples go through
queries and currently active tuples. In contrast, when thgrouped filters prior to entering the join and (b) a symmet-
queries in question share a lot of their operators, the steeric join operator that preserves the completion vector of in-

ing vector size is much smaller. ner tuples when building into an index of the join. When
an outer tuple probes the index and finds a matching inner
4.3 TheTULIP solution tuple, we compute the union of the completion vectors of

the inner and outer. If this union consists of all queries that

Having defined the notion of tuple lineage, we are ready tQpege gperators are used by, then the match is discarded.

present the ULIP solution. Our main tool is tuple lineage \yq call this operator aombie-killingsymmetric join.

of which, we only need the “completion vector” part. For 1 symmarize TULIP involves the following compo-
the rest of this paper, we refer to this portion as the “lineagg,q -

vector”.
The insight for the solution to Problem (2) is from 1. Any appropriate MQO scheme that results in filtered
Rete [9], a discrimination network for the many pat- pull-ups can be chosen to determine join orders.

tern/many match problem, the most time-consuming part 2. The disjunctions that are pushed down should be re-
of which is the match step. To avoid performing the same placed with GSFilter operators.

tests repeatedly, the Rete algorithm stores the result of the
match with working memory as temporary state. The lin-
eage vector that tags along each tuple keeps track of the We now put it all together for our driving example, the
queries that this tuple has already failed. scenario that shares queri@s,Q4, @5 andQg. The static
Grouped filters: The same idea was also borrowed in query plan for theTULIP model is shown in Figure 9(b).
CACQ with a GSFilter that evaluates multiple similar pred- We use three kinds of lineage sensitive operators. 3BE
icates. The GSFilter maintains indexes on the conjunctivés a grouped selection filter, thioin is a zombie-killing
predicate clauses registered with it. When it receives a newymmetric join and théut which is an output operator.
tuple, it efficiently probes the index to identify all regis- The Out is similar to that used with the classic static plans
tered clauses that it fails. It then records all these failuregxcept that it is a single operator that delivers its input tu-
in the tuple’s lineage vector. If, at the end of processingples to target queries based on their completion vectors. We
the tuple, there still are any live queries for the tuple (i.e.,now consider the precision sharing properties of this ap-
queries that can still get satisfied) the tuple is sent to th@roach. First, PS1 is satisfied as this plan does not perform
output. The GSFilter implements the disjunction of theany operation on a given tuple more than once: all predi-
predicates and memoizes the results of each clause into tlvate evaluations are memoized in the lineage vectors of tu-
tuple’s payload. All predicates are evaluated exactige ples and since the grouped filters push down disjunctions,
Note that the GSFilter is doingorethan what a simple dis- no tuple is processed twice as part of a join operator. Next,

3. Using zombie-killing symmetric join operators.
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PS2 is also satisfied as no join operators produce zombidowever, in our experiments we follow the NiagaraCQ ap-
tuples of any kind. proach and use a Split operator that probes its input tuples

It is instructive to compare this plan with the equiva- into a predicate index implemented by a GSFilter. This lets
lent traditional shared plan in Figure 9(a). Not only is the Split send tuples only to those plan elements of queries that
TULIP plan an example of precision sharing, it is easy topassed the probe. The top of each plan has@uiputop-
see how the plan for many queries looks very similar to aerator for each query.
plan for a single query. This makes it easy to U&4_IP In our TULIP implementation, TelegraphCQ’s interme-
with multiple queries. In contrast, as we deal with morediate tuples have lineage turned orlJLIP plans use GS-
queries and streams, the filtered pull-up plan gets increas-ilters, zombie-killing symmetric hash joins, and output
ingly complicated. operators that manipulate lineage.

Our main insight inTULIP is that the use of lineage In both implementations, the output operator makes a
helps: (a) to memoize predicate evaluation and avoid repetuple available for delivery to a query by queueing it to the
itive computationsa la Rete networks and (b) lineage sen-process managing the query’s connection. The queue is
sitive operators to recognize and eliminate potential zomin shared memory, access to which can be expensive. So,
bie tuples even before they are produced. These uses @ir all of these experiments we suppress output production.
tuple lineage ensure thalLIP does not respectively vi- Even so, output processing is still not trivial. For latency
olate properties PS1 and PS2. In fatyLIP guarantees computations, we make a system call to find the current
precision sharing irrespective of optimizer decisions suchime for each output tuple. This is still, however, cheaper
as join order. than the actual system overheads of sending the same tuple

It is important to note that there can be many preciselymultiple times through shared memory.
shared plans, and the optimal plan is not necessarily one Itis important to see where the savings of zombie elimi-
of them. When an optimizer estimates the cost of a planpation come from. In TelegraphCQ, where all the operators
it uses the number of tuples at each stage of the plan texecute in ainglethread of execution in one process, the
determine the cost of each operator, in accordance witbost of operator invocation is minimal - a function call and a
the cost model. Wit ULIP, a new set of plans that emit pointer copy. The real savings is the avoidance of unneces-
fewer tuples between operators can now be considered dusary zombie production and elimination. In other systems
ing plan enumeration. The estimated cost of each operatarhere operators are often invoked in different threads, e.g.
is slightly higher because of the overhead of lineage manipAurora, the savings are even more as fewer zombies leads
ulation. The key issue is the expected number of zombieto fewer operator invocations that in turn mean less context
produced at each stage. If this number can be estimatedwitching overheads.
then the optimizer can choose betweBdLIP and other

plans in its pursuit of an optimal solution. s T RBdS
5 Performance of TULIP LLL iI
In this section we study the performance BSLIP, our b&. i

static precision sharing approach and compare the static oy

schemes described in NiagaraCQ. In particular we consider

the filtered pull-up and the selection pushdown schemes. (a) Fewer overlaps (b) Greater overlaps
5.1 Experimental setup Figure 10: Experimental setup: Query result sets
Our experiments were performed on a 2.8 GHz Intel Pen-

tium IV processor with 512 MB of main memory. We select R.a, R.b, S.a, S.b
implementedTULIP in the TelegraphCQ [11, 5] system. e Ra-s.a ap

Since we have no shared query optimizer, programmati- D o A bh < Coner-l AP

cally hook up static plans using the TelegraphCQ operators.  rigyre 11; Experimental setup: query template
To fairly evaluate the static NiagaraCQ plans, we set up

the system so that no lineage information is stored in in- Our experiments all share a set of queries that are joins
termediate tuples and TelegraphCQ’s operators do not pepn streamsR and S with individual predicates on each
form any unnecessary work manipulating lineage. For in-stream. The queries have identical structure and correspond
stance, the disjunctions of filtered pull-up are realized withto queries@Q); and Q4 from Section 3.2. The template of

a GSFilter that does not set lineage. Similarly, the a symthese queries is in Figure 11. We generate 256 queries for
metric join operator ignores lineage. We emphasize heregur experiments by supplying values for the constants in
that the intermediate data structures in the Niagara meaach of the queries in two setups. We show these visually
surements haveo space overhead for lineage. The staticin Figure 10. As before, shaded areas represent results of
plans shown in Section 3 ha@plit operators that are sep- queries and darkly shaded pieces are zombies that would
arate from the predicate filters that follow them, suggestbe generated by selection pull-up. We u3adlIP to log

ing that each individual predicate is evaluated separatelythe number of zombies actually eliminated. This is shown
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for both cases in Figure 12. e PS1 violations: Repeated work for the same tuples in
intersecting result sets:

SPD) In the various separate join operators.
Fewer r‘JvevIapls'Nun"\beranquene‘s vsz:ammes (Zveatev E:Tvev\apls Nurlnber ulfquev‘\avs‘znmma FPU In Output process'ng_

25| e PS2 violations: (FPU) Unnecessary work caused by
the production of zombies in joins and removal after-

a4l
35 [

Number of zombies (x 100,000)
= R N -
T T T T T

Nurrber of zombies (x 10,000)

st ward.
25| e Other: (TULIP) CPU instructions for lineage man-
T 4 5 6 m e im oo Pa e 5 6w e e as agement. The state overhead was negligible in our ex-
Number of queries Number of queries peri ments_
(a) Fewer overlaps (b) Greater overlaps Setup 1 (Fewer overlaps):

As seen in Figure 13(a), for 32 or fewer queries the be-
havior of all three plans remains similar. Latencies increase

. - teadily from 6ms to 17ms, while zombies produced by
In the first setup, shown in Figure 10(a), the result set O%PD increase increases from 14 to 9133

each query overlaps with few other sets. To be precise, eac ; ; :
query'’s result set overlaps with that of two other queries.In AL 64 queries, the latency for FPU jumps to 72 ms while

this case, as queries are added in the system, more and mép@t .Of SPD and'ULIP stay at.30“ﬁs- For twice as many
zombies are produced, as shown in Figure 12(a). gueries, the number of zombies increased four-foldzto

Conversely, in the second setup, shown in Figure 1O(b)39000' FPU’s zombie overheads slow it materially and it

the result set of each query overlaps with many other setsscales no more for 128 and 256 queries. For these query
query P Y ets its average latency is 430ms and 43 seconds.

To achieve this, the first two queries are arranged so that . .

they have almost no overlap (i.e., they are the two queriee:?:rt#g'r':;g t%fsigtr?nguI;g;’cfﬁésmggrihzg Grigilrj]e”es As
farthest apart). Subsequently, every query that is addel®"® dded hpp 9 g'l h
overlaps with one or both of the first two queries. SinceUenes are added, €ach new query causes more tuples that

each such query contributes no extra zombies, the effect Oc[annot.be easily ellmmate_d before joinBULIP is, how .
. Y : . ever, slightly more expensive than SPD and at 256 queries
adding queries is to steadily reduce the number of zombie . ,
o its latency is 147ms as opposed to SPD’s 125ms.
produced, as shown in Figure 12(b).

In our experiments. we measure the average latenc In general, sharing does not have much advantage when
P ' crage a y %e results of the queries being shared have fewer overlaps.
each of the results of each query. Synthetic data is gener:

ated and pined into TelearaphCO by an external proces his is exactly what we observe in this case and the mini-
PP graphCQ by P ?hally shared SPD scheme does better overall. The repeated

Each tuple arriving at the system is timestamped on ent%V . ; .
) - ivork overheads in SPD are slightly dominated by that of
in the TelegraphCQ Wrapper ClearingHouse even before 'I'neage management FULIP. Both are comprehensively

is read by any scan operator. When a tuple arrives at ag varfed by the zombie overheads of FPU
output operator, we examine its components and computgetup 2 (Greater overlaps): '
the difference between the current time and the time it orig- As seen in Figure 13(b) .aII three plans behave similarly
inally entered the system. This represents the latency .Of th]%r 4 or fewer queries with I,atencimZSms. For 2 queries,
teiplziri;r:ednttge average latency is what we measured in Ypyis the outright winner as both queries have no overlap.
P gy . . From 4 to 32 queries, the performance of FPU and SPD
We consider the 4 static approaches that we studied ear ih degrade very fast. As queries are added, lots of tu-
Iie_r: (a) selection puI_I—up (SPU), (b) filtered pull-up (FPU) ples overlap causing répeated work. One insténce of this
(Figure 5), (c) selection push-down (SPD) and'(d»_LI.P. is in output processing for which SPD and FPU behave
In our graphs, we do not report the SPU case as it is dom;

) . similarly. These new tuples, however, also cause: (1) re-
inated by FPU. Plans for selection pull-up and push-dow eated join overheads in SPD and (2) overheads resulting
with predicates on only one source are shown in Figure

X . L ) .~ Yrom zombies in FPU. As zombies decrease frsm9000
and the multiple predicate case is just a simple extension., plateau atv 25000 the former overheads increase and
the latter decrease. From 32 to 64 queries, both SPD and
FPU perform the same. Beyond 64 queries, the join over-
For each setup, we plot in Figure 13 the average latencfe@ds of SPD become much worse, leading to SPD having
of result tuples for each approach against the number ot latency of 8.02 seconds for 128 queries as opposed to 1.7
queries being shared. Note that the number of queries igeconds for FPU (these are not shown in the graph).
shown in aog- scale on the x-axis. In contrast, theTULIP scheme performs very well,

In both setups, the average latency for all plans is verygracefully degrading in performance as the number of
small (under 25ms) for 2 queries and increases steadily fueries are added. At 256 queries, the latency GEIP
queries are added. In each approach, there is a certain nuf§-113ms. The FPU and SPD schemes have a comparable
ber of queries at which there is a knee in the graph showingverhead of 111ms and 102ms for 16 queries. For the same
each scheme’s scalability limits. atency, TULIP scales to 16 times, more than an order of

The following overheads affect average latencies: magnitude, as many queries as traditional schemes.

Figure 12: Experimental setup: Zombies

5.2 Performance results
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Fewer overlaps: Number of queries vs Average latency Greater overlaps: Number of queries vs Average latency
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Figure 13: Static query plans: average query latencies

Summary: The insights of our performance analysis are as

fO”OWS' SteM: State Modules for join Grouped Selection Filters )
processing (built on source key) for efficient predicate evaluation
1. The overheads of both repeated warldunnecessary
work are significant.

2. Our two setups demonstrate two extreme cases, each
favoring one of the two traditional approaches (FPU

Eddy tuple
and SPD) routing operator
3. In each extreme case, th&JLIP solution of precision ks o Swme
sharing performs very well. While in the case of min- queya, on® DI os(s)
imal sharing it is competitive with the ideal FPU, in Query @ O D 03(s)

the face of high sharing it is more than an order of
magnitude better than either traditional scheme.

Figure 14: CACQ: Eddy, SteMs and Grouped Filter
Our experiments demonstrate the robustneS&_4fIP.

When sharing is usefuTULIP gives significant improve- There are two GSFilters, one each for all predicates over
ments over the best known approaches. When, howeveR andS, and two SteM operators. A SteM is a “state mod-
there is not much use in sharing, the extra overheads afle” [15] that can be conceptualized as one half of a de-
TULIP are minimal. This suggests th&8ULIP is capable coupled symmetric join operator. For e.g., a join operator
of giving very good benefits in many cases while stayingR x, S over streamdg? and.S may be decoupled into two

competitive otherwise. SteMsR.a andS.a.
In CACQ, atuple is routed to candidate operators based
6 Adaptive Precision Sharing on its signature - i.e., the set of base tuples that are its con-

stituents. Operators amongst a set of candidates may be

chosen in any order, with a routing policy governing this
hoice. A base tuple fror® has a signatureand has to be

built andprobedinto the R and.S SteMs respectively. For

Borrectness reasons, however, both SteMs cannot be used

) : s candidates for tuples with signaturas that will de-
can use techniques from the static world to remove the pre: b g

oy ; o : stroy the atomic “build then probe” property of pipelined
cision sharing violations from the adaptive approach. joins. As described in Section 3.3.1 of CACQ [12], “a sin-
o gleton tuple must be inserted into all its associated SteMs
6.1 Tuple routing in CACQ before it is routed to any of the other SteMs with which it
Here we explain how tuples are routed in an adaptiveneeds to be joined”. The system’s constraints force tuples

We begin this section by studying tuple routing in the
CACQ adaptive sharing scheme, and then show how it i
also susceptible to violations in precision sharing inspite o
using lineage. Just as we used ideas from the adaptive a

dataflow as described in CACQ. to be built directly into their associated SteMs right after
In Figure 14 we show how CACQ will process the they have been scanned.
gueries@s and@, from Section 3.2. Scan modules f@&r Thus, in this example, the adaptivity features of CACQ

and S are scheduled to bring data in to the system fromplay no role, as there is only one join to be performed. In
wrappers [11]. The tuples are fed into the eddy, whichFigure 15 we show the dataflow ofainds tuples in CACQ
adaptively routes the tuples through its slave operatordor this example. A base tuple goes througghild, GSFil-
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Outputo, g, Output processing in CACQ is done every time a tuple
returns to the eddy, i.e., in each major loop. An intermedi-

Prober Probeg , . . . .
ate tuple’s steering vector is compared with the completion
GSFilter,, ., GSFilters, ., requirements of each query. If the tuple satisfies any query
1 it is immediately delivered. Not only is this an expensive
(Buildg) < R S = (Builds) operation, especially in the presence of a large number of
) . . gueries, a given tuple may be processed repeatedly as an
Figure 15: Effective tuple dataflow in CACQ output for multiple queries. This is a violation of the PS1

property. As we saw in Section 5, repeated processing of
the same tuple in the outputs of multiple queries (PS1 vi-
olation) can drastically hurt performance. What we really

ilarly an s tuple gets respectively built and probed in the need is a wav to route tuples to output opera when
S and R SteMs. For simplicity, we assume that the pred- they are final)lly ready for?hem. put operatory

icates in question are not expensive and so CACQ always
orders theGSFHFer pefore aProbe. 6.3 CAR: Constrained Adaptive Routing

Without sharing, in the single query eddy scheme [1] the
steering vector of a tuple indicates when its work is doneHere, we propose as an alternative to CACQQnstrained
and it can be output to a query. With sharing however, anyAdaptive Routingor CAR. We will show that this scheme
intermediate tuple in the eddy could satisfy a query, andas almost all the adaptivity benefits of CACQ and still sat-

checking and delivering tuples to query outputs is part ofisfies precision sharing.
the CACQ eddy'’s responsibilities. As explained in Section 6.2 CACQ violates precision

sharing by producing zombies and repeating output pro-
cessing operations. The former is because of a hidden con-
straint puild along with scajpthat causes poor selection

Now we show how CACQ violates our precision sharingPlacement. The latter is because output processing is per-
rules. We are concerned on|y with sharing and do not adfOFmEd in an unconstrainet! hocfashion. The root of the

dress any of the considerable benefits that an adaptive syBroblem is that there are multiple constraints that must be
tem may have in volatile scenarios. satisfied in an adaptive dataflow. Some, suclhail be-
Zombie production (PS2 violation): The tuples that are fore probeare for correctness, and others sucfileers be-
built into SteMs are the original base tuples and do not confore buildandoutput only when donare for performance.
tain any record of predicate evaluation, and thus carry nd" our architecture such constraints can be expressed ex-
useful lineage. This, however, means that when producplicitly and ensure correctness and performance.
ing the join tuples, there is no way to combine the lineage !N CAR, we introduce th@perator precedenceouting
of the probe and build to eliminate zombies as described ifMéchanism. In this approach, we record precedence re-
Section 4. To see why this is so, recall from Section 4.3 oufationships between operators irpeecedence graphAs
description of a zombie-killing symmetric join. To be able With CACQ, this mechanism is used to generate a set of
to eliminate matching zombie tuples, the operator needs tgandidate operators to which tuples must be routed. In its
perform the union of the lineage vectors of the outer andfimplest form, this is a graph with nodes that are sets of
inner tuples. Since, in CACQ, the inner tuples carry no lin-operators (called “candidates”) and edges that represent le-
eage, the join cannot eliminate any zombies and violate§al transitions from one node to the other. When a tuple is
the PS2 property of precision sharing. routed throu_gh the_cand|dates of a particular nodg itis sub-
Explained in another way, this is a problem of the Op_Jec_t to arouting policy such as thg lottery scheme in CACQ.
timal placement of individual selection predicates in theThis eénsures tha€AR can adaptively respond to changes

presence of joins. With a conventional binary join oper-In Selectivity, data rates etc.
ator there are the two choices explored by NiagaraCQ and

ter, Probe andOutput operators. Note that antuple gets
respectively built and probed in the and .S SteM. Sim-

6.2 Precision sharing violations in CACQ

N N ) N i [Outpthg,OutpthJ [Outpths,OutpthJ
discussed in Section 3 - pushing the selections down below
the join in “selection push-down” and pulling them above [Stems] [Stemp]
in “filtered pull-up”. When, however, the internal build and 1 1
probe operations of a join are decoupled as shown in Fig- [Stem ] [Stems)
ure 15 there aréhreechoices for locating selection predi- t t
cates (as disjunctions): after the probe, between the build [GSFitters. r,] [GSFilters, »,]
and the probe, and before the build. Since, in CACQ, the [jq [2]

build and scan are performed together, there are only two
choices - either between the build and probe, or after the
probe - with the routing policy deciding which wins in an
adaptive fashion. Unfortunately both choices result in the In Figure 16 we show an operator precedence graph for
production of zombies. the queries); andQ4. There are 8 nodes in the graph and
Repeated output processing (PS1 violation): operators (such as ttfgteMs andOutputs) appear in more

Figure 16: Operator precedence graph for CAR
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than one node. Clearly, with this scheme tuples are filtered In the fewer overlaps case, with 2 queries there are ac-
and then built intaSteMs. This enables the early recog- tually no overlaps. In spite of this, the production of 14
nition and elimination of zombies and preserves the PS2ombies is enough to cause CACQ's latency to be 21 ms
property. A given tuple is subject to output processing onlyas opposed to 6ms f&@AR. This shows the savings in out-
once - when it is ready. This preserves the PS1 property. put processing (PS1 preservation)@AR. At 256 queries,
Effects on adaptivity: Note that fixing predicate place- the latency ofCAR is ~ 151 ms. An equivalent latency of
ment can hurt adaptivity. In order to reduce zombies, GSCACQ supports only 18 queries. For this laten€@AR
Filters ought to be processed before builds. If, howeversupports 14 times (an order of magnitude) more queries
the filters in question are expensive and cost more than joithan CACQ.
operations then reducing zombies may be less important. In the greater overlaps case, CACQ scales more grace-
Adaptivity in CACQ allowed for efficient join ordering as fully than with fewer overlaps. Note that in this case,
well as delayed execution of expensive filters at the costhe relative overheads of zombies actually drop with more
of zombies. In contrast, witiEAR joins are ordered effi- queries. The behavior of CACQ that we observe is really
ciently without zombies at the cost of early evaluation ofadampedversion of CAR. With 256 queries CACQ has a
expensive filters. In the presence of a filter that is knownlatency of 550 ms as opposed to 131 mE€aAR. Note that
to be expensive, itis easy to fix tBAR precedence graph CACQ can support a latency of 131 ms for only 48 queries,
to revert to CACQ behavior. An interesting question is if while CAR handles 5 times as many.
it is possible to make this choicedaptively It is not yet The difference in both setups is the number of zombies.
clear how to devise such a routing policy. In practice, how-With fewer overlaps, the production of zombies cripples
ever, simple filters are very much more common and theCACQ.
heuristic of reverting to CACQ in the presence of expen- In comparison to the static schem&AR performs al-
sive predicates should be enough for most applications. most as well agULIP. With 256 queries, the latency of
The main insight of this approach is our use of tech-CAR in the greater overlap case is 131 ms as opposed to
niques from the static world. A purely adaptive approach113 ms forTULIP. In the fewer overlap case itis 151 ms for
makes routing decisions every step of the way. Constraint€AR as opposed to 147 wifiULIP. These results are not
on the adaptivity makes it possible to ensure that predicatsurprising as the only difference betwe@AR andTULIP

placement is appropriate for precision sharing. is cost of adaptivity. Since there are no choices to be made
in our experiments, the latency differences we observe lets
7 Performance of CAR and CACQ us reckon the baseline cost of adaptivity.

) ] _ In summary, our experiments indicate that:
In this section we compare the performance of CACQ with

CAR, the constrained adaptive routing technique we de- 1. The overheads of producing zombies, or unnecessary
scribed above. Our experimental setup and methodology is ~ work, are significant in adaptive dataflows even when

identical to that described for static plans in Section 5. relatively fewer zombies are produced.
~ For each of the two setups we report the average laten- 2, |n each scheme, tHeAR approach of adaptive preci-
cies of query results for each of CACQ afg@dR in Flg- sion Sharing performs very well.

ures 17(a) and 17(b). Note that as before, the number of
gueries is shown in kg, scale on the x-axis.

As in the static case, for both setups, the average latency
of CACQ andCAR with 2 queries is small (5-30 ms) and .
increases steadily with query addition until scalability lim- 8 Conclusions

3. In these scenarios, the baseline costs of adaptivity are
not very significant.

its are reached. Shared query processing has focused on reducing the over-

The following overheads can affect latencies: heads of redundancy. Aggressive reduction of repeated

e PS1 violations: (CACQ) Repeated output processing Work can, however, cause additional wasted work in post-
of the same tuple in different queries. processing useless data.

e PS2 violations: (CACQ) Unnecessary work caused  Thus far, this inherent tension between repeated work
by the production and removal of zombies. and wasted work has been taken for granted. Our major

¢ Other: (CAR,CACQ) CPU instructions involving lin- contribgtions are: (1) to show that this tension is not ir-
eage management. reconcilable and (2) To develop both static and adaptive

techniques that balance the tension gracefully.

In this experiment, for CACQ the tuples produced by We definedprecision sharingas a way to characterize
probes into SteMs are immediately ready for output. Thereany sharing scheme with neither repeated work, nor wasted
are no more filtering steps and so there are, in fact, no PSwork. We then showed how previous work in shared stream
violations causing output processing overheads. processing led to imprecisely shared plans. Armed with

In both setups, the performance AR comfortably these observations we charted a strategy to make static
outstrips that of CACQ. Just likEULIP, the performance shared plans precise.
of CAR gracefully degrades with the addition of new  Our insight is thattuple lineage an idea from adap-
gueries. tive query processing, is actually more generally applica-
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Figure 17: Adaptive query plans: average query latencies
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