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Abstract
We consider the problem of horizontally partition-
ing a dynamic relation across a large number of
disks/nodes by the use of range partitioning. Such
partitioning is often desirable in large-scale paral-
lel databases, as well as in peer-to-peer (P2P) sys-
tems. As tuples are inserted and deleted, the parti-
tions may need to be adjusted, and data moved, in
order to achieve storage balance across the partici-
pant disks/nodes. We propose ef£cient, asymptot-
ically optimal algorithms that ensure storage bal-
ance at all times, even against an adversarial in-
sertion and deletion of tuples. We combine the
above algorithms with distributed routing struc-
tures to architect a P2P system that supports ef-
£cient range queries, while simultaneously guar-
anteeing storage balance.

1 Introduction
The problem of partitioning a relation across multiple disks
has been studied for a number of years in the context of
parallel databases. Many shared-nothing parallel database
systems use range partitioning to decluster a relation across
the available disks for performance gains [8, 10, 28]. For
example, transactions in OLTP systems often access tuples
associatively, i.e., all tuples with a speci£c attribute value,
or a small range of values. Range partitioning ensures that
a transaction requires data only from a single disk (most of
the time), thus enabling inter-query parallelism and near-
linear speed-up [11].

A well-known concern in range partitioning is skew,
where only a few partitions (disks/nodes) are involved in
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the execution of most queries. Skew can be classi£ed into
(a) data skew, where data may be unequally distributed
across the partitions, and (b) execution skew, where data
accesses may not be uniform across the partitions [11]. As
the relation evolves over time, or as workloads change, both
data and execution skew pose a serious problem.

Today’s database systems put the onus on administrators
to monitor performance and re-partition data whenever the
skew becomes “too large”, an approach fraught with dif-
£culties. In contrast, we consider online load-balancing
solutions, which dynamically move data across nodes and
avoid skew at all times. Online load-balancing promises
three major advantages over periodic manual re-partitions:
(a) a consistently ef£cient 24/7 operation by eliminating
performance degradation between, and system hiccups dur-
ing, manual re-partitions; (b) a simpli£ed control panel by
eliminating partition con£guration from the administrator’s
list of chores; and (c) a smaller cost especially in systems
with a high degree of parallelism, where even a few in-
serts/deletes may cause a large skew.

Skew can be characterized by the imbalance ratio σ de-
£ned as the ratio of the loads of the largest and smallest
partitions in the system. In order to ensure that σ is small,
data may have to be moved from one disk/node to another
as the relation grows or shrinks. Thus a key requirement
for a load balancing algorithm is to minimize the number
of tuples moved in order to achieve a desired σ.

Summary of Results In this paper, we focus on algorithms
for eliminating data skew to achieve storage balance, al-
though our algorithms can be generalized to handle execu-
tion skew as well. Our load-balancing algorithms guaran-
tee that σ is always bounded by a small constant c. The
bound c is, in fact, a tunable parameter that can be set to
values as low as 4.24. Moreover, each insert or delete of a
tuple is guaranteed to require just an (amortized) constant
number of tuple movements, even against an adversarial
sequence of inserts and deletes. Thus, our algorithms offer
storage balance at all times, against all data distributions,
while ensuring that the overhead is asymptotically optimal,
and often much less than that of periodic repartitioning.
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Application to P2P Systems Our online load balancing al-
gorithms are motivated by a new application domain for
range partitioning: peer-to-peer (P2P) systems. P2P sys-
tems store a relation over a large and dynamic set of nodes,
and support queries over this relation. Many current sys-
tems, known as Distributed Hash Tables (DHTs) [22, 23,
27], use hash partitioning to ensure storage balance, and
support point queries over the relation.

There has been considerable recent interest in develop-
ing P2P systems that can support ef£cient range queries [3,
4, 25]. For example, a P2P multi-player game might query
for all objects located in an area in a virtual 2-D space. In
a P2P web cache, a node may request (pre-fetch) all pages
with a speci£c URL pre£x. It is well-known [5] that hash
partitioning (and hence a DHT) is inef£cient for answering
such ad hoc range queries, motivating a search for new net-
works that allow range partitioning while still maintaining
the storage balance offered by normal DHTs.

The P2P domain throws up its own challenges for range-
partitioning and load balancing. Nodes in a P2P sys-
tem may arrive and depart at will; we therefore require
load balance over such a dynamic set of nodes. In addi-
tion, P2P systems are decentralized, necessitating the de-
sign of distributed data structures for maintaining partition
information. We show how to enhance our online load-
balancing algorithm with overlay-network structures to ar-
chitect a new P2P system whose performance is asymptot-
ically identical to that of DHTs, but with the advantage of
enabling ef£cient range queries.

Organization We de£ne the online load-balancing prob-
lem for parallel databases in Section 2. We present our
load-balancing algorithm and analyze it in Section 3. We
adapt our algorithm to a P2P setting in Section 4. We exper-
imentally evaluate our algorithms in Section 5. We discuss
related work in Section 6.

2 Problem Setup and Basic Operations

We will now de£ne a simple abstraction of a parallel
database, discuss a cost model for load balancing in this
context, and de£ne two basic operations used by load-
balancing algorithms. We defer a discussion of P2P sys-
tems to Section 4.

2.1 Setup

We consider a relation divided into n range partitions on the
basis of a key attribute, with partition boundaries at R0 ≤
R1 ≤ . . . ≤ Rn. Node Ni manages the range [Ri−1, Ri),
for all 0 < i ≤ n. When Ri−1 = Ri, Ni is said to manage
the empty partition [Ri−1, Ri). Nodes managing adjacent
ranges are said to be neighbors. We let L(Ni) denote the
load at Ni, de£ned to be the number of tuples stored by Ni.
We assume a central site has access to the range-partition
information [R0, R1, . . . , Rn] and directs each query, insert
and delete to the appropriate node(s).

Each insert or delete of a tuple is followed by an ex-
ecution of the load-balancing algorithm which may pos-

sibly move data across nodes. The load-balancing algo-
rithms we consider are local in that the algorithm exe-
cutes only on the node at which the insert or delete occurs.
For now, we ignore concurrency control issues (see Sec-
tion 3.4), and consider only the equivalent serial schedule
of inserts and deletes, interleaved with the executions of the
load-balancing algorithm.

Imbalance Ratio A load-balancing algorithm guarantees
an imbalance ratio σ if, after the completion of every insert
or delete operation and its corresponding load-balancing
step, maxi L(Ni) ≤ σmini L(Ni) + c0, for some £xed
constant c0. As is conventional, we have de£ned σ as the
asymptotic ratio between the largest and smallest loads.

2.2 Costs of Load Balancing

Data Movement All load-balancing algorithms will need
to move data from one node to another in order to achieve
balance. We use a simple linear cost model, where mov-
ing one tuple from any node to any other node costs one
unit. Such a model reasonably captures both the network-
communication cost of transferring data, as well as the cost
of modifying local data structures at the nodes.

Partition Change Data movement is accompanied by a
change in the partition boundaries. The central site needs to
be informed to enable it to correct its partition information
[R0, R1, . . . , Rn]. Notice that the movement of a tuple may
cause a change in at most one partition boundary, resulting
in at most one update message to the central site. We can
thus absorb this cost into the data movement cost itself.

Load Information Finally, the load-balancing algorithm
that executes locally at a node may require non-local infor-
mation about the load at other nodes. For now, we assume
that the central site keeps track of the load at each node,
thus requiring each node to inform the site after a success-
ful insert, delete or data movement. A node that needs load
information can simply contact the central site at any time
to obtain it. We can thus absorb this cost into the cost of
tuple insert, delete and movement as well.

In summary, we measure the cost of a load-balancing
algorithm simply as the number of tuples moved by the al-
gorithm per insert or delete. Our interest is in the amor-
tized cost per insert or delete, for adversarial (worst-case)
sequences of insertions and deletions. The amortized cost
of an insert or delete is said to be c if, for any sequence of t
tuple inserts and deletes, the total number of tuples moved
is at most tc.

Problem Statement Develop a load balancing algorithm
which guarantees a constant imbalance ratio σ with low
amortized cost per tuple insert and delete.

We will show that it is possible to achieve a constant σ
while ensuring that the amortized cost per insert and delete
is also a constant. Such an algorithm is asymptotically opti-
mal since, for any load-balancing algorithm, there exist se-
quences of t operations that require Ω(t) tuple movements
to ensure load balance.
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Figure 1: (a) NBRADJUST involving A and B and (b) RE-
ORDER involving A and C. The height of a bar represents
the load of the corresponding node.

2.3 “Universal” Load-Balancing Operations

What operations can be used to perform load balancing?
An intuitive operation is as follows: when a node becomes
responsible for too much data, it can move a portion of its
data to its neighbor and thus attempt to balance out the load.
We call such an operation NBRADJUST which is illustrated
in Figure 1(a) and de£ned below.

NBRADJUST A pair of neighboring nodes Ni and Ni+1

may alter the boundary Ri between their ranges by trans-
ferring data from one node to the other. 1

A load-balancing algorithm can be devised based on just
this operation, e.g. [12, 18]. However, such an algorithm is
provably expensive as we show in the following theorem. 2

Theorem 1. Any load-balancing algorithm, deterministic
or randomized, that uses only NBRADJUST and guarantees
a constant imbalance ratio σ, has amortized cost Ω(n) per
insert and delete.

The above theorem shows that any algorithm that uses
only NBRADJUST would incur a cost per insert that is at
least linear in the number of nodes. In contrast, our goal
is to achieve a constant cost per insert. The key to ef£-
cient load balancing lies in a second operation, REORDER,
illustrated in Figure 1(b) and de£ned below.

REORDER A node Ni with an empty range [Ri, Ri)
changes its position and splits the range [Rj , Rj+1) man-
aged by a node Nj: Nj now manages range [Rj , X) while
Ni takes over [X,Rj+1) for some value of X , Rj ≤ X ≤
Rj+1. The nodes are re-labeled appropriately.

EXAMPLE 2.1. Consider the scenario shown in Fig-
ure 2, where node A has 100 tuples, the next three nodes
(B,C,D) have 60 tuples each, while the last two (E,F )
have 20 tuples each. The least expensive scheme to improve
load balance while preserving key ordering is to transfer all
20 tuples from E to F , and then use REORDER to split the
load of A between A and E. The cost of such a scheme
is 70 tuple movements; in contrast, a NBRADJUST-based
balancing requires 250 tuple movements.

It turns out that the REORDER operation is not only nec-
essary, but also suf£cient for ef£cient load balancing. In

1In the extreme case when Ni takes over the entire range,
[Ri−1, Ri+1), Ni+1 is assigned the empty range [Ri+1, Ri+1).

2Proofs omitted in this paper are available in a technical report [13].
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Figure 2: The cost of load balancing using REORDER is 70
while using successive NBRADJUST operations costs 250.

fact, we show below that the operations NBRADJUST and
REORDER are universal in that they can together be used
to ef£ciently implement any load-balancing algorithm.

Theorem 2. Given a load-balancing algorithmA, it is pos-
sible to construct a new algorithm Â that uses only the
NBRADJUST and REORDER operations such that, for any
sequence of t inserts and deletes,
(a) Both A and Â achieve identical load distribution.
(b) The cost of Â is at most the cost of A.

3 Algorithms for Load Balancing

Consider the following approach for load balancing: a node
attempts to shed its load whenever its load increases by a
factor δ, and attempts to gain load when it drops by the
same factor. Formally, we consider an in£nite, increasing
geometric sequence of thresholds Ti = bcδic, for all i ≥ 1
and some constant c. When a node’s load crosses a thresh-
old Tj , the node initiates a load-balancing procedure. We
call such an approach the Threshold Algorithm.

3.1 The Doubling Algorithm

We start with the special case δ = 2, and the thresholds
Ti = 2i−1. We begin by considering tuple insertions. Ev-
ery time a node’s load3 increases to a value Ti+1, the node
initiates ADJUSTLOAD speci£ed in Procedure 1.

The load-balancing procedure ADJUSTLOAD is quite
simple. When node Ni’s load increases beyond a thresh-
old, it £rst (lines 3-6) attempts to perform NBRADJUST

with its lightly-loaded neighbor, say Ni+1, by averaging
out its load with Ni+1. If both neighbors have high load
(more than half that of Ni), Ni attempts to perform RE-
ORDER with the globally least-loaded node Nk (lines 8-
12). If Nk’s load is small enough (less than a quarter of
Ni), Nk sheds all its data to Nk±1, and takes over half the
load of Ni. If Ni is unable to perform either NBRADJUST

or REORDER, Ni concludes that the system load is indeed
balanced and performs no data movement.

Note that whenNi initiates either a NBRADJUST or RE-
ORDER, there is a corresponding recursive invocation of
ADJUSTLOAD at node Ni+1 or Nk±1 respectively. Fre-
quently, these recursive invocations do not necessitate any
further data movement; even if data movement is necessary,
we can show that such data movement would utilize only
NBRADJUST. Similarly, there is also a recursive invocation

3For technical reasons, we de£neL′(N) = T1+L(N), and useL′ as
the node load. Note that the same guarantees on σ hold when using either
L or L′; for notational convenience, we let L denote this new de£nition
of load.
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of ADJUSTLOAD at node Ni itself (line 6); this invocation
is necessary only in one special case – when ADJUSTLOAD

is being executed at Nk±1 after a REORDER – and is also
guaranteed to utilize only NBRADJUST.

Procedure 1 ADJUSTLOAD(Node Ni) {On Tuple Insert}
1: Let L(Ni) = x ∈ (Tm, Tm+1].
2: Let Nj be the lighter loaded of Ni−1 and Ni+1.
3: if L(Nj) ≤ Tm−1 then {Do NBRADJUST}
4: Move tuples from Ni to Nj to equalize load.
5: ADJUSTLOAD(Nj)
6: ADJUSTLOAD(Ni)
7: else
8: Find the least-loaded node Nk.
9: if L(Nk) ≤ Tm−2 then {Do REORDER}

10: Transfer all data from Nk to N = Nk±1.
11: Transfer data from Ni to Nk, s.t. L(Ni) = dx/2e and

L(Nk) = bx/2c.
12: ADJUSTLOAD(N )
13: {Rename nodes appropriately after REORDER.}
14: end if
15: end if

Deletions are handled in a symmetric fashion. When
a node’s load drops to a threshold Tj = 2j , it £rst at-
tempts NBRADJUST with a neighbor, if the neighbor’s load
is larger than Tj+1 = 2j+1. Otherwise, it attempts to RE-
ORDER itself and split the highest-loaded node Nk in the
system, if Nk’s load is more than Tj+2.

We will show later that the Doubling Algorithm ensures
that σ = 8, while the amortized cost of tuple insert and
and delete is constant. However, it is possible to reduce σ
further by generalizing this Doubling Algorithm.

3.2 The General Threshold Algorithm

The Doubling Algorithm set δ = 2 and triggered load bal-
ancing when a node’s load changed by a factor 2 to obtain
σ = 8. A natural question, then, is to ask whether the al-
gorithm generalizes to other values of δ, and whether it is
possible to obtain a better σ by using a smaller δ value.

The Doubling algorithm generalizes to allow δ to be
any real number greater than or equal to the golden ratio
φ = (

√
5 + 1)/2 ' 1.62. For any real number δ ≥ φ, we

may de£ne a general Threshold Algorithm as follows: We
de£ne a threshold sequence of Ti = bcδic, for an appropri-
ately chosen constant c > 0. Each node is required to exe-
cute Procedure ADJUSTLOAD, every time its load crosses
a threshold. This Threshold Algorithm guarantees σ = δ3

with a constant cost per tuple insert and delete.
The Fibbing Algorithm: An extreme of the general

Threshold Algorithm arises when δ = φ, for which we
may de£ne a variant called the Fibbing Algorithm. This al-
gorithm de£nes the set of thresholds Ti to be the Fibonacci
numbers (with T1 = 1 and T2 = 2). As we prove in Sec-
tion 3.3, the Fibbing Algorithm guarantees an imbalance
ratio of φ3 ' 4.24.

3.3 Analysis

We now present an analysis of the Threshold algorithm
(and the Fibbing algorithm), both in terms of the guaran-
teed imbalance ratio, and in terms of the cost of insert and
delete. Our analysis relies on seven properties of the thresh-
old sequence that is satis£ed both by Fibonacci numbers,
and by threshold sequences of the form Ti = bcδic, al-
lowing the same analysis to apply to both the Threshold
algorithm and the Fibbing algorithm. We summarize these
properties in the following lemma.

Lemma 1. If Ti = bcδic, for a suitably large c and δ ≥
φ, the following properties hold for all r ≥ 1. The same
properties hold if Ti is the ith Fibonacci number (Ti =
[cδi], with c = φ/

√
5 and δ = φ).

(a) b(Tr + Tr+2)/2c ≥ Tr+1

(b) d(Tr + Tr+1 + 1)/2e ≤ Tr+1

(c) Tr + Tr+1 ≤ Tr+2

(d) d(Tr + 1)/2e ≤ Tr

(e) b(Tr+2 + 1)/2c > Tr

(f) Tr+k + 1 ≥ δkTr ≥ Tr+k − C, where C = 1 if Ti is
the ith Fibonacci number, and C = δk otherwise, for
all integers k > 0.

(g) b(T1 + T2 + 1)/2c > T1

De£nition 3.1. For any node N , de£ne I(N) = r if and
only if L(N) ∈ (Tr−1, Tr], i.e., N ’s load is in the rth geo-
metric interval.

Theorem 3. The following invariants hold after any se-
quence of inserts and deletes for the Threshold (and Fib-
bing) algorithm:
(a) NBRBALANCE: For any pair of neighbors Ni and

Ni+1, I(Ni) ≤ I(Ni+1) + 1.
(b) GLOBALBALANCE: For any pair of nodes Ni and Nj ,

I(Ni) ≤ I(Nj) + 2.

Before proving the above theorem, we £rst establish
some lemmas on the properties of the NBRADJUST and
REORDER, as well as the execution of ADJUSTLOAD.

Lemma 2. If I(Ni) = r + 2 and I(Ni+1) = r, then
NBRADJUST between Ni and Ni+1 ensures that I(Ni) =
I(Ni+1) ≥ r + 1.

Lemma 3. Consider a state of the system where both NBR-
BALANCE and GLOBALBALANCE invariants hold. If a
tuple insert now causes a violation of NBRBALANCE, the
consequent execution of ADJUSTLOAD will ensure both
NBRBALANCE and GLOBALBALANCE.

Proof. Consider a tuple insert at node Ni. By de£nition,
no NBRBALANCE violation arises unless L(Ni) crosses a
threshold. Say L(Ni) crosses threshold Tx. There may
then be a violation of NBRBALANCE between Ni and ei-
ther or both of its neighbors. (There may also be a GLOB-
ALBALANCE violation involving Ni.) In this case, Ni exe-
cutes a NBRADJUST by Procedure ADJUSTLOAD.

W.l.o.g., say Ni performs NBRADJUST with Ni+1.
First, observe that there are no GLOBALBALANCE vio-
lations after this NBRADJUST, by Lemma 1(b). After
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this NBRADJUST, ADJUSTLOAD is recursively invoked
on Ni+1, which may cause Ni+1 to perform NBRADJUST

withNi+2, and triggerNi+2 into executing ADJUSTLOAD.
This process continues until we reach a node Ni+k that
does not perform a NBRADJUST, or we reach Nn.

We show that this sequence of NBRADJUST operations
ensures that all NBRBALANCE conditions are satis£ed.
(Finally, there are recursive calls to ADJUSTLOAD in line
6, which do not perform any data movement since there are
no violations of NBRBALANCE or GLOBALBALANCE.)

Let Lj(N) represent the load at node N after the jth

NBRADJUST operation, and Ij(N) = I(N) after the
jth NBRADJUST operation. (L0 is the load before any
NBRADJUST operations take place.) The jth NBRADJUST

operation occurs between nodes Ni+j−1 and Ni+j . Thus,
the load of Ni+j−1 remains unchanged after the jth opera-
tion.

We will show by induction that, after j > 0 NBRAD-
JUST operations,
1. Ij(Ni+k) ≤ x for all 0 ≤ k ≤ j.
2. The only NBRBALANCE violation may be between

Ni+j and Ni+j+1.
Base Case: We show the above properties for j = 1.

Initially, the only NBRBALANCE violations may be at
(Ni−1, Ni) and/or (Ni, Ni+1). Recall that I0(Ni) = x+1
and, since there is a NBRBALANCE violation, I0(Ni+1) =
x − 1. From the GLOBALBALANCE invariant, we deduce
I0(Ni−1) ≤ x+ 1.

After the £rst NBRADJUST operation, we know by
Lemma 2 that I1(Ni) = I1(Ni+1) ≥ x. Also,L1(Ni−1) =
L0(Ni−1), thus showing that neither pair (Ni−1, Ni) nor
(Ni, Ni+1) constitute a NBRBALANCE violation. Since
only the loads of Ni and Ni+1 were affected by this opera-
tion, the only possible NBRBALANCE violation is between
Ni+1 and Ni+2. It is also clear that I1(Ni) = I1(Ni+1) ≤
x (by Lemma 1(d)).

Induction Step: Assume, by induction, that after j
NBRADJUST operations, Ij(Ni+j) ≤ x, and the only pos-
sible NBRBALANCE violation is at (Ni+j , Ni+j+1). If
there is no such violation, we are done and ADJUSTLOAD

terminates. If there is a violation, a NBRADJUST takes
place between Ni+j and Ni+j+1.

GLOBALBALANCE assures us that I0(Ni+j+1) =
Ij(Ni+j+1) ≥ x−2. Since there is a NBRBALANCE viola-
tion, we may deduce Ij(Ni+j+1) = x−2 and Lj(Ni+j) =
x. Invoking Lemma 2, we deduce that Ij+1(Ni+j) =
Ij+1(Ni+j+1) ≥ x− 1.

Since Ij(Ni+j−1) ≤ x by the induction assumption,
there is no violation between Ni+j−1 and Ni+j . There is
obviously no violation between Ni+j and Ni+j+1, since
both loads are in the same interval. The only possible vi-
olation might be between Ni+j+1 and Ni+j+2, which is
permitted under the induction assumption. It is also clear
that both Ij+1(Ni+j) and Ij+1(Ni+j+1) are at most x, thus
completing the induction step.

The above inductive proof, combined with the fact that
the procedure terminates when the last node is reached,

shows that there are no NBRBALANCE violations when
ADJUSTLOAD terminates.

Lemma 4. Consider a state of the system where both NBR-
BALANCE and GLOBALBALANCE invariants hold. If a
tuple insert now causes a violation of GLOBALBALANCE,
the consequent execution of ADJUSTLOAD will ensure both
GLOBALBALANCE and NBRBALANCE.

Proof of Theorem 3. We prove that the invariants hold by
induction on the length l of the insert/delete sequence. The
invariants clearly hold when l = 0 since all nodes contain
one sentinel value.

Assume that the invariants hold for l = r. Let the (r +
1)st operation be an insert. If this insert does not violate
any invariants, we are done. If not, either NBRBALANCE

or GLOBALBALANCE is violated. We have shown that all
such violations are £xed by ADJUSTLOAD in Lemmas 3
and 4 respectively.

If the (r+1)st operation is a delete, it is straightforward
to show that all violations are again £xed, by a proof similar
to that of Lemmas 3 and 4. We have thus proved that the
invariants hold after any sequence of inserts and deletes.

Corollary 3.1. For the Threshold algorithm, the imbalance
ratio σ is δ3 after any sequence of inserts and deletes.

Corollary 3.2. For the Fibbing algorithm, the imbalance
ratio σ is φ3 after any sequence of inserts and deletes.

Theorem 4. For the Threshold (and Fibbing) algorithm,
the amortized cost of both inserts and deletes is constant.

Proof. We bound the amortized costs of insert and delete
by using the potential method. Let L̄ denote the cur-
rent average load. Consider the potential function Φ =
c(

∑n
i=1 L(Ni)

2)/L̄, where c is a constant to be speci£ed
later. We will show the following: (a) the cost of NBRAD-
JUST is bounded by the drop in potential accompanying it,
(b) the cost of REORDER is bounded by the drop in po-
tential accompanying it, and (c) the gain in potential af-
ter a tuple insert or delete, before any rebalancing actions,
is bounded by a constant. The above three statements to-
gether imply that the amortized costs of tuple insert and
delete are constant.

NBRADJUST: Recall that a NBRADJUST operation occurs
between two nodes whose load differs by at least a factor
δ. Let the loads of the two nodes involved be x and y. The
drop in potential ∆Φ from NBRADJUST is c(x2 + y2 −
(x+ y)2/2)/L̄ = c(x− y)2/2L̄. By Lemma 1(f), x− y >
(δ−1)y, and y is at least L̄/δ3. Therefore, ∆Φ > c′(x−y)
for some constant c′. Since the number of tuples moved
is at most (x − y)/2, the drop in potential pays for the
data movement by choosing the constant c to be suf£ciently
large (> δ3/(δ − 1)).

REORDER: Let a REORDER operation involve a node with
load x, and a pair of neighbor nodes with loads y and z,
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with y ≤ z. We then have δ2y ≤ x (for the REORDER

operation to be triggered), and δz ≤ x (by NBRBALANCE

between the neighbors).
The drop in potential from REORDER is given by:

∆Φ = c(x2 + y2 + z2 − 2(x/2)2 − (y + z)2)/L̄

= c(x2/2− 2yz)/L̄ ≥ c(x2/2− 2x2/δ3)/L̄

≥ c′x(1− 4/δ3)

Note that 1−4/δ3 is greater than zero for δ > 3
√
4 ' 1.587.

The data movement cost of REORDER is bx/2c + y < x.
Therefore, for a suitable choice of constant c (> 2δ3/(δ3−
4)), the drop in potential pays for data movement.

Tuple Insert: The gain in potential, ∆Φ, from an insert at
node Ni and before any rebalancing, is at most c((L(Ni)+
1)2−L(Ni)

2)/L̄, where L̄ refers to the average load before
the latest insert. Therefore, ∆Φ ≤ c(2L(Ni) + 1)/L̄ ≤
c(2δ3 + 3), since L(Ni) ≤ δ3L̄+ 1 and L̄ ≥ 1. Therefore,
the amortized cost of an insert is constant.

Tuple Delete: When a tuple is deleted, there may be a gain
in potential due to a slight reduction in L̄. Since L̄ drops
in value 1/n from a delete, the maximum gain in potential

∆Φ =
c(

∑
L(Ni)

2)(1/n)

L̄(L̄−1/n)
. Using the factsL(Ni) ≤ δ3L̄+1,

L̄ ≥ 1, and n ≥ 2, we can see that ∆Φ ≤ c(5δ3 + 3).
Therefore, the amortized cost of a delete is constant.

We observe that the bounds on these amortized costs are
quite large. When δ = φ, the cost of an insert ' 412,
and the cost of a delete ' 868. We believe this to be a
consequence of weak analysis stemming from our choice
of potential function. We show experimentally in Section 5
that these constants are actually very close to 1. We also
present variations of our algorithm next that are amenable
to tighter analysis.

3.4 Discussion

Improving σ further It is possible to improve σ to arbitrar-
ily small values larger than 1, by generalizing the Thresh-
old algorithm, and maintaining balance over larger sets of
consecutive nodes, rather than just pairs of neighbors. We
do not detail this generalization in this work.

The Doubling Algorithm with Hysteresis It is possible
to de£ne a variant of the Doubling Algorithm which pro-
vides a weaker imbalance ratio (σ = 32) but has provably
stronger bounds on the insertion and deletion costs. The
idea is to use hysteresis, and require a node to lose at least
half its data before it triggers load balancing for tuple dele-
tions. We can show that this variant guarantees insertion
cost of 4 and deletion cost of 29.

A Randomized Variant So far, all our algorithms attempt
to £nd the least-loaded node (or the most-loaded node) in
order to initiate the REORDER operation. In fact, the theo-
rems we have stated hold even for a slightly weaker condi-
tion: If there are multiple nodes that violate the GLOBAL-
BALANCE condition with respect to a particular node Ni

executing ADJUSTLOAD, it suf£ces for Ni to attempt the
REORDER operation with any of these nodes.

Such a weakening suggests an interesting randomization
which avoids trying to £nd the least-loaded node altogether.
Node Ni simply samples a set of ρ nodes at random. If
one of them violates GLOBALBALANCE, Ni performs the
REORDER operation using this node; otherwise, Ni simply
does nothing.

If there are no data deletes, this randomized algorithm
guarantees that the maximum load is at most a constant fac-
tor times the average load with high probability, so long as
the number of nodes sampled ρ is Θ(log n). In the presence
of tuple deletes, we offer a different guarantee: If a nodeNi

speci£es a peak threshold C that Ni does not want its load
to exceed, the load ofNi does not exceedC with high prob-
ability, unless the average load in the system L̄ is within a
constant factor of C. It is also possible to provide guaran-
tees on the imbalance ratio in the presence of deletes, but
more caveats need to be added to the algorithm. 4

Concurrency Control and Parallelism Until now, we
have assumed that tuple inserts (and deletes) happen in se-
quence, and that a load-balancing step completes before
the next insert. Our algorithms generalize naturally to (a)
deal with parallel inserts that may happen before a load-
balancing step completes, and (b) allows multiple load-
balancing steps to execute in parallel.

While we do not discuss either of the above issues in
detail here, we make the following observations and claims.
First, the load-balancing step can be broken into multiple,
smaller, atomic actions that require only simple block-level
locking. Second, tuple inserts and deletes may be given
higher priority, and allowed to execute even before the full
load-balancing step for a previous insert/delete completes.
Third, multiple load-balancing steps can execute in parallel
and require very simple serialization mechanisms to ensure
correctness. Finally, we note that it is possible to formalize
a model of concurrency in which we can characterize the
imbalance ratio under parallel insertions and deletions.

4 A P2P Network for Range Queries

There has been recent interest in developing P2P networks
that can support ad-hoc queries over key ranges [3, 4, 25].
A solution is to use range partitioning of data across the
peer nodes. If the data and query distributions are uniform,
nodes will have equal loads. However, if the data and/or
execution is skewed, the network will develop hot-spots
with high query traf£c for a few nodes. Load balancing
thus becomes a critical requirement in such a system. The
P2P environment imposes three signi£cant challenges for
developing a load-balanced, range-partitioned system:

Scale The size of the system may be extremely large, upto
tens or hundreds of thousands of nodes. Our load-balancing

4Karger and Ruhl [17] offer a randomized algorithm that provides such
guarantees, but require each node to perform such random sampling and
rebalancing, whether or not any inserts or deletes are directed to that node.
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algorithm deals well with scale, since its data-movement
cost is constant and independent of the number of nodes.

Dynamism The lifetime of nodes is short (a few hours) and
arbitrary (whims of the node owner). Our load-balancing
algorithms need to ef£ciently handle dynamic arrival and
departure of nodes while ensuring good load balance across
the existing nodes in the system. We discuss this adaptation
in Section 4.1.

Decentralization P2P systems do not have a central site
that collects statistics and routes queries/inserts/deletes.
We need distributed routing and data structures to enable
both routing of queries/inserts/deletes, as well as to £nd
additional load information for load balancing. Maintain-
ing such data structures also imposes additional costs on
the system, as we discuss in Section 4.2.

4.1 Handling Dynamism in the Network

Node Arrival Upon arrival, a new node N £nds the most-
loaded node Nh in the network. It then splits the range of
Nh to take over half the load of Nh, using the NBRADJUST

operation. After this split, there may be NBRBALANCE vi-
olations between two pairs of neighbors: (Nh−1, Nh) and
(N,Nh+1). In response, ADJUSTLOAD is executed, £rst
at node Nh and then at node N . It is easy to show (as in
Lemma 3) that the resulting sequence of NBRADJUST op-
erations repair all NBRBALANCE violations.

Node Departure While in the network, each node man-
ages data for a particular range. When the node departs, the
data it stored becomes unavailable to the rest of the peers.
P2P networks reconcile this data loss in two ways: (a) Do
nothing and let the “owners” of the data deal with its avail-
ability. The owners will frequently poll the data to detect
its loss and re-insert the data into the network. (b) Main-
tain replicas of each range across multiple nodes. A com-
mon scheme for replication is to ensure that the partition
of node Ni is replicated at the preceding r nodes (with Nn

preceding N1), for a system-speci£ed constant r [9, 23].
First, consider the simpler data-is-lost case (a). Here,

when a node Ni departs, the range boundaries between
Ni−1 and Ni+1 must be modi£ed. There could be
a NBRBALANCE violation between the new neighbors
(Ni−1, Ni+1) which can be £xed by Ni−1 executing AD-
JUSTLOAD. As shown in Lemma 3, this is suf£cient to
restore the system invariants.

Now consider the data-is-replicated case (b). Here,
when a node Ni departs the network, its preceding node
Ni−1 assumes management of Ni’s partition. The node
Ni−1 already has Ni’s data replicated locally. We can con-
sider the new state as being logically equivalent to a node
departure in the data-is-lost case (b), followed by a sub-
sequent insertion of the “lost” tuples by Ni−1. The load-
balancing algorithm is initiated whenever such insertion
makes a node’s load cross a threshold.

The Costs of Node Arrival and Departure The data-
movement cost of a node arrival and departure is straight-
forward to analyze. When a new node arrives, it receives

half the load of the largest node, thus requiring Θ(L̄) data
movements, where L̄ is the average load per node after
node arrival (since all node loads are within a constant
factor of each other). In addition, the average load per
node decreases, leading to an increase in potential of Θ(L̄).
Thus, the amortized cost of node insertion is still Θ(L̄).
Note that this cost is asymptotically optimal, since it is im-
possible to achieve a constant imbalance ratio without the
new node receiving at least Θ(L̄) tuples.

In the data-is-lost case, the data-movement cost of a
node departure is 0, since a node departure only raises the
average load, resulting in a drop in potential. All sub-
sequent NBRADJUST operations pay for themselves, as
discussed earlier. In the data-is-replicated case, the data-
movement cost of a node departure is equal to the cost of
“re-insertion” of the “lost” data; since the amortized cost of
each insert is constant, and we re-insert only O(L̄) tuples,
the amortized cost of node departure is O(L̄). This is again
asymptotically optimal.

Note that in the replicated case, both arrival and depar-
ture of nodes requires re-creation of lost replicas, or migra-
tion of existing ones. Similarly, tuple inserts and deletes
also have to be duplicated at the replica nodes. We pre-
sume that such replication is performed in the background.
Observe that such replica maintenance in¤ates the costs of
all operations only by a constant factor, if the number of
replicas r is a constant.

4.2 Dealing with Decentralization

So far, we have assumed the existence of a central site that
(a) maintains the global partitioning information to direct
queries appropriately, and (b) maintains global load infor-
mation for the load-balancing algorithm to exploit. Our
next step is to devise decentralized data structures to per-
form both the above functions. We £rst describe a known
data structure for ef£cient range queries, before discussing
how to maintain load information.

Cost Model In the centralized setting of Section 2, we con-
sidered only data-movement cost, and ignored the cost of
maintaining partition and load information. In the P2P set-
ting, the lack of a central site means that we can no longer
ignore this latter cost. Therefore, each operation (query,
tuple insert, tuple delete, node insert, node delete) is now
associated with two different costs: (a) the data-movement
cost, which is measured just as earlier, and (b) communica-
tion cost, de£ned to be the number of messages that need
to be exchanged between nodes (to maintain and probe
the data structure) in order to perform the operation (and
its corresponding load-balancing actions). Note that each
message is between a pair of nodes, i.e., communication is
point-to-point and broadcast is not free. (We will ignore
the cost of returning query answers to the querying node.)

A Data Structure for Range Queries Our £rst task is the
following: Any node receiving a query/insert/delete should
be able to ef£ciently forward the operation to the appro-
priate node(s). One solution is to replicate the partition

450



information across all nodes. This enables any node to di-
rectly forward a query to the relevant nodes. However, ev-
ery node join/leave, or partition change, needs to be broad-
cast to all nodes, which is very inef£cient. On the other
extreme, nodes could be organized in a linked list, ordered
by the partitions they manage. Updating the data structure
on partition changes or node arrival/departure is ef£cient,
but queries may have to traverse the entire linked list to
reach the relevant node.

A compromise between these two costs may be achieved
using a data structure known as the skip graph [6, 16]. Skip
graphs are essentially circular linked lists, but each node
also maintains roughly log n skip pointers, to enable faster
list traversal. Skip pointers are randomized, and routing be-
tween any two nodes requires onlyO(log n) messages with
high probability. Consequently, a query can be forwarded
from any node to the £rst node in the query’s range, say
N1, using O(log n) messages. If the query range is large
and spans q nodes, the query is simply forwarded along on
the linked list to the q successors of N1, using a total of
O(log n + q) messages. When a node arrives or departs,
only O(log n) messages are required to update the data
structure. Partition changes due to NBRADJUST do not re-
quire any messages at all. Thus, queries, node joins/leaves
and load balancing actions are all ef£cient.

Maintaining Load Information Our algorithm requires
that each node be able to £nd (a) the load of its neighbors,
and (b) the most and least-loaded node in the system. Deal-
ing with problem (a) is easy: a node already has links to
its two neighbors in the skip graph, thus requiring just one
message each to £nd their loads.

To deal with problem (b), we simply build a second, sep-
arate skip graph on the node loads. In other words, nodes
are arranged in a sequence sorted by their current load (with
ties broken arbitrarily), and a skip graph is constructed on
this sequence. As node loads change, the sequence may
have to be updated, but it will turn out that such updates
are not expensive. As discussed earlier, this data structure
enables discovery of the most and least-loaded node with
just O(log n) messages, while also enabling ef£cient up-
dates to the data structure.

As mentioned in Section 3.4, it is not necessary for a
node to always £nd the most or least-loaded node, so long
as it locates any node that violates GLOBALBALANCE.
This property allows us to terminate searches on the skip
graph even before locating the most or least-loaded node.
The early termination mitigates “hot spots” created when
multiple nodes simultaneously seek the most-loaded node.

The P2P Structure and its Costs: A Summary We sum-
marize all the operations supported by the P2P system and
their costs in Table 4.2. The bounds on the message costs
of operations follow directly from our discussion of skip
graphs above. We note that the data-movement costs are
amortized, while the message costs hold with high proba-
bility. We observe that the above costs are asymptotically
identical to the costs in DHTs, except for range queries
where our structure is more ef£cient.

Operation Messages (w.h.p) Data Movement
Tuple Insert O(log n) O(1)
Tuple Delete O(log n) O(1)
Node Arrival O(log n) O(L̄)
Node Departure O(log n) 0 or O(L̄)
Lookup Query O(log n) 0
Range Query O(logn+ fn) 0

Table 1: Cost of operations supported by the P2P network.
The parameter f denotes the selectivity of the range query.
The data-movement cost of Node Departure depends on the
model used for data loss.

5 Experimental Evaluation

In this section, we present results from our simulation of
the Threshold algorithm on networks ranging in size from
n = 24 to 214. We compare the performance of our al-
gorithm against periodic reorganization. We also evaluate
our adaptations of the algorithm on a P2P network. Our
simulations show the following results:
A The Threshold Algorithm achieves the desired imbal-

ance ratio for a range of σ values on various workloads.
B The amortized cost of load balancing is very small, de-

creases with increasing σ, and is much lower than the
cost of periodic reorganization.

C The P2P variant achieves the desired imbalance ratio
at a small cost, and scales gracefully with increasing
dynamism in the network.

D The Randomized variant provides good imbalance ra-
tios even with a small number of samples.

5.1 Simulation Model

In the parallel database setting, the simulation is designed
to study load balancing as the relation evolves over time.
The system is studied under three phases: (a) Growing, (b)
Steady, and (c) Shrinking. At the start, all n nodes in the
system are empty (“cold start”). In the Growing phase,
data is loaded, one tuple at a time, using a sequence of
D = 106 insert operations. In the Steady phase, inserts and
deletes alternate for a total of D operations. In the follow-
ing Shrinking phase, data is removed from the system, one
tuple at a time, using a sequence of D delete operations.

The workload, i.e., the sequence of insertions and dele-
tions, is set to be one of the following:
A ZIPFIAN models a static data distribution. Each tuple

inserted in the Growing and Steady phases has an at-
tribute A drawn from a Zip£an distribution (with pa-
rameter 1.0) with values in the range [1, 10000]. (Since
our range partitioning operates on a relational key, we
create a unique attribute B for each tuple, and use the
sequence 〈A,B〉 as the ordering key for range partition-
ing.) Tuple deletion during the Steady and Shrinking
phases removes one of the existing tuples uniformly at
random.

B HOTSPOT models a skewed workload in which all in-
serts and deletes are directed to a single pre-selected
(“hot”) node.

C SHEARSTRESS models a dynamic workload in which
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Figure 3: Imbalance ratio for (a) ZIPFIAN, (b) HOTSPOT, and (c) SHEARSTRESS when n = 256.
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Figure 4: Data movement costs on the (a) ZIPFIAN, (b) HOTSPOT, and (c) SHEARSTRESS workload when n = 256.

an “adversary” inspects the load of nodes after each in-
sert or delete of a tuple. The adversary then constructs
the following insert (or delete) such that it is routed to
the current most-loaded (resp. least-loaded) node.

We study the effects of network dynamism on load-
balancing for a P2P network under a similar evolution
model. The network starts with an initial n = 16 nodes,
into which D tuples are inserted one by one. In the Grow-
ing phase, nodes arrive one by one and join the network,
until n = 1024. In the following Shrinking phase, nodes
depart at random until the network shrinks to n = 16. We
use data replication to ensure that tuples are not lost on
node departures. No tuples are inserted or deleted during
the Growing and Shrinking phases: our goal is to isolate
the costs of node arrival/departure on load balancing.

5.2 Imbalance Ratio

We start with an evaluation of imbalance ratios ensured by
the Threshold Algorithm for various workloads. For the
experiments, we measure the imbalance ratio at any in-
stant as the ratio of the largest and smallest loads at that
instant (with all loads being at least 1). Figure 3 shows
the imbalance ratio (Y-axis) against the number of insert
and delete operations (X-axis) during a run on (a) ZIPFIAN,
(b) HOTSPOT, and (c) SHEARSTRESS workloads with 256
nodes. The curves are drawn for δ = φ (Fibbing Algo-
rithm), δ = 2 (Doubling Algorithm) and δ = 4.

We observe that Threshold Algorithm ensures that im-
balance ratio is always less than δ3 for all δ. Each spike
in the curve corresponds to an ADJUSTLOAD step. As δ
increases, the jitter introduced by the spikes gets larger and
larger; this is because the algorithm allows the imbalance
ratio to worsen by a constant factor, roughly δ, before load
balancing occurs. The curves are smooth in the Steady
phase for ZIPFIAN and HOTSPOT. For the former, the

range partitioning “adapts” to the data distribution, ensur-
ing that inserts and deletes are randomly sprinkled across
nodes; for the latter successive inserts and deletes occur-
ring at the same node cancel out. However, the adversary
in SHEARSTRESS picks its inserts and deletes carefully to
cause imbalance, leading to continuous variation in σ.

5.3 Data Movement Cost

We next study the data movement cost incurred by the
Threshold Algorithm for ensuring balance in the runs dis-
cussed above. Figure 4 plots the cumulative number of tu-
ples moved by the algorithm (Y-axis) against the number of
insert and delete operations (X-axis) during a run.

We observe that costs for different δ are roughly the
same (within 20% of each other) for the HOTSPOT and
SHEARSTRESS workloads. Intuitively, this is because
keeping the system tightly balanced causes a larger num-
ber of rebalancing operations, but each operation has lower
cost due to the tight balance. We also observe that there
is no data movement in the Steady phase for ZIPFIAN, in-
dicating that the system has “adapted” to the data distribu-
tion. For the other two phases, the curves are linear con-
£rming that the amortized cost per operation is constant,
and independent of the amount of data in the system. The
constants involved are also very small, with the cost per in-
sert/delete, even in the worst phase, being roughly 0.3, 1.5
and 2 for the three workloads.

To put the above performance in perspective, we com-
pared the data movement costs of the Fibbing Algorithm
against those incurred by a periodic reorganization strat-
egy that ensures the same imbalance ratio σ = 4.2 bound
as follows: the central site continuously observes σ, and
whenever σ > 4.2, a reorganization is triggered to create a
perfectly balanced set of nodes. The reorganization identi-
£es a balanced placement of tuples across nodes, and then
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and REORDER invocations for the Threshold Algorithm on the ZIPFIAN workload.

moves each tuple at most once by sending it directly to its
£nal destination node. (Thus, it is more ef£cient than us-
ing only NBRADJUST operations.) Figure 5(a) plots the
cumulative data movement costs on a logarithmic scale (Y-
axis) against the number of operations (X-axis) in a run
on 256 nodes. We observe that the periodic reorganization
performs nearly 10 times worse for ZIPFIAN and upto 50
times worse for others. The reasons are two-fold: (a) its
non-online nature allows the skew to grow requiring an ex-
pensive clean-up, and (b) its perfect balancing causes more
data movement than essential to obtain the desired bounds.

5.4 The Effects of Scaling

We next study the effects of scaling in the number of nodes
n on the performance of the Threshold Algorithm. Fig-
ures 5(b) and 5(c) plot load imbalance and data movement
cost for the Fibbing Algorithm against a run on the ZIP-
FIAN workload. The network size n is varied from 16 to
16384. We observe in Figure 5(b) that the Fibbing Algo-
rithm continues to ensure the σ = φ3 bound. However, as
the same number of tuples are shared across more nodes,
the load variance across nodes increases, leading to an in-
crease in the imbalance ratio.

Figure 5(c) plots the data movement cost per operation
(Y-axis) against the size of the network n (X-axis). Both
axes are plotted on a logarithmic scale. The bottom curve
plots the data movement cost per insert observed during the
Growing Phase; the top curve plots the costs per delete ob-
served during the Shrinking Phase. We observe that costs
of both insert and delete operations increases with increas-
ing n. As n increases, the load per node is smaller, mak-
ing it easier to make the system unbalanced with a smaller
number of inserts and deletes. Thus more load balancing

steps are needed, leading to a higher cost. We also observe
that the cost per operation is quite small as the curves taper
off towards a value close to 1.

We had shown in Section 3.3 that the cost per insert or
delete is a constant. The £gures here show a dependence
of cost per operation on n. How can this apparent con-
tradiction be explained? The experiments presented here
evaluate the cost for a £xed workload for various n values.
On the other hand, the analysis established bounds on the
worst-case costs against all workloads.

5.5 Performance in a P2P Setting

Figure 6 shows the performance of the Threshold Algo-
rithm adapted to a P2P system. Figures 6(a) and 6(b) plot
the imbalance ratio and data-movement cost against the
number of node arrivals and departures. We observe in
Figure 6(a) that the system remains well-balanced through
the Growing phase, because the arriving node always splits
the most-loaded node. The imbalance ratio is roughly two,
since the most-loaded node splits its load in half on a node
arrival. On the other hand, nodes depart at random during
the Shrinking phase, which leads to changes in the imbal-
ance ratio. However, the guarantees of δ3 are ensured.

From Figure 6(b), we see that the incremental data-
movement cost per arrival/departure (i.e., the slope of the
curve) decreases with node arrivals in the Growing phase,
and increases with node departures in the Shrinking phase.
This is not surprising, since the cost is proportional to the
average load in the system which, in turn, is inversely pro-
portional to the number of nodes.

NbrAdjust vs. Reorder In a P2P system, the NBRADJUST

operation may turn out to be more ef£cient than REORDER,
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Figure 7: The Fibbing algorithm with n = 256. (a) The number of invocations of NBRADJUST and REORDER (b) The
effect of randomization on imbalance ratio (c) The effect of randomization on data movement costs, for the SHEARSTRESS

workload.

for two reasons: (a) REORDER requires the reordered node
to drop its old links and set up new ones. (b) A NBRAD-
JUST may not require immediate transfer of data to balance
load, when data is replicated at neighbors; only replicas
need to be updated, which can be done more lazily.

In the light of the above observations, we observed the
number of invocations of the two operations to see which
is used more often. Figure 6(c) shows the number of invo-
cations of NBRADJUST and REORDER for different values
of δ, as nodes are inserted and deleted. Not surprisingly,
the number of invocations of both operations decreases as
δ increases. We see that the number of NBRADJUST in-
vocations is at least 4 times that of REORDER, which is
reassuring given that REORDERs are more expensive.

Figure 7(a) shows the number of invocations of the two
operations by the Fibbing Algorithm, on a £xed set of 256
nodes, as tuples are inserted and deleted from the three
workloads. We observe that there are twice as many invo-
cations of NBRADJUST, as compared to REORDER, which
is again useful in the P2P context.

5.6 The Effects of Randomization

As discussed earlier, the REORDER operation requires
global statistics and involves the least/most-loaded node in
the load-balancing step. In Section 3.4, we de£ned a ran-
domized variant where REORDER would sample ρ nodes
at random and pick the least/most-loaded node from the
sample. Figures 7(b) and 7(c) plot the effects of such
randomization on the Fibbing Algorithm for runs of the
SHEARSTRESS workload as the sample size ρ is varied.
We observe in Figure 7(b) that the imbalance ratio degrades
beyond the original value of φ3. However, even the use of
ρ = 2 samples provides good load balance; increasing ρ
improves σ further. Correspondingly, the use of sampling
reduces data movement compared to the deterministic case,
for all three phases, as shown in Figure 7(c).

6 Related Work

Parallel Databases partition relations across multiple
disks, using either range or hash partitioning [8, 10, 28].
Research in physical design of parallel databases can be
classi£ed into four categories: (a) Workload-driven tun-
ing of storage for static relations, e.g. [15, 21, 26]; (b)

Disk-based data structures for fast bulk insert/delete of tu-
ples, e.g. [12, 18]; (c) Ef£cient data migration for load-
balancing while allowing concurrent relation updates and
queries, e.g. [29]; and (d) Balancing query load across disks
by moving a partition from one disk to another, e.g. [24].

Work in category (a) is focused on performing
workload-driven tuning of physical design, but usually
does not consider a dynamic evolution of the design with
relation updates. Work in category (b) is complementary
to ours, in that they show how to ef£ciently update local
disk structures when tuples move from one partition to an-
other, while our focus is in understanding what tuples to
move. Research in category (c) is also complementary to
our work, as it helps deal with issues of concurrency con-
trol when performing online repartitioning. Finally, work
in category (d) attempts to modify the allocation of parti-
tions to disks, rather than change the partitions themselves.
We believe such solutions could be used in combination
with ours to achieve balance for dynamic query loads, but
are not suf£cient in themselves to guarantee storage bal-
ance for range-partitioned data.

Litwin et al. [20, 19] consider the design of scalable dis-
tributed data structures (SDDS) which share many features
with the design philosophy of P2P systems, including the
absence of centralization, and the ability to gracefully add
or remove servers. Most work on SDDS has focused on
hash partitioning, either at the tuple level [20] or at a block
level [19]. Our work is complementary in that it can be
utilized to enable true range partitioning for SDDS.

Range Queries in P2P Networks Recently, P2P networks
supporting range queries have been proposed, that offer
either storage balance or ef£cient queries, but not both.
Ratnasamy et. al. [25] assure storage balance but at the
price of data-dependent query cost and data fragmentation.
Gupta et. al. [3] provide approximate answers, and do not
offer any guarantees for an arbitrary range query. Oth-
ers [4, 6, 16] offer exact and ef£cient queries, but do not
offer load balance across nodes.

Aberer et al. [1, 2] develop a P2P network called P-Grid
that can support ef£cient range queries. All nodes in this
system have a £xed capacity, and content is heuristically
replicated to £ll all the nodes’ capacity. However, there
is no formal characterization of either the imbalance ratio
guaranteed, or the data-movement cost incurred.
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In a concurrent work, Karger and Ruhl [17] provide
an alternative solution to the storage balance problem.
The scheme is a randomized algorithm that offers a high-
probability bound on the imbalance ratio, and is analyzed
under a dynamic, but non-adversarial, setting. However,
the best achievable bound on imbalance ratio using this al-
gorithm appears to be more than 128, which is much higher
than the load imbalance bounds we guarantee. Bharambe
et al. [7] also use a load-balancing scheme similar to [17]
as a heuristic to balance range partitions.

Routing in P2P Networks Most DHT interconnection
networks [23, 27] require randomly chosen (uniformly
spaced) partition boundaries to guarantee ef£cient routing.
A load-balanced, range-partitioned network will not have
such equi-spaced boundaries, rendering such networks un-
usable. Aberer [1] presents an elegant variant of Pastry
which does guarantee O(log n) routing even with arbitrary
partition boundaries. However, node in-degrees could be-
come skewed, resulting in a skewed message traf£c dis-
tribution. Moreover, a change of partition boundaries be-
tween neighbors necessitates a change in the network link
structure. Our P2P network utilizes skip graphs and over-
comes the above limitations. Bharambe et al. [7] suggest
an alternative scheme involving the construction of small-
world networks. However, their heuristic requires nodes to
perform extensive sampling of the other nodes in the sys-
tem, and provides no guarantees on routing performance.
Our solution of using skip graphs is simpler and provides
stronger guarantees on performance.

7 Conclusions and Future Work

Horizontal range-partitioning is commonly employed in
shared-nothing parallel databases. Load balancing is nec-
essary in such scenarios to eliminate skew. We pre-
sented asymptotically optimal online load-balancing algo-
rithms that guarantee a constant imbalance ratio. The data-
movement cost per tuple insert or delete is constant, and
was shown to be close to 1 in experiments. We showed
how to adapt our algorithms to dynamic P2P environments,
and architected a new P2P system that can support ef£cient
range queries.

Although our algorithms were presented in the context
of balancing storage load, they generalize to balancing ex-
ecution load too; all that is required is an ability to partition
load evenly across two machines. Understanding the costs
of load balancing for execution load is a subject of future
work. We are currently exploring extensions of our algo-
rithm to deal with node and network heterogeneity, as well
as the partitioning of multi-dimensional data [14].
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