
A Combined Framework for Grouping and Order

Optimization

Thomas Neumann, Guido Moerkotte
tneumann|moerkotte@informatik.uni-mannheim.de

Fakultät für Mathematik und Informatik,
University of Mannheim, Germany

Abstract

Since the introduction of cost-based query op-
timization by Selinger et al. in their semi-
nal paper, the performance-critical role of in-
teresting orders has been recognized. Some
algebraic operators change interesting orders
(e.g. sort and select), while others exploit
them (e.g. merge join). Likewise, Wang and
Cherniack (VLDB 2003) showed that existing
groupings should be exploited to avoid redun-
dant grouping operations. Ideally, the reason-
ing about interesting orderings and groupings
should be integrated into one framework.

So far, no complete, correct, and efficient algo-
rithm for ordering and grouping inference has
been proposed. We fill this gap by propos-
ing a general two-phase approach that effi-
ciently integrates the reasoning about order-
ings and groupings. Our experimental results
show that with a modest increase of the time
and space requirements of the preprocessing
phase both orderings and groupings can be
handled at the same time. More importantly,
there is no additional cost for the second phase
during which the plan generator changes and
exploits orderings and groupings by adding
operators to subplans.

1 Introduction

The most expensive operations (e.g. join, grouping,
duplicate elimination) during query evaluation can be
performed more efficiently if the input is ordered or

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

grouped in a certain way. Therefore, it is crucial for
query optimization to recognize cases where the in-
put of an operator satisfies the ordering or grouping
requirements needed for a more efficient evaluation.
Since a plan generator typically considers millions of
different plans – and, hence, operators –, this recog-
nition easily becomes performance critical for query
optimization, often leading to heuristic solutions.

The importance of exploiting available orderings
has been recognized in the seminal work of Selinger
et al [4]. They presented the concept of interesting
orderings and showed how redundant sort operations
could be avoided by reusing available orderings, ren-
dering sort-based operators like sort-merge join much
more interesting.

Along these lines it is beneficial to reuse available
grouping properties, usually for hash-based operators.
While heuristic techniques to avoid redundant group-
by operators have been given [1], groupings have not
been treated as thoroughly as orderings. One reason
might be that while orderings and groupings are re-
lated (every ordering is also a grouping), groupings
behave somewhat differently. For example, a tuple
stream grouped on the attributes {a, b} need not be
grouped on the attribute {a}. This is different from or-
derings, where a tuple stream ordered on the attributes
(a, b) is also ordered on the attribute (a). Since no
simple prefix (or subset) test exists for groupings, opti-
mizing groupings even in a heuristic way is much more
difficult than optimizing orderings. Still it is desirable
to combine order optimization and the optimization
of groupings, as the problems are related and treated
similarly during plan generation. Recently, some work
in this direction has been published [7]. However, this
only covers a special case of grouping, as we will dis-
cuss in some detail in Section 3.

Experimental results have shown that the costs for
order optimization can have a large impact on the total
costs of query optimization [3]. Therefore, some care is
needed when adding groupings to order optimization,
as a slowdown of plan generation would be unaccept-
able. In this paper, we integrate groupings by con-

960

structing a state machine for groupings and combin-
ing it with a state machine for orderings. Experimen-
tal results show that this efficiently handles orderings
and groupings at the same time, with no additional
costs during plan generation and only modest one time
costs. Actually the operation needed for grouping op-
timization during plan generation can be performed in
O(1), basically allowing to exploit groupings for free.

The rest of the paper is organized as follows. In
Section 2, we introduce some notations and formalize
the problems of order optimization and grouping opti-
mization. Section 3 describes related work. This is fol-
lowed by a rough sketch of our approach in Section 4.
The detailed algorithm is described in Section 5. Fi-
nally, an experimental evaluation of our algorithm is
presented in Section 6. Conclusions are drawn in Sec-
tion 7.

2 Problem Definition

The described framework combines order optimization
and the handling of grouping in one consistent set of
algorithms and data structures. In this section, we give
a more formal definition of the problem and the scope
of the framework. First, we define the operations of or-
dering and grouping (Sections 2.1 and 2.2). Then we
briefly discuss functional dependencies (Section 2.3)
and how they interact with algebraic operators (Sec-
tion 2.4) and finally we explain how the framework can
be used for plan generation (Section 2.5).

2.1 Ordering

During plan generation, many operators require or
produce certain orderings. To avoid redundant sorting
it is required to keep track of the orderings a certain
plan satisfies. The orderings that are relevant for query
optimization are called interesting orders [4]. The set
of interesting orders for a given query consists of

1. all orderings required by an operator of the physi-
cal algebra that may be used in a query execution
plan for the given query, and

2. all orderings produced by an operator of the phys-
ical algebra that may be used in a query execution
plan for the given query.

This includes the final ordering requested by the given
query, if this is specified.

The interesting orders are logical orderings. This
means that they specify a condition a tuple stream
must meet to satisfy the given ordering. In contrast,
the physical ordering of a tuple stream is the actual
succession of tuples in the stream. Note that while
a tuple stream has only one physical ordering, it can
satisfy multiple logical orderings. For example, the
stream of tuples ((1, 1), (2, 2)) with schema (a, b) has
one physical ordering (the actual stream), but satisfies
the logical orderings a, b, ab and ba.

Some operators, like sort, actually influence the
physical ordering of a tuple stream. Others, like
select, only influence the logical ordering. For ex-
ample, a sort[a] produces a tuple stream satisfying
the ordering (a) by actually changing the physical or-
der of tuples. After applying select[a=b] to this
tuple stream, the result satisfies the logical orderings
(a), (b), (a, b), (b, a), although the physical ordering did
not change. Deduction of logical orderings can be de-
scribed by using the well-known notion of functional
dependencies (FD) [5]. In general, the influence of a
given algebraic operator on a set of logical orderings
can be described by a set of functional dependencies.

We now formalize the problem. Let R = (t1, . . . , tr)
be a stream (ordered sequence) of tuples in attributes
A1, . . . , An. Then R satisfies the logical ordering o =
(Ao1

, . . . , Aom
) (1 ≤ oi ≤ n) if and only if for all 1 ≤

i < j ≤ r the following condition holds:

(ti.Ao1
≤ tj .Ao1

)

∧ ∀1 < k ≤ m (∃1 ≤ l < k(ti.Aol
< tj .Aol

)) ∨

((ti.Aok−1
= tj .Aok−1

) ∧

(ti.Aok
≤ tj .Aok

)).

Next, we need to define the inference mechanism.
Given a logical ordering o = (Ao1

, . . . , Aom
) of a tu-

ple stream R, then R obviously satisfies any logical
ordering that is a prefix of o including o itself.

Let R be a tuple stream satisfying both the log-
ical ordering o = (A1, . . . , An) and the functional
dependency f = B1, . . . , Bk → Bk+1

1 with Bi ∈
{A1 . . . An}. Then R also satisfies any logical ordering
derived from o as follows: add Bk+1 to o at any po-
sition such that all of B1, . . . , Bk occurred before this
position in o. For example consider a tuple stream
satisfying the ordering (a, b); after inducing the func-
tional dependency a, b → c the tuple stream also satis-
fies the ordering (a, b, c), but not the ordering (a, c, b).
Let O′ be the set of all logical orderings that can be
constructed this way from o and f after prefix closure.
Then we use the following notation: o `f O′. Let e be
the equation Ai = Aj . Then o `e O′ where O′ is the
prefix closure of the union of the following three sets.
The first set is O1 defined as o `Ai→Aj

O1, the sec-
ond is O2 defined as o `Aj→Ai

O2, and the third is the
set of logical orderings derived from o where a possible
occurrence of Ai is replaced by Aj or vice versa. For
example, consider a tuple stream satisfying the order-
ing (a); after inducing the equation a = b the tuple
stream also satisfies the orderings (a, b), (b) and (b, a).
Let e be an equation of the form A = const. Then
O′ (o `e O′) is derived from o by inserting A at any
position in o. This is equivalent to o `∅→A O′. For ex-
ample, consider a tuple stream satisfying the ordering
(a, b); after inducing the equation c = const the tuple

1Any functional dependency which is not in this form can be
normalized into a set of FDs of this form.

961

stream also satisfies the orderings (c, a, b), (a, c, b) and
(a, b, c).

Let O be a set of logical orderings and F a set of
functional dependencies (and possibly equations). We
define the sets of inferred logical orderings Ωi(O, F) as
follows:

Ω0(O, F) := O

Ωi(O, F) := Ωi−1(O, F) ∪
⋃

f∈F,o∈Ωi−1(O,F)

O′ with o `f O′

Let Ω(O, F) be the prefix closure of
⋃∞

i=0 Ωi(O, F).
We write o `F o′ if and only if o′ ∈ Ω(O, F).

2.2 Grouping

It was shown in [7] that similar to order optimization,
it is beneficial to keep track of the groupings satis-
fied by a certain plan. Traditionally, group-by opera-
tors are either applied after the rest of the query has
been processed or are scheduled using some heuristics
[1]. However, the plan generator could take advan-
tage of grouping properties produced e.g. by avoiding
re-hashing if such information was easily available.

Analogous to order optimization we call this group-
ing optimization and define that the set of interesting
groupings for a given query consists of

1. all groupings required by an operator of the phys-
ical algebra that may be used in a query execution
plan for the given query

2. all groupings produced by an operator of the phys-
ical algebra that may be used in a query execution
plan for the given query.

This includes the grouping specified by the group by
clause of the query, if any exists.

These groupings are similar to logical orderings, as
they specify a condition a tuple stream must meet to
satisfy a given grouping. Likewise functional depen-
dencies can be used to infer new groupings.

More formally, a tuple stream R = (t1, . . . , tr)
in attributes A1, . . . , An satisfied the grouping g =
{Ag1

. . . , Agm
} (1 ≤ gi ≤ n) if and only if for all

1 ≤ i < j < k ≤ r the following condition holds:

∀1 ≤ l ≤ m ti.Agl
= tk.Agl

⇒ ∀1 ≤ l ≤ m ti.Agl
= tj .Agl

Two remarks are in order here. First, note that a
grouping is a set of attributes and not – as orderings –
a sequence of attributes. Second, note that given two
groupings g and g′ ⊂ g and a tuple stream R satisfying
the grouping g, R need not satisfy the grouping g′. For
example the tuple stream ((1, 2), (2, 3), (1, 4)) with the
schema (a, b) is grouped by {a, b}, but not by {a}.
This is different from orderings, where a tuple stream

satisfying a ordering o also satisfies all orderings that
are a prefix of o.

New groupings can be inferred by functional de-
pendencies as follows: Let R be a tuple stream sat-
isfying both the grouping g = {A1, . . . , An} and the
functional dependency f = B1, . . . , Bk → Bk+1 with
{B1, . . . , Bk} ⊆ {A1, . . . , An}. Then R also satisfies
the grouping g′ = {A1, . . . , An} ∪ {Bk+1}. Let G′ be
the set of all groupings that can be constructed this
way from g and f . Then we use the following nota-
tion: g `f G′. For example {a, b} `a,b→c {a, b, c}.
Let e be the equation Ai = Aj . Then g `e G′ where
G′ is the union of the following three sets. The first
set is G1 defined as g `Ai→Aj

G1, the second is G2

defined as g `Aj→Ai
G2, and the third is the set of

groupings derived from g where a possible occurrence
of Ai is replaced by Aj or vice versa. For example
{a, b} `b=c {a, c}. Let e be an equation of the form
A = const. Then g `e G′ is defined as g `∅→A G′. For
example {a, b} `c=const {a, b, c}.

Let G be a set of groupings and F be a set of func-
tional dependencies (and possibly equations). We de-
fine the set of inferred groupings Ωi(G, F) as follows:

Ω0(G, F) := G

Ωi(G, F) := Ωi−1(G, F) ∪
⋃

f∈F,g∈Ωi−1(G,F)

G′ with g `f G′

Let Ω(G, F) be
⋃∞

i=0 Ωi(G, F). We write g `F g′ if
and only if g′ ∈ Ω(G, F).

2.3 Functional Dependencies

The reasoning about orderings and groupings assumes
that the set of functional dependencies is known. The
process of gathering the relevant functional dependen-
cies is described in detail in [5], predominantly there
are three sources of functional dependencies:

1. key constraints

2. join predicates

3. filter predicates

However the algorithm makes no assumption about the
functional dependencies, if for some reason an operator
induces another kind of functional dependency this can
be handled the same way.

2.4 Algebraic Operators

To illustrate the propagation of orderings and group-
ings during query optimization, we give some rules
for concrete (physical) operators in Figure 1. Note
that these rules somewhat depend on the actual
implementation of the operators, e.g. a blockwise
nested loop join might actually destroy the ordering if

962

operator requires produces
scan(R) - O(R)
select(S,a = b) - Ω(O(S), a = b)
bnl-join(S1,S2) - O(S1)
sort(S,a1, . . . , an) - (a1, . . . , an)
hash(S,a1, . . . , an) - {a1, . . . , an}
sort-merge(S1,S2,a = b) (a) ∈ O(S1) ∧ (b) ∈ O(S2) Ω(O(S1), a = b)
hash-join(S1,S2,a = b) {a} ∈ O(S1) ∧ {b} ∈ O(S2) Ω(O(S1), a = b)

Figure 1: Propagation of orderings and groupings

the blocks are stored in hash tables. As a shorthand,
we use the following notation:
O(R) set of logical orderings and groupings satis-

fied by the physical ordering of the relation
R

O(S) inferred set of logical orderings and group-
ings satisfied by the tuple stream S

2.5 Plan Generation

To exploit available logical orderings and groupings,
the plan generator needs access to the combined order
optimization and grouping component, which we de-
scribe as an abstract data type (ADT). An instance of
this abstract data type OrderingGrouping represents
a set of logical orderings and groupings, and wher-
ever necessary, an instance is embedded into a plan
note. The main operations the abstract data type
OrderingGrouping must provide are

1. a constructor for a given logical ordering or group-
ing,

2. a membership test (called
contains(LogicalOrdering)) which tests
whether the set contains the logical ordering
given as parameter,

3. a membership test (called contains(Grouping))
which tests whether the set contains the grouping
given as parameter, and

4. an inference operation (called infer(set<FD>)).
Given a set of functional dependencies and equa-
tions, it computes a new set of logical orderings
and groupings a tuple stream satisfies.

These operations can be implemented
by using the formalism described before:
contains(LogicalOrdering) tests for o ∈ O,
contains(Grouping) tests for o ∈ G and infer(F)
calculates Ω(O, F) respectively Ω(G, F). Note that
the intuitive approach to explicitly maintain the set
of all logical orderings and groupings is not useful in
practice. For example, if a sort operator sorts a tuple
stream on (a, b), the result is compatible with logical
orderings {(a, b), (a)}. After a selection operator
with selection predicate x = const is applied, the
set of logical orderings changes to {(x, a, b), (a, x, b),

(a, b, x), (x, a), (a, x), (x)}. Since the size of the set
increases quadratically with every additional selection
predicate of the form v = const, a naive represen-
tation as a set of logical orderings is problematic.
This led Simmen et al. to introduce a more concise
representation, which is discussed in the next section.
As Simmen’s technique is not easily applicable to
groupings, currently no algorithm exists to efficiently
maintain the set of available groupings. We close this
gap. Further, our approach avoids these problems by
only implicitly representing the set. Before presenting
our approach, let us discuss the existing literature in
detail.

3 Related Work

Very few papers exist on order optimization. While the
problem of optimizing interesting orders was already
introduced by Selinger et al.[4], later papers usually
concentrated on exploiting, pushing down or combin-
ing orders, not on the abstract handling of orders dur-
ing query optimization.

A more recent paper by Simmen et al.[5] introduced
a framework based on functional dependencies for rea-
soning about orderings. The main idea was that in-
stead of storing the potentially large set of logical or-
derings for each plan, only the initial ordering and the
(usually much smaller) set of all induced functional
dependencies is stored. When testing if a plan satis-
fies a given logical ordering, both the initial and the
requested ordering are reduced using the available func-
tional dependencies: An attribute is removed from an
ordering if it is determined by an earlier attribute.
E.g. given the ordering (a, b) and the functional de-
pendency a → b, the ordering can be reduced to (a),
as the attribute b is redundant. After the reduction,
two orderings can be compared using a simple prefix
test. The main problem with this approach is that
it requires a reduction step for each comparison. Al-
though the reduced version of the initial ordering can
be cached, the required ordering has to be reduced for
every comparison. Since such comparisons are per-
formed millions of times during plan generation, the
performance impact is quite severe [3]. Also note that
the reduction algorithm is not applicable for group-
ings (which of course was never intended by Simmen):
Given the grouping {a, b, c} and the functional depen-

963

dencies a → b and b → c, the grouping would be
reduced to {a, c} or to {a}, depending on the order
in which the reductions are performed. This problem
does not occur with orderings, as the attributes are
sorted and can be reduced back to front.

In previous work [3] we presented a framework that
also used functional dependencies to reason about or-
derings, but described these orderings as finite state
machines. The main idea was that since the inter-
esting orderings and the functional dependencies were
already known before starting the plan generation,
the possible transitions between orderings could be
precomputed and stored as a state machine. Then,
during plan generation the orderings could be treated
as states in the state machine, allowing very efficient
comparisons and inference (O(1) after the preparation
step). More details about this approach will be given
in Section 4. Experimental results have shown that
modeling order optimization as state machines is very
efficient and has a very positive influence on the run-
time of plan generation.

A recent paper by Wang and Cherniack[7] presented
the idea of combining order optimization with the op-
timization of groupings. Based upon Simmen’s frame-
work, they annotated each attribute in an ordering
with the information whether it is actually ordered by
or grouped by. For a single attribute a they write
OaO (R) to denote that R is ordered by a, OaG(R) to
denote that R is grouped by a and OaO→bG to denote
that R is first ordered by a and then grouped by b
(within blocks of the same a value). Before checking if
a required ordering or grouping is satisfied by a given
plan, they use some inference rules to get all orderings
and groupings satisfied by the plan. Basically, this is
Simmen’s reduction algorithm with two extra trans-
formations for groupings. In their paper the check
itself is just written as ∈, however, at least one reduc-
tion on the required ordering would be needed for this
to work (and even that would not be trivial, as the
stated transformations on groupings are ambiguous).
The promised details in the cited technical report are
currently not available, as the report has not appeared
yet. Also note that as explained above, the reduction
approach is fundamentally not suited for groupings.
In WangÄs and CherniackÄs paper this problem does
not occur, as they only look at a very specialized kind
of grouping: As stated in their Axiom 3.6, they as-
sume that a grouping OaG→bG is first grouped by a
and then (within the block of tuples with the same
a value) grouped by b. However, this a very strong
condition that is usually not satisfied by a hash-based
grouping operator. Therefore, their work is not gen-
eral enough to capture the full functionality offered by
a state-of-the-art query execution engine.

{b → d} {b → d}

{b → d}

ε

ε

ab
ε

ε

a

abdabdc

abcd

abc

ε

Figure 2: Possible FSM for orderings

{b → d}
abcdabc

Figure 3: Possible FSM for groupings

4 Idea

As we have seen, explicit maintenance of the set of
logical orderings and groupings can be very expen-
sive. However, the ADT OrderingGrouping required
for plan generation does not need to offer access to this
set: It only allows to test if a given interesting order or
grouping is in the set and changes the set according to
new functional dependencies. Hence, it is not required
to explicitly represent this set; an implicit representa-
tion is sufficient as long as the ADT operations can be
implemented atop of it. In other words, we need not
be able to reconstruct the set of logical orderings and
groupings from the state of the ADT.

In previous work [3], a framework was presented
that provided an implicit representation of the set
of logical orderings by using a finite state machine
(FSM). An example of this is shown in Figure 2. The
states are used to represent physical orderings and the
edges are labeled with functional dependencies. Logi-
cal orderings are handled by pretending that the phys-
ical ordering changes as allowed by the functional de-
pendency. Since one physical ordering can imply mul-
tiple logical orderings, ε-edges are used. They also pro-
vide a mechanism to compute the prefix closure. As a
result, the FSM is a non-deterministic finite state ma-
chine (NFSM). Before the actual plan generation, the
NFSM is converted into a deterministic FSM (DFSM),
[3] describes some techniques to do this efficiently. It
proposes techniques to avoid producing a large DFSM.
Representing the set of orderings as FSM is very at-
tractive, since during plan generation only the state of
the FSM has to be remembered. Aside from the con-
struction of the FSM this allows for order optimization
operations in time O(1).

The idea of our combined framework is to construct
a similar FSM for groupings and integrate it into the
FSM for orderings, thus handling orderings and group-
ings at the same time. An example of this is shown
in Figure 3. Here, the FSM for the grouping {a, b, c}
and the functional dependency b → c is shown. We
represent states for orderings as rounded boxes and

964

{b → d} {b → d}

{b → d}

ε

ε

ab
ε

ε

a

abdabdc

abcd

abc

ε

abc abcd

ε

ε

{b → d}

Figure 4: Combined FSM for orderings and groupings

states for groupings as rectangles. Note that although
the FSM for groupings has a start node similar to the
FSM for orderings, it is much smaller. This is due to
the fact that groupings are only compatible with them-
selves, no nodes for prefixes are required. However, the
FSM is still non-deterministic: given the functional de-
pendency b → c, the grouping {a, b, c, d} is compatible
with {a, b, c, d} itself and with {a, b, c}; therefore, there
exists an (implicit) edge from each grouping to itself.

The FSM for groupings is integrated into the FSM
for orderings by adding ε edges from each ordering to
the grouping with the same attributes; this is due to
the fact that every ordering is also a grouping. Note
that although the ordering (a, b, c, d) also implies the
grouping {a, b, c}, no edge is required for this, since
there exists an ε edge to (a, b, c) and from there to
{a, b, c}.

After constructing an FSM as described above, the
ADT can easily be mapped to the FSM: The state of
the ADT is a state of the FSM and testing for a logical
ordering or grouping can be performed by checking if
the node with the ordering or grouping is reachable
from the current state by following ε edges (as we will
see, this can be precomputed to yield the O(1) time
bound for the ADT operations). If the state of the
ADT must be changed because of functional depen-
dencies, the state in the FSM is changed by follow-
ing the edge labeled with the functional dependency.
However, the non-determinism of this transition is a
problem. Therefore, for practical purposes the NFSM
must be converted into a DFSM.

The framework for logical orderings [3] already de-
scribed an algorithm for the conversion from NFSM
to DFSM that can be reused for the combined frame-
work. Some pruning techniques for groupings are de-
scribed in Section 5 to minimize the NFSM, but the
inclusion of groupings is not critical for the conversion,
as the grouping part of the NFSM is nearly indepen-
dent of the ordering part. In Section 6 we look at the
size increase due to groupings. The memory consump-
tion usually increases by a factor of two, which is the
minimum expected increase, since every ordering is a
grouping.

1. Determine the input

(a) Determine interesting orders

(b) Determine interesting groupings

(c) Determine set of functional dependencies

2. Construct the NFSM

(a) Construct nodes of the NFSM

(b) Filter functional dependencies

(c) Build filters for orderings and groupings

(d) Add edges to the NFSM

(e) Prune the NFSM

(f) Add artificial start node and edges

3. Convert the NFSM into a DFSM

4. Precompute values

(a) Precompute the compatibility matrix

(b) Precompute the transition table

Figure 5: Preparation steps of the algorithm

5 Detailed Algorithm

5.1 Overview

Our approach consists of two phases. The first phase
is the preparation step taking place before the actual
plan generation starts. The output of this phase are
the precomputed values used to implement the ADT.
Then the ADT is used during the second phase where
the actual plan generation takes place. The first phase
is performed exactly once and is quite involved. Most
of this section covers the first phase. Only Section 5.6
deals with the ADT implementation.

Figure 5 gives an overview of the preparation phase.
As the pure ordering framework is described in [3], we
only briefly describe the general part and concentrate
on the changes needed to support groupings. During
the discussion, we illustrate the different steps by a
simple running example. More complex examples can
be found in Section 6.

5.2 Determining the Input

Since the preparation step is performed immediately
before plan generation, it is assumed that the query
optimizer already has determined which indices are ap-
plicable and which algebraic operators can possibly be
used to construct the query execution plan.

Before constructing the NFSM, the set of interest-
ing orders, the set of interesting groupings and the sets
of functional dependencies for each algebraic operator
are determined. We denote the set of sets of functional
dependencies by F . It is important for the correctness
of our algorithms that we note which of the interest-

965

ing orders are (1) produced by some algebraic operator
or (2) only tested for. Note that the interesting orders
which satisfy (1) may additionally be tested for as well.
We denote those orderings under (1) by OP , those un-
der (2) by OT . The total set of interesting orders is
defined as OI = OP ∪ OT . The orders produced are
treated slightly differently in the following steps. For
details on determining the set of interesting orders we
refer to [4, 5]. The groupings are classified similarly to
the orderings: We denote the grouping produced by
some algebraic operator by GP , and those just tested
for by GT . The total set of interesting groupings is de-
fined as GI = GP ∪ GT . More information on how to
extract interesting groupings can be found in [7]. Fur-
thermore, for a sample query the extraction of both
interesting orders and groupings is illustrated in Sec-
tion 6.

To illustrate subsequent steps, we assume that the
set of sets of functional dependencies

F = {{b → c}, {b → d}},

the interesting groupings

GI = {{b}} ∪ {{b, c}}

and the interesting orders

OI = {(b), (a, b)} ∪ {(a, b, c)}

have been extracted from the query. We assume that
those in OT = {(a, b, c)} and GT = {{b, c}} are tested
for but not produced by any operator, whereas those in
OP = {(b), (a, b)} and GP = {{b}} may be produced
by some algebraic operators.

5.3 Constructing the NFSM

An NFSM consists of a tuple (Σ, Q, D, qo), where

• Q is the set of possible states,

• Σ is the input alphabet,

• D ⊆ Q × (Σ ∪ {ε}) × Q is the transition relation,
and

• q0 is the initial state.

Coarsely Q consists of the relevant orderings and
groupings, Σ of the functional dependencies and D
describes how the orderings or groupings change un-
der a given functional dependency. Some refinements
are needed to provide efficient ADT operations. The
details of the construction are described now.

For the order optimization part the states are par-
titioned in Q = QI ∪QA ∪{q0}, were q0 is an artificial
node to initialize the ADT, QI is the set of nodes cor-
responding to interesting orderings and QA is a set of
artificial nodes only required for the algorithm itself.

b,c

b

a,b,c

a,b

b

Figure 6: Initial NFSM for sample query

QA is described later. Furthermore, the set QI is par-
titioned in QP

I and QT
I , representing the orderings in

OP and OT respectively. To support groupings, we
add to QP

I nodes corresponding to the groupings GP

and to QT
I nodes corresponding to the groupings in

GT .
The initial NFSM contains the states QI of inter-

esting groupings and orderings. For the example, this
initial construction not including the start node qo is
shown in Figure 6. The states representing groupings
are drawn as rectangles and the states representing
orderings are drawn with rounded corners.

When considering functional dependencies, addi-
tional groupings and orderings can occur. These are
not directly relevant for the query, but have to be rep-
resented by states to handle transitive changes. Since
they have no direct connection to the query, these
states are called artificial states. Starting with the
initial states QI , artificial states are constructed by
considering functional dependencies

QA = (Ω(OI ,F) \ OI) ∪ (Ω(GI ,F) \ GI)

. In our example this creates the states (b, c) and
(a), as (b, c) can be inferred from (b) when considering
{b → c} and (a) can be inferred from (a, b), since (a) is
a prefix of (a, b). The result is show in Figure 7 (ignore
the edges).

Sometimes the ADT has to be explicitly initial-
ized with a certain ordering or grouping (e.g. after a
sort). To support this, artificial edges are added later
on. These point to the requested ordering or group-
ing (states in QP

I) and are labeled with the state that
they lead to. Therefore, the input alphabet Σ consists
of the sets of functional dependencies and produced
orderings and groupings:

Σ = F ∪ QP
I ∪ {ε}.

In our example Σ = {{b → c}, {b → d}, (b), (a, b),
{b}}.

Accordingly, the domain of the transition relation
D is

D ⊆ ((Q \ {q0}) × (F ∪ {ε}) × (Q \ {q0}))

∪ ({qo} × QP
I × QP

I).

966

b

a,b

a,b,c

b

b,c

b,c

a

{b → c} ε

ε

ε

{b → c}

{b → c}

q0

Figure 7: NFSM after adding DFD edges

b

a,b

a,b,c

b

b,ca

{b → c} ε

ε

{b → c}

q0

Figure 8: NFSM after pruning artificial nodes

The edges are formed by the functional dependencies
and the artificial edges. Furthermore, ε edges exist
between orderings and the corresponding groupings,
as orderings are a special case of grouping:

DFD = {(q, f, q
′) | q ∈ Q, f ∈ F ∪ {ε}, q′ ∈ Q, q ` fq

′}

DA = {(q0, q, q) | q ∈ Q
P
I }

DOG = {(o, ε, g) | o ∈ Ω(OI ,F), g ∈ Ω(GI ,F), o ≡ g}

D = DFD ∪ DA ∪ DOG

First, the edges corresponding to functional depen-
dencies are added (DFD). In our example, this results
in the NFSM shown in Figure 7.

Note that the functional dependency b → d has
been pruned, since d does not occur in any interesting
order or grouping. The NFSM can be further simpli-
fied by pruning the artificial node (b, c) which cannot
lead to a new interesting order. The result is shown
in Figure 8. A detailed description of these pruning
techniques can be found in [3]. Additional pruning
techniques relevant for groupings are described in Sec-
tion 5.7.

The artificial start node q0 has emanating edges in-
cident to all nodes representing interesting orders in
OP

I and interesting groupings in GP
I (DA). Also, the

nodes representing orderings have edges to their cor-
responding grouping nodes (DOG), as every ordering
is also a grouping. The final NFSM for the example is
shown in Figure 9. Note that the nodes representing
(a, b, c) and {b, c} are not linked by an artificial edge
since it is only tested for, as they are in QT

I .

qo

{b → c}
ε

ε{b → c}

a b,c

b

a,b,c

a,b

b
ε

(a,b)

(b)

{b}

Figure 9: Final NFSM

{b → c}

{b → c}

{b → c}

{b}

(b)

(a,b)

6:(a),(a,b),(a,b,c)

5:(b),{b},{b,c}

4:{b},{b,c}

3:(a),(a,b)

2:(b),{b}

1:{b}

qo

Figure 10: Resulting DFSM

5.4 Constructing the DFSM

The DFSM in constructed as described in [3]. Basi-
cally, the the standard power set construction for con-
verting an NFA into a DFA [2]. is used. It is impor-
tant to note that this construction preserves the start
node and the artificial edges, allowing easy initializa-
tion of the ADT. The resulting DFSM for the example
is shown in Figure 10.

5.5 Precomputing Values

To allow for an efficient precomputation of values,
every occurrence of an interesting order, interesting
grouping or functional dependency is replaced by inte-
gers. This allows comparisons in constant time (equiv-
alent entries are mapped to same integer). Further, the
DFSM is represented by an adjacency matrix.

The precomputation step itself computes two ma-
trices. The first matrix denotes whether an NFSM

state 1: 2: 3: 4: 5: 6:
(a) (a,b) (a,b,c) (b) {b} {b,c}

1 0 0 0 0 1 0
2 0 0 0 1 1 0
3 1 1 0 0 0 0
4 0 0 0 0 1 1
5 0 0 0 1 1 1
6 1 1 1 0 0 0

Figure 11: contains Matrix

967

state 1: 2: 3: 4:
{b → c} (a, b) (b) {b}

qo - 3 2 1
1 4 - - -
2 5 - - -
3 6 - - -
4 4 - - -
5 5 - - -
6 6 - - -

Figure 12: transition Matrix

node is in QI , i.e. an interesting order or an interesting
grouping, is contained in a specific DFSM node. This
matrix can be represented as a compact bit vector, al-
lowing tests in O(1). For our running example, it is
given (in a more readable form) in Figure 11. The sec-
ond matrix contains the transition table for the DFSM
relation D. Using it, edges in the DFSM can be fol-
lowed in O(1). For the example, the transition matrix
is given in Figure 12.

5.6 During Plan Generation

During plan generation, larger plans are constructed
by adding algebraic operators to existing (sub-)plans.
Each subplan contains the available orderings and
groupings in the form of the corresponding DFSM
state. Hence, the state of the DFSM, a simple inte-
ger, is the state of our ADT OrderingGrouping.

When applying an operator to subplans the order-
ing and grouping requirements are tested by checking
whether the DFSM state of the subplan contains the
required ordering or grouping of the operator. This is
done by a simple lookup in the contains matrix.

If the operator introduces a new set of functional
dependencies, the new state of the ADT is computed
by following the according edge in the DFSM. This is
performed by a quick lookup in the transition matrix.

For “atomic” subplans like table or index scans the
ordering and grouping is determined explicitly by the
operator. The state of the DFSM is determined by
a lookup in the transition matrix with start state qo

and the edge annotated by the produced ordering or
grouping. For sort and group by operators the state
of the DFSM is determined as before by following the
artificial edge for the produced ordering or grouping
and then reapplying the set of functional dependencies
that currently hold.

In the example, a sort on (b) results in a subplan
with ordering/grouping state 2 (the node 2 is active
in the DFSM), which satisfies the ordering (b) and the
grouping {b}. After applying an operator which in-
duces b → c, the ordering/grouping changes to state 5
which also satisfies {b, c}.

5.7 Reducing the Size of the NFSM

Reducing the size of the NFSM is very important be-
cause it reduces both preparation time by avoiding
large DFSMs and the search space for plan genera-
tion, as irrelevant orderings can be ignored. Effective
techniques for pruning irrelevant ordering states and
merging artificial nodes were already presented [3], we
now describe how to avoid irrelevant grouping nodes.

First, in Step 2.3 (see Figure 5) the set of attributes
occurring in interesting groupings is determined:

AG = {a | ∃g ∈ GI : a ∈ g}

Now, for every attribute a occurring on the right-hand
side of a functional dependency the set of potentially
reachable relevant attributes is determined:

r(a, 0) = {a}

r(a, n) = r(a, n − 1) ∪

{a′ | ∃(a1 . . . am → a′) ∈ F :

{a1 . . . am} ∩ r(a, n − 1) 6= ∅}

r(a) = r(a, |F|) ∩ AG

This can be used to determine if a functional depen-
dency actually adds useful attributes. Given a func-
tional dependency a1 . . . an → a and a grouping g with
{a1 . . . an} ⊆ g, a should only be added to g if r(a) 6⊆ g,
i.e. the attribute might actually lead to a new inter-
esting grouping. For example, given the interesting
groupings {a}, {a, b} and the functional dependencies
a → c, a → d, d = b. When considering the grouping
{a}, the functional dependency a → c can be ignored,
as it can only produce the attribute c, which does not
occur in an interesting grouping. However the func-
tional dependency a → d should be added, since tran-
sitively the attribute b can be produced, which does
occur in an interesting grouping.

Since there are no ε edges between groupings, i.e.
groupings are not compatible with each other, a group-
ing can only be relevant for the query if it is a subset of
an interesting ordering (as further attributes could be
added by functional dependencies). However a sim-
ple subset test is not sufficient, as equations of the
form a = b are also supported; these can effectively
rename attributes, resulting in a slightly more compli-
cated test:

In Step 2.3 (see Figure 5) the equivalence classes
induced by the equations in F are determined and for
each class a representative is chosen:

E(a, 0) = {a}

E(a, n) = E(a, n − 1) ∪

{a′ | ((a = a′) ∈ F) ∨ ((a′ = a) ∈ F}

E(A) = E(A, |F|)

e(a) = repE(A) (arbitrary)

e({a1 . . . an}) = {e(a1) . . . e(an)}.

968

Using these equivalence classes a mapped set of in-
teresting groupings is produced, that will be used to
test if a grouping is relevant:

GE
I = {e(g) | g ∈ GI}

Now a grouping g can be pruned if @g′ ∈ GE
I :

e(g) ⊆ g′. For example, given the interesting group-
ing {a} and the equations a = b, b = c, the grouping
{d} can be pruned, as it will never lead to an inter-
esting grouping; however, the groupings {b} and {c}
have to be kept, as they could change to an interesting
grouping later on.

Note that although they appear to test similar con-
ditions, the first pruning technique (using r(a)) is not
dominated by the second one (using e(a)). Consider
e.g. the interesting grouping {a}, the equation a = b
and the functional dependency a → b. Using only the
second technique, the grouping {a, b} would be cre-
ated, although it is not relevant.

6 Experimental Results

Integrating groupings in the order optimization frame-
work allows the plan generator to easily exploit group-
ings and thus produce better plans. However, order
optimization itself might become prohibitively expen-
sive by considering groupings. Therefore, we evaluated
the costs of including groupings for different queries.

Since adding support for groupings has no effect on
the runtime behavior of the plan generator (all op-
erations are still one table lookup), we measured the
runtime and the memory consumption of the prepara-
tion step both with and without considering groupings.
When considering groupings, we treated each interest-
ing ordering also as an interesting grouping, i.e. we
assumed that a grouping-based (e.g. hash-based) op-
erator was always available as an alternative. Since
this is the worst-case scenario, it should give an upper
bound for the additional costs. All experiments were
performed on a 2.4 GHz Pentium IV, using the gcc
3.3.1.

To examine the impact for real queries, we choose
a more complex query from the well-known TPC-R
benchmark ([6], Query 8):

select
o year,
sum(case when nation = ’[NATION]’

then volume
else 0

end) / sum(volume) as mkt share
from

(select
extract(year from o orderdate) as o year,
l extendedprice * (1-l discount) as volume,
n2.n name as nation

from part,supplier,lineitem,orders,customer,
nation n1,nation n2,region

where
p partkey = l partkey and
s suppkey = l suppkey and
l orderkey = o orderkey and
o custkey = c custkey and
c nationkey = n1.n nationkey and
n1.n regionkey = r regionkey and
r name = ’[REGION]’ and
s nationkey = n2.n nationkey and
o orderdate between date ’1995-01-01’ and

date ’1996-12-31’ and
p type = ’[TYPE]’

) as all nations
group by o year
order by o year;

When considering this query, all attributes used in
joins, group-by and order-by clauses are added to the
set of interesting orders. Since hash-based solutions
are possible, they are also added to the set of interest-
ing groupings. This results in the sets

OP
I = {(o year), (o partkey), (p partkey),

(l partkey), (l suppkey), (l orderkey),

(o orderkey), (o custkey), (c custkey),

(c nationkey), (n1.n nationkey),

(n2.n nationkey), (n regionkey),

(r regionkey), (s suppkey), (s nationkey)}

OT
I = ∅

GP
I = {{o year}, {o partkey}, {p partkey},

{l partkey}, {l suppkey}, {l orderkey},

{o orderkey}, {o custkey}, {c custkey},

{c nationkey}, {n1.n nationkey},

{n2.n nationkey}, {n regionkey},

{r regionkey}, {s suppkey}, {s nationkey}}

GT
I = ∅

Note that here OT
I and GT

I are empty, as we as-
sumed that each ordering and grouping would be pro-
duced if beneficial. For example, we might assume that
it makes no sense to intentionally group by oyear: If
a tuple stream is already grouped by oyear it makes
sense to exploit this, however instead of just grouping
by oyear it could makes sense to sort by oyear, as this
is required anyway (although here it only makes sense
if the sort operator performs early aggregation). In
this case {o year} would move from GP

I to GT
I , as it

would be only tested for, but not produced.
The set of functional dependencies (and equations)

contains all join conditions and constant conditions:

F = {{p partkey = l partkey}, {∅ → p type},

{o custkey = c custkey}, {∅ → r name},

969

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10 11

du
ra

tio
n

(m
s)

no of relations

preparation time

o+g (n-1)
o (n-1)
o+g (n)

o (n)
o+g (n+1)

o (n+1)

Figure 13: Time requirements for the preparation step

{c nationkey = n1.n nationkey},

{s nationkey = n2.n nationkey},

{l orderkey = o orderkey},

{s suppkey = l suppkey},

{n1.n regionkey = r regionkey}}

To measure the influence of groupings, the prepara-
tion step was executed two times: Once with the data
as given above and once with GP

I = ∅ (i.e. groupings
were ignored). The space and time requirements are
shown below:

With Groups Without Groups
Duration [ms] 0.6ms 0.3ms
DFSM [nodes] 63 32
Memory [KB] 5 2

Here time and space requirements both increase by
a factor of two. Since all interesting orderings are also
treated as interesting groupings, a factor of about two
was expected.

While Query 8 is one of the more complex TPC-
R queries, it is not overly complex when looking at
order optimization. It contains 16 interesting order-
ings/groupings and 8 functional dependencies, but
they cannot be combined in many reasonable ways,
resulting in a comparatively small DFSM. In order to
get more difficult examples, we produced randomized
queries with 5− 10 relations and a varying number of
join predicates. We always started from a chain query
and then randomly added additional edges to the join
graph. The results are shown for n−1, n and n+1 ad-
ditional edges. In the case of 10 relations that means
that the join graph consisted of 18, 19 and 20 edges
respectively.

The time and space requirements for the prepara-
tion step are shown in Figure 13 and Figure 14, respec-
tively. For each number of relations the requirements
for the combined framework (o+g) and the framework
ignoring groupings (o) are shown. The numbers in
parentheses (n − 1, n and n + 1) are the number of
additional edges in the join graph.

As with Query 8, the time and space requirements

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10 11

m
em

or
y

(K
B

)

no of relations

memory consumption of precomputed values

o+g (n-1)
o (n-1)
o+g (n)

o (n)
o+g (n+1)

o (n+1)

Figure 14: Space requirements for the preparation step

roughly increase by a factor of two when adding group-
ings. This is a very positive result, given that a factor
of two can be estimated as a lower bound (since ev-
ery interesting ordering is also an interesting grouping
here). Furthermore, the absolute time and space re-
quirements are very low (a few ms and a few KB),
encouraging the inclusion of groupings in the order
optimization framework.

7 Conclusion

The combined framework presented allows a very effi-
cient handling of order optimization and grouping op-
timization during plan generation. The experimental
results showed that with only a modest increase of the
one-time costs, groupings can be exploited during plan
generation at no additional costs. In summary, using
an FSM to keep track of the available orderings and
groupings is very efficient and is easily integrated in a
plan generator.

One topic for future work is the minimization of
the DFSM using the operator structure. Currently,
only the NFSM is pruned by detecting irrelevant or
redundant nodes. The DFSM could also be pruned
by intentionally dropping available logical orderings or
groupings when it is clear that the ordering or grouping
will never be used (because of operator dependencies).
Besides minimizing the DFSM, this technique would
also reduce the search space for the plan generator, as
more plans could be pruned (since more plans would
be dominated by other plans).

References

[1] Surajit Chaudhuri and Kyuseok Shim. Includ-
ing group-by in query optimization. In Jorge B.
Bocca, Matthias Jarke, and Carlo Zaniolo, editors,
VLDB’94, Proceedings of 20th International Con-
ference on Very Large Data Bases, September 12-
15, 1994, Santiago de Chile, Chile, pages 354–366.
Morgan Kaufmann, 1994.

970

[2] H. Lewis and C. Papadimitriou. Elements of the
Theory of Computation. Prentice Hall, 1981.

[3] Thomas Neumann and Guido Moerkotte. An effi-
cient framework for order optimization. In Proceed-
ings of the 20th International Conference on Data
Engineering, 30 March - 2 April 2004, Boston,
MA. IEEE Computer Society, 2004.

[4] Patricia G. Selinger, Morton M. Astrahan, Don-
ald D. Chamberlin, Raymond A. Lorie, and
Thomas G. Price. Access path selection in a rela-
tional database management system. In Philip A.
Bernstein, editor, Proceedings of the 1979 ACM
SIGMOD International Conference on Manage-
ment of Data, Boston, Massachusetts, May 30 -
June 1, pages 23–34. ACM, 1979.

[5] David E. Simmen, Eugene J. Shekita, and Tim-
othy Malkemus. Fundamental techniques for or-
der optimization. In H. V. Jagadish and Inder-
pal Singh Mumick, editors, Proceedings of the 1996
ACM SIGMOD International Conference on Man-
agement of Data, Montreal, Quebec, Canada, June
4-6, 1996, pages 57–67. ACM Press, 1996.

[6] Transaction Processing Performance Council, 777
N. First Street, Suite 600, San Jose, CA,
USA. TPC Benchmark R, 1999. Revision 1.2.0.
http://www.tpc.org.

[7] Xiaoyu Wang and Mitch Cherniack. Avoiding
sorting and grouping in processing queries. In
Johann Christoph Freytag, Peter C. Lockemann,
Serge Abiteboul, Michael J. Carey, Patricia G.
Selinger, and Andreas Heuer, editors, VLDB 2003,
Proceedings of 29th International Conference on
Very Large Data Bases, September 9-12, 2003,
Berlin, Germany. Morgan Kaufmann, 2003.

971

