
Multi-objective Query Processing for Database Systems

Wolf-Tilo Balke

Computer Science Department
University of California

Berkeley, CA, USA
balke@eecs.berkeley.edu

Ulrich Güntzer
Institut für Informatik

University of Tübingen
Tübingen, Germany

guentzer@informatik.uni-tuebingen.de

Abstract
Query processing in database systems has devel-
oped beyond mere exact matching of attribute
values. Scoring database objects and retrieving
only the top k matches or Pareto-optimal result
sets (skyline queries) are already common for a
variety of applications. Specialized algorithms
using either paradigm can avoid naïve linear da-
tabase scans and thus improve scalability. How-
ever, these paradigms are only two extreme cases
of exploring viable compromises for each user‘s
objectives. To find the correct result set for arbi-
trary cases of multi-objective query processing in
databases we will present a novel algorithm for
computing sets of objects that are non-dominated
with respect to a set of monotonic objective func-
tions. Naturally containing top k and skyline re-
trieval paradigms as special cases, this algorithm
maintains scalability also for all cases in be-
tween. Moreover, we will show the algorithm’s
correctness and instance-optimality in terms of
necessary object accesses and how the response
behavior can be improved by progressively pro-
ducing result objects as quickly as possible,
while the algorithm is still running.

1. Introduction
Optimizing parameters under multiple constraints and
negotiating compromises between different objectives has
a long history in economic problems. Though simplifying
approaches often reduce business decisions to ‘maximize
profits’, common problems often deal with non-monetary
intangibles like product quality, public image, tradition,
corporate identity or ethics like environmental concerns or

safety features. But apart from mere business problems
multi-objective optimization also plays a role in many
areas of computer science:

• Multi-objective agents negotiate compro-
mises on behalf of different users or interest
groups

• Decision support systems try to integrate
various interests to recommend strategic de-
cisions

• Trade-offs in e-commerce environments e.g.
between price, efficiency and quality of cer-
tain products have to be assessed

• Personal preferences of users requesting a
Web service for a complex task have to be
evaluated to select most appropriate services

Also in the field of databases and query optimization
such optimization problems often occur like in [22] for
the choice of query plans given different execution costs
and latencies or in [19] for choosing data sources with
optimized information quality. Let us mathematically
formulate the problem of multi-objective optimization in
database retrieval and then consider typical sample appli-
cations for information systems:

Multi-objective Retrieval: Given a database contain-
ing N objects O := {o1,…,oN}, n characteristics sk(o)
(1 ≤ k ≤ n) to describe the objects (e.g. scoring functions
for low-level features, aggregations of attribute values,
etc.) and m monotonic functions fi (1 ≤ i ≤ m) aggregating
subsets of the characteristics by objective functions, the
problem is how to find the overall best database objects
with respect to all m scoring functions.

For the scope of the paper we will assume that the
characteristics sk are scoring functions to evaluate certain
characteristics of database objects assigning normalized
scores in [0,1], i.e. we use a numerical domain for re-
trieval. Other approaches relying on more general charac-
teristics like projections on the attributes themselves are
more powerful in that they can also handle attribute-
valued data with partial preference orders. However, all
algorithms presented so far for this problem, are of quad-
ratic complexity, whereas those assuming numerical scor-
ing functions can use algorithms of essentially improved
complexity, see e.g. [15]. To abstract from attribute-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

936

valued domains, we thus might need to derive suitable
metrics for each dimension like shown in [18] to always
enable numerical scoring of database objects.

Let us now consider a common use case scenario in
database applications. A database usually stores a large
number of values characterizing certain real world ob-
jects. Database applications usually rely on these charac-
teristics, but provide an added value by selecting and ag-
gregating the data along either domain-specific or user-
provided functions or algorithms. From a retrieval point
of view the derived measures in case of very simple ar-
ithmetical functions (avg, max, etc.) can be directly inte-
grated into SQL statements, but for more complex func-
tions user defined functions (UDFs) or stored procedures
become necessary. The naïve way of addressing the prob-
lem of getting best values is to calculate the UDF for
every database object and then order the objects by the
derived scores. Consider the following example:

Example 1: Real Estate Information
When considering to buy a house, a database of real estate
information on available objects may be particularly help-
ful. Generally the database can provide a variety of basic
data like a house’s size, its price or its location. But in
buying a convenient place to live users often consider
other measures derived from these initial data. For in-
stance a user can put a constraint on the maximum budget
and minimum size, but then might be interested in bar-
gains with a good price per square-meter, thus aggregat-
ing the basic price and size information. On the other
hand a user might be interested to find a good location
and thus use a function on the location information in
terms of rating the neighborhood or ranking houses ac-
cording to the relative distance from the user’s workplace.

As we can see this example poses a multi-objective
problem because ranking schemes in price and size sim-
ply will not do, but a complex function reordering the
database objects is called for (Note that neither the top-
ranked houses according to price nor the top-ranked
houses according to size have to be top-ranked with re-
spect to our price/size function). And the bargains offered
of course do not affect their respective location, thus this
gives the user an independent ranked list to choose from
in a skylining fashion. The problem becomes even harder,
if personal preferences come into the aggregation. Con-
sider the following example:

Example 2: Web Information Services
Imagine a personalized route planning system like [3]
where different characteristics of each route are mapped
onto a numerical domain. Such characteristics may be the
length of each route relative to the shortest one s1, the
probable delay by traffic jams s2 (e.g. measured by aggre-
gating the number, length and grade of congestion of cur-
rent jams on a route) or the weather conditions s3 aggre-
gating visibility (rain, fog) or the danger of black ice. Re-
trieving the ‘best’ route for every driver now, however,
poses a severe problem: whereas it is natural to aggregate

some characteristics others might again be considered
incomparable.

For instance users will generally be willing to drive a
slightly longer route, if it is not congested. Hence the
trade-off between relative length and congestion can usu-
ally be determined by taking the average pain/gain ratio.
The length of a route and its estimated delay by traffic
jams can thus be aggregated using a suitably weighted
average as compensation function for economy (e.g. in
terms of shortest expected travel times) and our two basic
scores as input, i.e. feco (s1, s2). Unlike length and traffic
density the weather conditions will generally not be ag-
gregated as easily, because the relative gain through ‘bet-
ter’ weather is quite subjective. A motorcyclist may insist
on better weather routes whereas a car driver might care
less and anyway the respective compensation function
lacks intuition. What does it mean, if good weather is said
to be e.g. 0.63 times more important than economy?

A good solution here is exploring the skyline recom-
mending very economic routes with possibly bad weather
conditions, less economic routes with fair conditions and
some possible compromises in between. Depending on
the personal preferences a user then might decide for one
of these possibilities. Thus our multi-objective problem in
route planning has three score functions (length, conges-
tion and weather) that are mapped onto a two-dimensional
objective space (economy, weather). The objective func-
tions used are the compensation function for economy and
the trivial projection for the weather scores, i.e. for each
route x we consider F(x) := (feco (s1(x), s2(x)), s3(x)). In the
following we will revisit this sample problem and present
a single optimal algorithm to solve it efficiently.

The rest of the paper is organized as follows: section 2
will investigate the nature of multi-objective retrieval and
revisit basic approaches of top k retrieval and skylining as
special cases in database retrieval. Section 3 will present
our unifying multi-objective retrieval algorithm and prove
its basic properties and instance-optimality. We show the
possibility and optimality of progressive delivery of result
objects in section 4 and focus on practical scenarios and
their impact on the result complexity in section 5.

937
Fig. 1: Multi- objective retrieval

2. Towards Multi-objective Retrieval
In the problem definition and the use case scenario we
have gained insight into the basic problem. Characteristics
of database objects (like table data, images, XML docu-
ments, etc.) are numerically evaluated in the feature space
and these scores are aggregated by means of user-specific
objective functions (cf. fig. 1). To get a further under-
standing of the multi-objective optimization problem we
now have to determine what ‘overall best’ means in this
instance. For each database object o we get an m-
dimensional vector containing the aggregated scores
(f1(s1(o),…,sn(o)),…, fm(s1(o),…, sn(o))) for each objec-
tive fi. The problem of picking best vectors among these
is one of the central problems addressed in operations
research, e.g. [9], [4]. Operations research literature basi-
cally distinguishes between returning all non-dominated
solutions (also known as ‘efficient frontier’ or ‘Pareto
optimal’ solutions) among all m-dimensional vectors, or
using specific qualitative ordering techniques (usually
complex functions, the so-called ‘utilities’) that allow to
order vectors by further aggregating their score values and
then returning only the best-ranked objects [12].

2.1. Utility-based Retrieval Models

In utility-based approaches doing worse in some fea-
tures can be compensated by doing better in others. A
utility function then aggregates each vector to a scalar
overall utility. Often even the existence of a single global
utility function is implicitly or explicitly assumed. This
global aggregation of objective scores can be processed
by top k retrieval algorithms. Often besides the scoring
functions also some fixed a priori constraints on the val-
ues for each vector component are given, so-called bottle-
neck conditions. Before returning the result set to the user
these constraints can discard solutions that violate essen-
tial constraints. However, top k retrieval cannot work with
multiple objectives, i.e. incomparable utilities or goals.

Among the non-aggregated definitions of overall best
objects, the notion of Pareto optimality (often referred to
as skyline queries in database literature) is the broadest,
because only objects are discarded from the final result set
that are in all components of their describing vectors
worse or equal (with a strict ‘worse’ in at least one com-
ponent) than another object of the database, i.e. o < w, iff
(si(o) ≤ si(w) (1 ≤ i ≤ n) ∧ ∃ q ∈[1,…,n] : sq(o) < sq(w)).
Thus best objects with respect to any monotonic optimiza-
tion function can be found among the Pareto set (and so
can the optimal objects with respect to multiple objec-
tives). This good behavior in recall is, however, generally
affecting the precision and the size of Pareto sets has been
shown to increase exponentially with growing dimensions
of the vectors, i.e. numbers of data characteristics [4].

Besides Pareto optimality, there are other qualitative
definitions of the term ‘overall best’ in the formulation of
our problem. For example lexicographic optimization,
where objective vectors are compared lexicographically,

i.e. given a certain order of indexes from 1 to n: x < y iff
sk(x) < sk(y), where k is the smallest index such that si(x) =
si(y) for all i (1 ≤ i < k ≤ n). This can be done with respect
to one (user-specified), or even all permutations of scor-
ing functions. Operating on numerical domains, this be-
havior can be realized using top k retrieval, if the order of
characteristics is enforced with high weightings in a com-
pensation function such that more important characteris-
tics are assigned weightings that cannot be compensated
by less important characteristics, see e.g. [17].

For the use in personalization in database retrieval and
engineering of user preferences recent research in [7] and
[13] has shown that these three operators (score aggrega-
tion, Pareto accumulation and lexicographic ordering) are
the most common and essential constructors to build
complex user preferences into queries allowing arbitrary
combinations. Besides, also the closure of preference con-
struction with these operators is shown for general partial
orders. However, up to now for query processing only the
naïve algorithm accessing and pairwise comparing all
database objects has been proposed.

2.2. Basic Object Access Model

Our work in multi-objective database retrieval aims at
using a minimum number of object accesses before deliv-
ering the final result set. Unlike statistical approaches we
will always guarantee a correct result set. There have been
a number of approaches for top k or skyline algorithms
(see sections 2.3 and 2.4) that show advantages in differ-
ent architectures or for different data distributions. For the
scope of this paper we will abstract from the underlying
system architecture and just rely on some very basic ac-
cess functions common in query processing literature. We
will assume (several) ranked lists for each feature of the
query in which database objects are ranked in descending
order according to their score values with respect to a
single feature. A sorted access iterates these lists and ac-
cesses objects rank by rank. A random access on the other
hand can be posed to a data source retrieving the score
values of a specific object with respect to a single feature.

Owing to this abstraction our approach can be applied
in both middleware architectures and over central multi-
dimensional indexes. Obviously the use of central indexes
will essentially speed up the retrieval, but e.g. in Web
information systems using various subsystems and as-
sembling the information on the fly it is not always possi-
ble to operate on such a central index structure. The main
difference is that in distributed systems the iteration over
sorted lists for each characteristic (possibly provided by
different subsystems) is stopped, if a certain condition
becomes true and all unseen objects may be discarded,
whereas using multidimensional indexes like R*-trees
whole subtrees can instantaneously be pruned, if the up-
per/lower bounds for their maximum/minimum objects
meet the necessary condition. Examples for this are e.g.
the middleware top k retrieval in [11] and the central in-

938

dex top k retrieval in [8] or the distributed skylining in [1]
and the central index skylining in [23]. However, in all
these cases basic algorithms are similar. We will revisit
their basic traits in brief within the following sections.

2.3. Top k Retrieval (m = 1)

Top k retrieval states the basic idea that a single mono-
tonic compensation function can be used to aggregate a
certain number of characteristics of database objects into
a single score providing the final order of the all objects
among which k best objects are to be singled out. For
weighting the relative importance of each single charac-
teristic and thus determining the degree of compensation,
users are generally allowed to specify weights, e.g. in a
weighted average as compensation function. This ap-
proach often occurs e.g. in information retrieval, where
weighted averages for the keyword occurrences are calcu-
lated or in content-based retrieval over Multimedia data-
bases. Please note, that in this case all database objects are
ranked into a (non-strict) total ordering. Besides central
index approaches like k-nearest-neighbor searches, the
algorithm using a threshold condition has been proved to
be most efficient for applications [20], [11], [21], [6], [2]
and has even been shown to be instance-optimal [10]. To
be self-contained we present the basic algorithm below.

Basic Top k Retrieval:
1. Get an object by sorted access on one of the lists
2. For new objects perform random accesses on the other
lists and aggregate the object’s total score using the com-
pensation function
3. Aggregate a threshold using the current minimum
scores in each list as input for the compensation function
4. If there are k objects having a higher or equal score
than the current threshold, discard all unseen objects, oth-
erwise return to step 1
5. Output the k objects with highest score as top k objects

Please note that top k algorithms generally will neither
retrieve all, nor only strictly the optimal objects with re-
spect to the compensation function. They will output
some k best objects and stop, even if some of these k ob-
jects are already dominated or there are more than k ob-
jects having the optimal score. The choice of a suitable
value of k for each application is therefore difficult. If all
objects with the optimal score should be retrieved (‘all top
objects’), the condition in step 4 has to be altered to
‘strictly higher (>)’ instead of ‘higher or equal (≥)’.

2.4. Skyline Queries and Pareto Optimality (m = n,
(f1,…,fn) = (idS1,…,idSn)

A skyline query describes the case when all characteris-
tics are considered to be incomparable and the objective
functions are just the projections on the respective scores
(i.e. fi(s1,…,sn) = si). Since no compensation between
characteristics is possible, the query result (the so-called
skyline) consists of all objects that are not dominated in
all aspects by any other object in the sense of Pareto op-

timality. Efficient algorithms have been heavily re-
searched in recent years; see e.g. [5], [24], [14], [23]. Also
in this case the algorithms differ in a variety of heuristics
and techniques used, but again we will present the basic
optimal algorithm only using the abstract access methods
over sorted lists for each aspect as given in [1].

Basic Skylining:
1. Get an object by sorted access on one of the lists
2. For new objects perform random accesses on the other
lists
3. If an object has already occurred in all of the lists, re-
trieve all additional objects that have the same score as
the current minimum in each list and discard all unseen
objects, otherwise return to step 1
4. Compare objects pairwise and output all non-
dominated objects as the skyline

3. An Multi-objective Retrieval Algorithm
Having revisited the special algorithms we are ready to
present an efficient unifying algorithm that allows to han-
dle all cases of multi-objective retrieval. Given sorted lists
for each characteristic and using the two basic access
techniques of sorted and random access all retrieval algo-
rithms will start iterating over the lists (since wild guesses
cannot be sensible). The naïve approach would just iterate
completely over the lists, get the score values for each
database object and then start the aggregation with the
objective functions and compare the objects pairwise for
domination. Obviously this algorithm accesses all data-
base objects and is of quadratic complexity O(N2) in terms
of pairwise comparisons. Thus it definitely cannot scale
with large database sizes. To improve this behavior the
important issue is to know when the iteration over the
sorted lists can be stopped at the earliest time and the rest
of database objects can be discarded. We will show the
important result that our algorithm only uses an instance-
optimal number of expensive object accesses.

But first we need some basic properties of the objec-
tive functions and then we are ready to present an algo-
rithm introducing a virtual object. Throughout this paper
we will assume that all objective scores are given by a set
of monotonic functions. We will also assume the objec-
tive functions not to be constant on the set of all objects
(constant functions could simply be omitted, because they
do not influence the result). And we will denote the objec-
tive scores of an object o as F(o) := (f1(s1(o),…,sn(o)),…,
fm(s1(o),…,sn(o))) and the domination in the sense of
Pareto optimality as F(x) > F(y).

Basic Multi-objective Retrieval:
0. Given n lists ranking N database objects, each sorted
descending by score and m monotonic functions f1,…,fm
1. Get an object o by sorted access from any list in a
round robin fashion
2. For new objects perform random accesses on the other
lists and calculate the object’s objective scores F(o)

939

3. Create a virtual database object p characterized by the
minimum score values that have occurred in each list, as
its score values (i.e. si(p) is the current minimum score in
the i-th list) and calculate its objective scores F(p)
4. If some object w has already been seen for which holds
F(w) > F(p), i.e. its objective scores are better or equal,
but in at least one dimension strictly better than the virtual
object’s, discard all unseen objects, else return to step 1
5. Compare all seen objects pairwise and output all non-
dominated objects as the result set of non-dominated ob-
jects.

Let us now consider our traffic information example
(example 2) and see, how the algorithm works. We got
three ranked lists of which the first two (distance and
congestion) can be compensated say using a weighted
average feco(o) := ½ (s1(o) + s2(o)) and consider the third
score (weather) under the notion of Pareto optimality.
Please note that this is just a simple case of two objectives
that could be realized by first running a top k algorithm on
list s1 and s2 and then run a skyline algorithm on the ma-
terialized list feco and s3, however resulting in linear data-
base scans accessing all database objects. Consider the
following three lists s1, s2 and s3 containing database
objects oi and their scores in descending order. Table 1
shows the first few top ranked objects of each list.

 s1 distance s2 jam free s3 weather

rank oid score Oid score oid Score

1 o1 0.98 o2 0.92 o3 0.9

2 o4 0.94 o5 0.84 o6 0.8

3 o7 0.9 o8 0.82 o9 0.8

4 o10 0.87 o11 0.81 o12 0.8

… … … … … … …

Table 1: Sample values for three lists

Oid score
s1

score
s2

Score
s3

Objective
scores

 scores of the
virtual object
at access time

o1 0.98 0.62 0.3 (0.8, 0.3) (0.99, 1.0)

o2 0.88 0.92 0.1 (0.9, 0.1) (0.95, 1.0)

o3 0.5 0.5 0.9 (0.5, 0.9) (0.95, 0.9)

o4 0.94 0.82 0.8 (0.88, 0.8) (0.93, 0.9)

o5 0.56 0.84 0.2 (0.7, 0.2) (0.89, 0.9)

o6 0.6 0.4 0.8 (0.5, 0.8) (0.89, 0.8)

o7 0.9 0.5 0.7 (0.7, 0.7) (0.87, 0.8)

Table 2: Object accesses using the new algorithm

We will start with sorted accesses in a round robin
fashion on all three lists (shown bold) in table 2 (step 1).
After each sorted access we do the necessary random ac-
cesses to calculate the object’s objective scores (step 2).
The first part of the objective score is then calculated us-
ing the function feco, whereas the second part here is sim-
ply the projection on s3. Then we calculate the virtual ob-
ject with scores using the minimum values in each list as
input (step 3). After retrieving object o7 however, we can
according to step 4 of our algorithm already stop object
accesses and discard all unseen objects, because object o4
now dominates the virtual object. After comparing all
seen object pairwise for domination (step 5) we will find
that in our small example only o2, o3 and o4 are non-
dominated by other objects and can be output as optimal
results (o1, o5, o6 and o7 are all dominated by o4). Thus,
even though in this case a implementation by top k/sky-
lining algorithms would be possible, we are able to pro-
vide a definitive output already after the first few object
accesses instead of needing a linear database scan.

Before we further refine the algorithm let us state its
correctness and compare it to the basic algorithms in the
special cases in 2.3 and 2.4.

Theorem 1: Correctness of Multi-objective Retrieval
The basic algorithm for multi-objective retrieval always
terminates and delivers all non-dominated and only the
non-dominated objects with respect to the given set of
monotonic objective functions F.

Proof:
If all objects are non-dominated, the algorithm obviously
will terminate after one of the lists has been entirely proc-
essed and all objects have been seen and correctly output.
However, generally not all objects will be non-dominated
with respect to the objective functions F. Thus, if we have
seen any two objects x and y with F(x) > F(y), i.e. y is
dominated by x, termination is obviously guaranteed at
the latest when y has already occurred in all lists, due to
F(x)> F(y) ≥ F(p).

Now we have to prove that by discarding all unseen
objects after F(x) > F(p) holds for any seen object x we
will never discard a relevant, i.e. non-dominated, object.
Let U be the set of still unseen (and thus in step 4 dis-
carded) objects after termination and Q the set of all seen
objects. Let’s assume that until termination we have iter-
ated all i lists down to values pi (1 ≤ i ≤ n) and have also
retrieved in step 4 at least one object q dominating the
virtual object. Since the objects in U have not been seen,
we can conclude that their score is smaller or equal in all
lists than the score of the virtual object p with si(p) := pi.
Due to the set of objective functions being monotonic we
get: ∃ q ∈ Q ∀ u ∈ U : F(u) ≤ F(p) < F(q).

Thus q dominates all the unseen objects and since in
step 5 we check all seen objects pairwise for domination,
we can neither leave out relevant objects nor return domi-
nated objects. ■

940

Additionally, we will now show that our algorithm’s I/O
costs (i.e. total number of object accesses) are instance-
optimal. The concept of instance optimality was defined
by [10] over abstract classes of algorithms and database
instances. If an algorithm’s complexity over any possible
instance of databases (i.e. any number of objects and any
distribution of scores) is optimal among all algorithms in
a certain class, it is said to be instance-optimal for this
class of algorithms. Or more formally, consider our algo-
rithm X as an element of the class A of all algorithms,
which are capable of delivering correct multi-objective
retrieval results for monotonic objective functions, and D
as a specific instance of all possible database instances D,
which are sorted lists of database objects with score val-
ues assigned. Since we want to focus on I/O costs we
have to consider the necessary number of object accesses,
denoted as accesses(A). Then X is instance-optimal over
A and D, if for every algorithm A∈A and every database
instance D∈D holds: accesses(X, D) = O(accesses(A,D)),
i.e. for any chosen algorithm A of class A we can state
accesses(X,D) ≤ C accesses (A,D) + C’ with some posi-
tive constants C (‘optimality ratio’) and C’. The following
theorem shows the instance-optimality of our approach:

Theorem 2: Instance-optimality of object accesses
Let D be the class of all possible database instances in the
form of n lists of database objects ranked by score, and A
the class of all possible algorithms that use only sorted
and random accesses and correctly retrieve all optimal
objects from these lists for any set of m monotonic objec-
tive functions. The preceding multi-objective retrieval
algorithm is instance-optimal over A and D, i.e. accesses
an optimal number of objects up to a constant factor.

Proof:
At our algorithm’s termination (and thus the end of object
accesses) the first object has been accessed, whose scores
are better or equal than the virtual object’s and strictly
better in at least one dimension. We will show that for any
algorithm that will not do sorted accesses up to that point
there can be an object that is non-dominated with respect
to the objective functions and thus a relevant object would
have been missed by the algorithm. Hence the expansion
of lists (and thus the number of objects accessed) for our
multi-objective retrieval algorithm is instance-optimal.

Since random accesses can be performed only on ob-
jects that have been previously seen by sorted accesses
and excluding ‘wild guesses’ on the database content, an
algorithm can only access formerly unknown objects by
sorted access. For the sake of contradiction let us now
assume there would exist a correct algorithm A of class A
that could stop object accesses before at least one seen
object o fulfills F(o) > F(p), i.e. there is no object that has
better or equal objective scores dominating the virtual
object. We will show that now we can construct a data-
base instance of D containing at least one object still un-
seen by A, but nevertheless optimal with respect to the
objective functions F, and therefore we get a contradiction
to algorithm A’s correctness and hence its existence.

Let p be a (virtual) object, whose scores are given by
the minimum seen by sorted access in each list. Assume
that algorithm A has terminated over database instance
D∈D having performed sorted accesses up to scores
p1,…,pn in the n lists, however without having accessed at
least one object with larger objective scores than the vir-
tual object’s (otherwise our algorithm would also already
have terminated). We will now construct a database in-
stance D’∈D that is exactly like instance D up to the ob-
ject p’s scores p1,…,pn, but immediately behind the last
object that A has accessed by sorted access in each list on
D, in D’ we will insert a new object w having also score
values p1,…,pn. Obviously D’ is a valid instance of class
D. Due to construction algorithm A will terminate over D’
exactly at the point it terminated over D and since no ob-
ject o with F(o) > F(p) in D has been accessed, also no
object with F(o) > F(p) will be accessed in D’.

Let us now take a closer look at object w. Since it has
not been accessed by algorithm A before termination, it
cannot have been output in the result set of non-
dominated objects. Thus either it must be dominated or
algorithm A is not correct. We will now show that w can-
not be dominated by any object in D’ and therefore is
optimal with respect to the objective functions. According
to theorem 1 w cannot be dominated by any unseen ob-
ject, because every unseen object has score values lesser
or at most equal p1,…,pn, i.e. due to the objective func-
tions being monotonic, an unseen object cannot have a
strictly better score in any dimension, which however is
necessary for domination. Thus w would have to be
dominated with respect to the objective functions by an
object o already seen by algorithm A. But by dominating
w the object o would also dominate the virtual object p
and we would have an object that fulfills F(o) > F(w) =
F(p) in contradiction to our assumption. Though having
proved that the termination condition is necessary, there
still could be an algorithm using a more sophisticated
strategy to choose lists for the next access than round
robin (cf. section 5.2). However, let a be this number of
accesses, then a round robin strategy will at the latest stop
after n*a accesses. Thus the instance optimality still holds
with an optimality ratio C = n. Please note, that we did not
make any assumptions on the distribution of scores or the
nature of the objective functions (except being mono-
tonic). Thus our basic algorithm is instance-optimal over
all multi-objective retrieval algorithms for all possible
database instances. ■

We will now state that both basic algorithms for top k
retrieval and skylining are just special cases of our multi-
objective retrieval algorithm. Please note that the respec-
tive algorithms were proven to be optimal in [10] and [1].

Observation 1: Relationship of multi-objective re-
trieval to top k queries and skylining
Top k retrieval and skylining are special cases of multi-
objective retrieval and in either case the basic multi-
objective retrieval algorithm will behave like the given
basic algorithms for top k retrieval and skylining.

941

Proof:
The basic behavior in iterating the sorted lists and doing
random accesses to get all score values is the same in all
three algorithms. In the special case of top k retrieval (m
= 1) the termination condition for multi-objective retrieval
is F(o) := f1(s1(o),…,sn(o)) > f1(p1,…,pn). Thus the com-
plete number of objects having the top score is retrieved,
i.e. all non-dominated objects being strictly better than the
threshold. Generally we will get more than one object, but
we will really get all top objects (the progressive algo-
rithm in section 4 outputs objects with the respective top
score one by one at the earliest possible point in time like
progressive top k algorithms). To derive the top k objects,
we can return any arbitrary subset of cardinality k out of
the top objects or return all top objects and then run the
algorithm again with these objects removed, if k is larger
than the number of maximal elements.

In the case of skylining we have n = m and (f1,…,fn) :=
id. Thus our termination condition becomes:
F(o) := (id)(s1(o),…,sn(o)) = (s1(o),…,sn(o)) > (p1,…,pn) =
 = (id)(p1,…,pn) =: F(p)
which means that ∀ 1 ≤ i ≤ n : si(o) ≥ pi with at least one
dimension in which it is strictly better. Thus also in this
case we are not allowed to terminate before F(o) > F(p)
holds, because otherwise we could miss optimal objects.
If an object o has occurred in all lists and we retrieve all
objects with minimum scores like in the skylining algo-
rithm (step 3), obviously this object also dominates the
virtual object and thus our algorithm would terminate at
the same time and would deliver exactly the same correct
result set. On the other hand, if F(o) > F(p) holds and
fi(si(o)) := si(o), then we must have accessed all lists down
to si(o) ≥ si(pi) and thus seen o in all lists. ■

4. Progressive Output of Result Sets
We have seen our algorithm in both special cases to be-
have like the known optimal algorithms and to handle any
arbitrary number and all instances of monotonic objective
functions with instance-optimal complexity. Now we en-
able our algorithm to output result objects not only in a
single batch after termination, but on the fly as soon as
they are found and have been proved to be Pareto-opti-
mal. This successive output of objects essentially reduces
the psychological response time. To allow for outputting a
result object at the earliest possible point in time, we now
investigate which objects could possibly dominate it.

Lemma 1: Finding dominated objects
Let f be any monotonic objective function defined over a
subset Sf of the n ranked score lists. At any point in time
an object o that is accessed in one of the lists of Sf can
only be dominated with respect to f by an object w having
a strictly better score than o in at least one list in Sf.

Proof:
To be dominated with respect to a single objective func-
tion means that f(w) = f(sh(w),…,sl(w)) > f(sh(o),…,sl(o))
= f(o) with sh,…,sl being the score lists of Sf. Since f is

monotonic, it follows directly that there has to be a list si
such that si(w) > si(o). ■

Lemma 2: Distinguishing objects by objectives
Assume that all objects seen by sorted access, are divided
into some m sets K1,…,Km according to the lists in which
they were seen and the objective function that uses these
lists as input, i.e. if an object o is accessed by sorted ac-
cess in list si (1 ≤ i ≤ n) and objective function fk uses this
set as (one of its) input(s), it is added to set Kk. Now let fk
be defined over the score lists Sfk := {sh,…,sr} and let
ph,…,pr be the minimum scores accessed by sorted access
in the lists of Sfk. Any object o, for which fk(sh(o),…,sr(o))
> fk(ph,…,pr) holds, can only be dominated by any data-
base object w that is already in the same set Kk.

Proof:
Let o be an object assigned to set Kk and let o be

dominated by some object w. Let us further assume that
fk(sh(o),…,sr(o)) > fk(ph,…,pr) holds with si and pi defined
above, i.e. o dominates object p with score values ph,…,pr
wrt. objective function fk. If w would not be in set Kk, it
cannot have been accessed by sorted access in any of the
lists in Sfk yet. Since the score lists in Sfk have been ac-
cessed down to scores ph,…,pr, it follows that sh(w) ≤
ph,…,sr(w) ≤ pr. Due to lemma 1 w therefore cannot domi-
nate the virtual object p. However, we know w to domi-
nate object o, which in turn dominates the virtual object p,
leading to a contradiction. Hence w must be part of Kk. ■

Theorem 3: Correctness of the progressive output
Let f1,…,fm be m monotonic objective functions, K1,…,
Km be defined like in lemma 2 and add all objects that
have been accessed by sorted access in a certain score list,
to each set Kk of all objective functions fk that are defined
over this score list. Then:

a) If in any set Kk there is an object o for which holds
fk(sh(o),…,sr(o)) > fk(ph,…,pr) (with sh,…,sr and ph,…,pr as
in lemma 2) and this object o is not dominated by any
other member of Kk having a higher or equal score with
respect to fk, we can immediately output o as correct re-
sult with respect to our multi-objective retrieval problem.

b) If there is no object w for which holds F(w) > F(p),
all objects, also all seen objects z with F(z) = F(p) can
immediately be output.

Proof:
a) Accessing an object by sorted access means that

due to the sorting of the score lists, we have already seen
all objects having better scores in the list. Since each
score list only contributes to objective scores if the re-
spective objective function is also defined over that list,
after each sorted access we can focus on the respective
subset of sets Kk. This way we keep each set Kk as small
as possible. Lemma 2 shows that for each single set Kk
the condition fk(sh(o),…,sr(o)) > fk(ph,…,pr) is sufficient
for object o to be dominated with respect to fk only by
objects in the same set Kk. We thus only have to show that
if o is not dominated in any single set Kk, it also cannot be
dominated with respect to all objective functions F :=
(f1,…,fm) and therefore can be correctly output.

942

For the sake of contradiction let us assume that we
have found an object o in any set Kk with the above char-
acteristics and let us further assume that though o is not
dominated by any object in Kk, it is dominated by another
object x ∉ Kk with respect to F. Being dominated with
respect to F means F(x) > F(o), i.e. fi(s1(x),…,sn(x)) ≥
fi(s1(o),…,sn(o)) for all 1 ≤ i ≤ m (with a strictly better for
at least one i). Thus we also have fk(s1(x),…,sn(x)) ≥
fk(s1(o),…,sn(o)). Since fk(sh(o),…,sr(o)) > fk(ph,…,pr) and
fk is only defined over score lists sh,…, sr, we can con-
clude: fk(sh(x),…,sr(x)) ≥ fk(sh(o),…,sr(o)) > fk(ph,…,pr)

Therefore using lemma 1 we know that there must be
at least one score si(x) > pi among all score lists over
which fk is defined. Since they have been accessed down
to ph,…,pr we must already have accessed x by sorted
access in one of the lists and thus x would be an element
of Kk in contradicting our assumption. Hence o is optimal
with respect to F, if o it is not dominated in any Kk.

b) The second statement is obvious, since if any object
z with F(z) = F(p) would be dominated by some seen ob-
ject w, this object w would also satisfy F(w) > F(z) = F(p).
On the other hand z cannot be dominated by any unseen
object x, since F(z) = F(p) ≥ F(x). ■

Observation 2: Earliest possible progressive output
The conditions a) fk(sh(o),…,sr(o)) > fk(ph,…,pr) in any set
Kk, and b) F(o) = F(p), while there is no w with F(w) >
F(p), for successive output of results given in theorem 3 a)
and b) lead to the earliest possible output of result objects
with guaranteed correctness. That means for arbitrary
database instances, all monotonic objective functions and
any result object o our algorithm needs no more accesses
(up to an universal multiplicative constant) to correctly
return o as any other algorithm.

Proof:
For brevity we will just sketch the proof of observation 2;
it works along the lines of the proof for theorem 2: If
some algorithm A would deliver object o before either
condition a) holds in some Kk, or condition b) holds, we
can construct an object q hitherto unseen by algorithm A
that has exactly the minimum scores p1,…,pn (if A had
seen q it would have accessed objects at least in one score
list with sorted accesses down to the respective score of p
and then it would not be better than the round robin strat-
egy of our algorithm up to a multiplicative constant).
Since neither a) holds for any k, we get fk(sh(o),…,sr(o)) ≤
fk(ph,…,pr) = fk(sh(q),…,sr(q)) for all k, nor b) holds, we
get that there is a k with fk(sh(o),…,sr(o)) < fk(ph,…,pr) =
fk(sh(q),…,sr(q)). Thus q dominates o and o would have
been output incorrectly by A. Hence either A is incorrect
or needs the same number of object accesses to output o
than our algorithm (up to a multiplicative constant). ■

Let us now consider how the progressive output
scheme works together with our basic multi-objective
retrieval algorithm. The next theorem shows that when
our termination condition becomes true, we have already
progressively output all correct result objects and thus can
immediately discard all other objects.

Theorem 4: Completeness of output result objects
At the first point in time that any seen object o dominates
the minimum scores in each list with respect to all objec-
tive functions, i.e. F(o) > F(p), and objects have been out-
put successively like stated in theorem 3, the entire cor-
rect multi-objective result set has already been output

Proof:
Theorem 3 shows that all objects w are output, imme-

diately after the condition fk(s1(w),…,sn(w)) > fk(p1,…,pn)
has become true in some set Kk. So we have to show that
no object, which has not yet been output, can be optimal
with respect to F after F(o) > F(p) has become true for
some object o. Let pi be the minimum scores seen by
sorted access in each score list. Since we have output all
non-dominated objects w with fi(s1(w),…,sn(w)) >
fi(p1,…,pn) for all i, 1 ≤ i ≤ m, we have to check that no
object q with fi(s1(q),…,sn(q)) ≤ fi(p1,…,pn) for all i can be
optimal with respect to F. However, since we have seen
an object o dominating the virtual object p, for all 1 ≤ i ≤
m we know fi(s1(q),…,sn(q)) ≤ fi(p1,…,pn) ≤
fi(s1(o),…,sn(o)) and due to the definition of domination
there is an index j for which fi(s1(q),…,sn(q)) ≤ fi(p1,…,pn)
< fi(s1(o),…,sn(o)). Thus object q is always dominated by
object o and can not be in the non-dominated result set. ■

Now we are ready to formulate the improved algo-
rithm and demonstrate its output behavior with a short
example. We will further adopt the sets Ki to be sorted
lists, where every new object is inserted in the right place
according to its score with respect to fi. This does not alter
the algorithm’s complexity in terms of accesses, but
makes the necessary object comparisons easier. We will
also use two variables ai and bi with each list Ki, such that
all objects in Ki having larger scores than ai with respect
to fi have already been output or discarded as dominated
and bi is the current value of fi using the lowest scores
seen so far as input. That means in every Ki we are done
with objects having higher or equal values of fi than ai,
and we have to consider objects for output having values
between ai and bi and cannot yet output all objects with
values up to bi (for a detailed discussion of ai and bi see
[1]). Furthermore we will use two sets R and X containing
the output optimal result objects and the discarded domi-
nated objects respectively. Thus we will never scrutinize
already output objects or those known to be dominated.
Progressive Multi-objective Retrieval:
0. Given n lists of database objects sorted descending by
score, m monotonic functions f1,…,fm, two empty lists R
(returned objects) and X (dominated objects) and m empty
sorted lists K1,…,Km with variables a1, b1,…, am, bm := 1.
1. Get an object o by sorted access from any list si in a
round robin fashion
2. For new objects perform random accesses on the other
lists and calculate the object’s objective scores F(o)
3. Create a virtual object p assuming the minimum score
values that have occurred in each list to be its score values
(i.e. si(p) is the current minimum score in the i-th list) and
calculate its objective scores F(p)

943

4. For all functions fk that are defined over si do
4.1. Insert o into Kk, if o is not in set X
4.2. ak := bk, bk := fk(s1(p),…,sn(p))
4.3. Compare all objects q ∈ Kk that are not in set R
and for which bk < fk(s1(q),…,sn(q)) ≤ ak holds, pair-
wise for domination. If any object is dominated, delete
it from the list Kk and add it to set X.
4.4. Compare the remaining objects q that are not in
set R for domination with all objects y ∈ Kk with
ak < fk(s1(y),…,sn(y)). If q is dominated by any object y
delete it from Kk and add it to set X, else output q and
add it to set R.

5. If an object w has already been seen for which holds
F(w) > F(p), i.e. its objective scores are better or equal,
but in at least one dimension strictly better than the virtual
object’s, discard all objects that have not yet been output,
and terminate the algorithm.
6. Consider all objects z in any of the sets Kk (1 ≤ k ≤ m)
for which fk(s1(z),…,sn(z)) = bk holds for all k. Output
those objects z and add them to set R.
7. Proceed with step 1

Before we will give an example that the output behav-
ior of our progressive algorithm effectively enhances the
basic version, we will state a short observation on the new
algorithm’s correctness and instance-optimality.

Observation 3: Correctness and optimality for the
progressive multi-objective retrieval algorithm
The multi-objective retrieval algorithm with progressive
output of result objects is correct and instance-optimal
with respect to the object accesses needed and the re-
sponse time till the delivery of the first result object.

Proof:
Theorem 3 a) + b) and 4 show that the progressive multi-
objective retrieval algorithm only delivers correct result
objects and does not miss any relevant objects. Since we
have not altered the termination condition in step 5, also
the instance-optimality of the number of necessary object
accesses like shown in theorem 2 still holds. Thus our
progressive algorithm is correct and instance-optimal. The
last statement follows directly from observation 2. ■

Let us now focus on our example to show how the al-
gorithm works. Again we will use the simple three list
traffic information scenario given by example 2 (table 1).
Like before we will aggregate the first two lists with an
average and just project the third list into objective space.
The algorithm runs as before, but now assigns objects
accessed in lists s1 and s2 to set K1 and objects accessed in
list s3 to set K2. Table 2 shows our object accesses (sorted
accesses shown bold) whereas table 3 shows our two sets
K1 and K2. First we make a sorted access on s1 and add
the object o1 to set K1, the same happens for o2 in list s2.
Object o3 is added to K2, because s3 only contributes to f2,
whereas s1 and s2 only contribute to f1 (=feco). Please note
that processing more complex objectives may involve
several or even all sets Kk for each object, but our algo-
rithm keeps the Kk as small as possible to reduce neces-
sary comparisons within the Kk for progressive output.

After we have accessed o5 by sorted access in s2, we
can safely output o2, because the minimum scores of s1
and s2 lead to the threshold b1 := f1(0.94,0.84) = 0.89 for
the first time being strictly smaller than o2’s score of 0.9
with respect to f1 and o2 is not dominated by any other
object in K1 (all objects in K1 have strictly lower scores
with respect to f1). For the same reasons we can safely
output o3 in K2 after we have accessed o6. And after ac-
cessing o7 we can output o4 from K1 (because it could
only be dominated by o2 in K1. However o4’s score with
respect to f2 is strictly higher than o2’s; thus it is not
dominated by o2). Like before, o4 is also the first element
dominating the virtual object and thus the algorithm ter-
minates having successively output all optimal objects
with respect to our multi-objective query. Table 3 shows
the final state with counters b1 = 0.87 and b2 = 0.8. All
objects with higher scores have been output.

K1 K2 prog. Output

oid score Oid score oid Score

o2 0.9 o3 0.9 o2 (0.9, 0.1)

o4 0.88 o6 0.8 ← b2 o3 (0.5, 0.9)

o1 0.8

←b1

 o4 (0.88, 0.8)

o5 0.7

o7 0.7

Table 3: Lists K1 and K2 and progressive output

5. Experiences in Practical Applications
As we have discussed in section 2 the only ways to

handle multiple objectives today are given by complex
preference frameworks like given in [7] or [13], since the
top k (compensating all score lists) and skyline (compen-
sating no score lists) approaches only accommodate the
extreme cases. However, the actual algorithms given for
evaluating complex preference queries up to now always
create views containing the non dominated objects by
accessing all database objects and compare pairwise for
domination. Our algorithm can do essentially better. Con-
sider for instance our running example: using basic con-
structors, we would have three preferences P1 (shortest
route), P2 (least congestion) and P3 (best weather) given
by our basic score lists s1, s2, s3. Then we would have to
evaluate a complex expression averaging the first two
preferences and merging this new list with the third list s3
in a Pareto optimal fashion. Since our algorithm has
transparent access to score lists, it does not have to calcu-
late a complex view over the base relations accessing all
the database objects. It focuses on the necessary accesses
only, using F(o) = ((s1(o)+s2(o)/2, s3(o)) and with an in-
stance optimal number of object accesses nevertheless
always delivers the correct result set. In the following we

944

will focus on the complexity of the result sets and the
connection with the objective functions used.

5.1. Bounding of Multi-objective Result Complexity

When using the multi-objective algorithm for practical
applications in information systems, queries can quickly
involve a rather high number of objectives, i.e. dimen-
sions. However, Pareto optimal sets tend to grow expo-
nentially with increasing numbers of dimensions [4] (of-
ten referred to as ‘curse of dimensionality’). Thus, we will
have to investigate this relevant problem also for multi-
objective retrieval and see how multiple objectives affect
the size of the subsequently retrieved result set.

Let us first assume that all objective functions are de-
fined over a disjoint set of score lists, e.g. f1 is defined
over s1,…,sk, f2 is defined over sk+1,…,sr, and so on. Then
the complexity of the result set is always reduced from
growing with the number of score lists n to only growing
with the smaller number of objective functions m. The
importance of this can be seen in our practical experi-
ments in figure 2. Assuming statistically independent uni-
form score distributions, figure 2 shows the actual size of
average result sets in our tests for different numbers of
dimensions (3, 5, 10) and different database sizes. As we
can see the result sets have manageable sizes only in case
of low dimensionality, but in cases of only ten dimen-
sions, we e.g. already have to return up to 50% of all da-
tabase objects in the result set for 10,000 objects. This
behavior is due to Pareto optimality being a rather weak
concept and producing lots of incomparable result objects
with growing numbers of dimensions.

A dimensionality reduction with suitable objective
functions is therefore needed. Moreover, the strong as-
sumption that all objective functions work on a disjunc-
tive set of score lists generally does not hold leading to a
certain degree of correlation in the results of the objective
functions, which in practical experiments has been shown
to further reduce results sizes, see e.g. [5]. So if the num-
ber of objective functions m is smaller than the number of
score lists n, we can always assume the result size to be
reasonably small. But what if a user adds objectives over

a certain number of score lists? Assuming a sensible char-
acteristic of the set of objective functions, in the following
observations we will show that in this case not only does
the result set does not grow exponentially with the num-
ber of objectives, but is always limited by the size of the
basic Pareto set over the score lists. Let us therefore state
the following definition:

Definition 1: Strict monotonic set of functions
As set of n objective functions F := (f1,…,fn) is called
strict monotonic, if (o < w) ⇒ (∀ 1 ≤ i ≤ n : fi(o) ≤ fi(w)
∧ ∃ 1 ≤ k ≤ n : fk(o) < fk(w)).

Examples for basic strict monotonic functions include
e.g. the large group of weighted sums like the average,
geometrical means, etc. To obtain a set of strict mono-
tonic functions it is sufficient that only a subset of the
functions is strict monotonic. However, the subset then
already has to be defined over all of the score lists si. Us-
ing that, let us now state a helpful bounding property.

Observation 4: Bounding of multi-objective results
The size of the multi-objective result set R for a strictly
monotonic set F of m objective functions f1,…,fm over n
ranked score lists s1,…,sn is always upper bounded by the
size of the set of Pareto-optimal objects P over the ranked
score lists s1,…,sn.

Proof:
We will show the set inclusion R ⊆ P and therefore the
size of P is always an upper bound for the size of R. As-
sume for the sake of contradiction there would exist an
object o in R, which is not in P. Since o ∉ P, we have to
conclude that there is some object w ∈ P with si(o) ≤ si(w)
(1 ≤ i ≤ n) and there is a 1 ≤ k ≤ n for which sk(o) < sk(w).
Since the objective functions f1,…,fm are all monotonic
we get fi(s1(o),…,sn(o)) ≤ fi(s1(w),…,sn(w)) (1 ≤ i ≤ m) and
thus due to the set F being strictly monotonic w would
also dominate o with respect to f1,…fm. ■

Theorem 5: Result set size and object accesses
The cardinality of result sets for multi-objective retrieval
over F = (f1,…,fm) grows only with increasing min(n, m).
Moreover, computing the multi-objective result set never
needs more object accesses than computing the respective
skyline (i.e. the Pareto-optimal set).

Proof:
For the growth of the result sets cardinality, we have to
distinguish two cases. If m < n and all score lists are used
by at least one objective function, there has to be at least
one fi that is defined over more than one score list, i.e.
aggregating some score lists into a single one. Thus the
Pareto-optimal set’s cardinality over f1,…,fm can only be
influenced by m score lists and thus grows with m. If m ≥
n observation 4 shows that the set of optimal result ob-
jects always is a subset of the basic set of all Pareto-
optimal objects over n score lists, growing only with n. 0

5
10
15
20
25
30
35
40
45
50

10000 100000
size of database

pe
rc

en
ta

ge
 o

f d
at

ab
as

e

3
5
10

Fig. 2: Result sizes for different numbers of lists

For the optimality of object accesses we know from
observation 1 that computing skylines is a special case of
multi-objective retrieval and thus at the latest if the sky-
line computation terminates by accessing some object o

945

with (s1(o),…,sn(o)) > (p1,…,pn), due to F being strict
monotonic also F(o) > F(p) holds and also our multi-
objective retrieval algorithm would have terminated. ■

Though expensive Pareto set computations can be
avoided in most practical cases, still high dimensional
problems without suitable aggregation functions will ex-
ist. Also in these cases our algorithm returns the correct
result set with an instance-optimal number of accesses.

5.2. Heuristics to Speed Up the Average Runtime

Though we have shown our algorithm to be instance-
optimal in terms of object accesses especially in cases of
skewed data distributions the average runtime can be im-
proved up to a factor of n (cf. theorem 2) by an advanced
control flow deciding which score list to access next by
sorted access (which can easily be integrated into step 1
of the algorithm). Moreover, by ascertaining that once in a
while every list will be accessed (e.g. after at most x ac-
cesses) we can even make sure that a greedy control flow
will still guarantee an instance-optimal algorithm (how-
ever with a somewhat higher optimality ratio, cf. [10]).
Adopting a better control flow than round robin strategy
relies on making the necessary condition F(o) > F(p) hold
more quickly for some object o and virtual object p. Since
the virtual object’s score values are given by the mini-
mum in each list, a virtual object with lower objective
scores improves the chances that one of the already ac-
cessed objects is able to dominate it. Thus we will focus
on fostering a quick decrease in the virtual object’s objec-
tive scores. Assuming that all objective functions are par-
tially differentiable, we will have to assess the influence
that a sorted access on any list will have on the virtual
object’s objective scores. Let us assume that a sorted ac-
cess on the i-th list will decrease the minimum score seen
in that list by di. Then the objective scores of p will in
each objective function fk decrease by (∂fk / ∂si) di (1 ≤ k ≤
m). Since we want to decrease p’s objective scores most
quickly, we choose the list for the next sorted access that
maximizes the sum of decreases in all fk. There may be
lists and objective functions discriminating well between
objects and show rapidly declining score distributions,
whereas other characteristics may not discriminate too
well and the scores in the respective lists may change only
slowly or even remain constant. For rapid decreases in the
virtual object’s scores and thus quick termination, we are
interested in accessing highly discriminating lists first.

Since we cannot know how much scores in the next
access on each list will decrease before we make an actual
access on this list, we need another heuristic to estimate
di. A similar approach in [11] assumes that the recent de-
velopment in each list gives a sufficient estimation what
will happen next. If we use the difference between the
current minimum and a score that has been accessed be-
fore h accesses in that list, we will usually get a good es-
timation how scores in the list will decline. Let q be an
(virtual) object that is given by the scores occurring h

accesses before the current minimum in each list. We will
estimate di by di := 1/h (si(q) – si(p)). With these simple
heuristics we will define an indicator ∆i for each list that
represents the expected gain by accessing this list:
 ∆i := 1/h Σ(∂fk / ∂si) (si(q) – si(p)) (1 ≤ k ≤ m)

0

20

40

60

80

100

3x2 6x3 10x5

%

round robin
indicator

Fig. 3: Improved number of object accesses

We have run practical experiments on statistical aver-
ages of run times for different score lists with skewed data
distributions and the average of arbitrary subsets of these
score lists as objective functions. We basically have com-
pared the round robin strategy in our basic algorithm
against the use of our indicator technique in step 1 for
choosing lists. We then measured the average numbers of
object accesses (in %) in a database with 10000 objects
for three different scenarios over a database with 10%
skew in the score distributions. The different scenarios
focus on 3 lists with two objective functions (3x2), 6 lists
with 3 objective functions (6x3) and 10 lists with 5 objec-
tive functions (10x5). Figure 3 shows the respective im-
provement factors for these scenarios for the basic and
improved algorithm. Depending on the scenario im-
provement factors even for these simple examples range
between 20% and 40% and grow with more skew, less
objective functions and more score lists to combine.

6. Summary and Outlook
This paper addresses the problem of multi-objective

retrieval in database query processing. We have in deep
discussed applications for this retrieval paradigm and the
meaning of ‘overall best’ objects from a database perspec-
tive. Multi-objective retrieval is especially useful for per-
sonalization problems, where multiple user preferences
have to be taken into account, and one has to compromise
between certain desired characteristics of database objects
to deliver high quality results. However, up to now only
for two extreme cases of such retrieval, namely top k re-
trieval and skyline queries, efficient algorithms have been
investigated. Handling cases involving several distinct
objectives, still needs to access and compare all database
objects. We have presented a novel multi-objective re-
trieval algorithm and proved that it always retrieves a
correct result set and uses only an instance-optimal num-
ber of object accesses. Moreover, it contains the respec-

946

tive optimal algorithms for top k retrieval and skylining as
special cases. We have subsequently enhanced it by al-
lowing for a successive output of result objects at the ear-
liest possible time while the algorithm is still running.

Finally we have addressed preliminary practical ex-
periences with applications of our algorithm. Our algo-
rithm can be easily integrated into practical personaliza-
tion frameworks or relational query processing. Concern-
ing the manageability of query results, we have also
shown that the cardinality of the multi-objective result set
is bounded by the size of Pareto-optimal sets over the
minimum of the number of score lists and objective func-
tion limiting down the set’s cardinality in most practical
cases. Implementing an advanced control flow we then
addressed how to save additional object accesses in the
case of skewed data distribution by focusing on the most
prominent objects at an early time. Based on the practical
experiences gained with our algorithm our future work
will focus on the problem of high dimensional multi-
objective sets, where the quality even between optimal
objects has to be assessed. Sophisticated sampling strate-
gies (cf. e.g. [1]) that give users an overview of the ex-
pected result set, and subsequent refinement of the query
may be techniques employed to tackle this problem.

7. References
[1] W.-T. Balke, U. Güntzer, J. Zheng. Efficient Distrib-

uted Skylining for Web Information Systems. In Proc
of the Int. Conf. on Extending Database Technology
(EDBT’04), Heraklion, Crete, Greece, 2004.

[2] W.-T. Balke, U. Güntzer, W. Kießling. On Real-time
Top k Querying for Mobile Services, In Proc. of the
Int. Conf. on Cooperative Information Systems
(CoopIS’02), Irvine, USA, 2002.

[3] W.-T. Balke, W. Kießling, C. Unbehend. Personal-
ized Services for Mobile Route Planning: A Demon-
stration. In Proceedings of the Int. Conf. on Data En-
gineering (ICDE 2003), Bangalore, India, 2003.

[4] J. Bentley, H. Kung, M. Schkolnick, C. Thompson.
On the Average Number of Maxima in a Set of Vec-
tors and Applications. In Journal of the ACM
(JACM), vol. 25(4) ACM, 1978.

[5] S. Börzsönyi, D. Kossmann, K. Stocker. The Skyline
Operator. In Proc. of the Int. Conf. on Data Engi-
neering (ICDE’01), Heidelberg, Germany, 2001.

[6] N. Bruno, L. Gravano, A. Marian. Evaluating Top-k
Queries over Web-Accessible Databases. In Proc. of
the Int. Conf. on Data Engineering (ICDE’02), San
Jose, USA, 2002.

[7] J. Chomicki. Querying with intrinsic preferences. In
Proc. of the Int. Conf. on Extending Database Tech-
nology (EDBT’02), Prague, Czech Republic, 2002.

[8] P. Ciaccia, M. Patella. The M2-tree: Processing
Complex Multi-Feature Queries with Just One Index.
In Proc. of the Int. DELOS Workshop on Querying
Digital Libraries, Zurich Switzerland, 2000

[9] K. Deb. Multi-Objective Optimization Using Evolu-
tionary Algorithms. J. Wiley & Sons, London, 2001

[10] R. Fagin, A. Lotem, M. Naor. Optimal Aggregation
Algorithms for Middleware. ACM Symp. on Princi-
ples of Database Systems (PODS’01), Santa Barbara,
USA, 2001.

[11] U. Güntzer, W.-T. Balke, W. Kießling. Optimizing
Multi-Feature Queries for Image Databases. In Proc.
of the Int. Conf. on Very Large Databases
(VLDB’00), Cairo, Egypt, 2000

[12] R. Keeney, H. Raiffa. Decisions with Multiple Objec-
tives: Preferences and Value Tradeoffs. Wiley, 1976

[13] W. Kießling. Foundations of Preferences in Database
Systems. In Proc. of the Int. Conf. on Very Large Da-
tabases (VLDB’02), Hong Kong, China, 2002

[14] D. Kossmann, F. Ramsak, S. Rost. Shooting Stars in
the Sky: An Online Algorithm for Skyline Queries. In
Proc. of Conf. on Very Large Data Bases (VLDB’02),
Hong Kong, China, 2002

[15] H. Kung, F. Luccio, F. Preparata. On Finding the
Maxima of a Set of Vectors. Journal of the ACM, vol.
22(4), ACM, 1975

[16] M. Lacroix, P. Lavency. Preferences: Putting more
Knowledge into Queries. In Proc. of the Int. Conf. on
Very Large Databases (VLDB’87), Brighton, UK,
1987

[17] A. Leubner, W. Kießling. Personalized Keyword
Search with Partial-Order Preferences. In Proc. of
Brazilian Symp. on Databases (SBBD’02), Gramado,
Brazil, 2002.

[18] A. Motro. VAGUE: A User Interface to Relational
Databases that Permits Vague Queries. In ACM
Transactions on Office Information Systems (TOIS)
6(3), 1988

[19] F. Naumann, U. Leser, J. Freytag. Quality-driven
Integration of Heterogenous Information Systems. In
Proc. of Conf. on Very Large Data Bases (VLDB’99),
Edinburgh, UK, 1999

[20] S. Nepal and M. Ramakrishna. Query processing is-
sues in image (multimedia) databases. In Proc. of Int.
Conf. on Data Engineering (ICDE’99), Sydney, Aus-
tralia, 1999

[21] M. Ortega, Y. Rui, K. Chakrabarti, et al. Supporting
ranked boolean similarity queries in MARS. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), Vol. 10 (6), 1998

[22] C. Papadimitriou, M. Yannakakis. Multiobjective
Query Optimization. In Proc. of the ACM Symp. on
Principles of Database Systems (PODS’01), Santa
Barbera, USA, 2001

[23] D. Papadias, Y. Tao, G. Fu, B. Seeger. An Optimal
and Progressive Algorithm for Skyline Queries. In
Proc. of the Int. ACM SIGMOD Conf. (SIGMOD’03),
San Diego, USA, 2003.

[24] K. Tan, P. Eng, B. Ooi. Efficient Progressive Skyline
Computation. In Proc. of Conf. on Very Large Data
Bases (VLDB’01), Rome, Italy, 2001.

947

