
Production Database Systems:
Making Them Easy is Hard Work

David Campbell

Microsoft Corporation
One Microsoft Way

Redmond, WA
USA

davidc@microsoft.com

Abstract
Enterprise capable database products have
evolved into incredibly complex systems, some
of which present hundreds of configuration
parameters to the system administrator. So, while
the processing and storage costs for maintaining
large volumes of data have plummeted, the
human costs associated with maintaining the data
have continued to rise. In this presentation, we
discuss the framework and approach used by the
team who took Microsoft SQL Server from a
state where it had several hundred configuration
parameters to a system that can configure itself
and respond to changes in workload and
environment with little human intervention.

1. Introduction
In order to optimally service requests, database systems
must manage available resources such as memory and
processing power; understand the distribution of the
stored data to make good choices about querying the data;
and balance the needs of competing requests into the
system. The first generation of database systems forced
administrators to make many of these choices, up front,
before starting the database through a set of configuration
parameters or a configuration file. Changing these
parameters typically required that the database system be
stopped and then restarted to adopt the new configuration
profile. Thus, reconfiguration was very costly in a highly

available environment. Furthermore, the skill set required
to truly comprehend the meaning of hundreds of
configuration parameters and the interaction between
them was very high. Many systems in the field performed
poorly due to mis-configuration.

In the mid-1990’s the complexity of these systems

was beginning to exceed the capacity of the existing talent
pool to manage them. Commercial database vendors
began to recognize that future wide scale adoption of
database technology would require more efficient ways to
manage these systems. In response to this, several
products began introducing features to codify the
knowledge required to “set the knobs”. These
“configurators” let less skilled users configure the system
based upon a series of questions or rudimentary workload
analysis. Adopting the recommendations of these
configurators still required changes to the underlying
configuration set and, typically, a restart of the system.

The team that architected Microsoft SQL Server 7.0

took a radically different approach to this problem. Rather
than adding features to help “turn the knobs”, they took a
holistic approach that focused on eliminating the knobs
while simultaneously maintaining administrative control
where necessary. This approach focused on three major
themes:

• Closed loop control
• Intention based design
• Profile guided configuration and tuning

2. Closed loop control
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

The Microsoft SQL Server team used control theory
technologies long known in other engineering disciplines
to encode closed loop, feedback based, systems for
configuring many elements of the system in near real-
time. These technologies are used in SQL Server to
control the size of the buffer pool, growing and shrinking

1196

the size of the overall memory pool dynamically in
response to memory pressure from other processes on the
running system. By default, SQL Server is configured to
completely control the amount of memory it consumes,
however, an administrator can define upper and lower
bounds on the amount of memory used and the control
algorithm will be constrained to honor those boundaries.
This is an example where, by default, the system manages
itself, however administrative policy can be enforced if
desired. These dynamic control algorithms are also used
elsewhere in the system such as automatically configuring
the read ahead and write behind depth for prefetch and
bulk write operations.

Not only have these closed loop algorithms eliminated

a large number of configuration parameters, they also
have the advantage of responding to external forces to
automatically reconfigure the running system in response
to changing conditions resulting in more efficient use of
system resources. For example, in many database
systems, an administrator must set aside a portion of
system memory for various needs such as working
memory for sorting, or storing compiled SQL plans. In
SQL Server, the system dynamically manages these
different memory needs based upon system conditions –
only allocating sort working memory when there is a sort
operation being performed. Thus, memory is a fungible
resource that can be employed wherever it can do the
most good at any instant in time.

3. Intention based design
The control surface of most database products evolved as
the implementers added new configuration parameters as
they added features. As a result, system administrators
were forced to wrestle the existing set of knobs into the
right form to do their jobs. So, while an administrator
might want to ensure that restart recovery completed in
less than 60 seconds, he may have to set checkpoint
frequency, number of outstanding dirty log blocks and
several other parameters to achieve the desired state.
Intention based design turns this around by aligning the
control inputs of the database product with the specific
objectives of the administrator. So, the administrator can
specify they want restart recovery to complete in 60
seconds rather than manipulating a number of other
controls. Obviously, there may be conflicts between the
specified inputs; with intention based design however, it
is up to the database product to understand and negotiate
these constraints rather than the administrator.

4. Profile guided configuration and tuning
During the process of trying to understand the costs of
mis-configured systems, the Microsoft SQL Server team
realized that there were a number of administrative tasks
such a maintaining table and index statistics or providing

an optimal index set for a particular workload that could
be automated. As a result, the product development and
research teams created features to automatically create
and maintain distribution statistics on stored data and to
recommend a set of optimal indexes for a specified
workload.

Automatic statistics update can create index and

column level distribution statistics to improve the cost
based query optimization decisions. Since this is done
automatically in response to knowledge required to
perform effective query optimization, the system actually
“learns” as it processes new queries. If a query plan
choice could benefit from column level statistics, the
system will schedule building the statistics so subsequent
query activity can benefit from the knowledge.

The Index Tuning Wizard [1] can process a previously

recorded workload and, in cooperation with the query
optimizer, propose an optimal set of indexes to process
the workload balancing both the query benefit from the
indexes and the costs required to maintain the index set.
Ultimately, the goal is to eliminate the need for the
CREATE INDEX statement and to have the system
maintain optimal indexing based upon system needs.

5. Conclusion
A holistic approach to “Ease of Use”, coupled with use of
well known techniques from other engineering disciplines
can be used to build very sophisticated database systems
where the intent of the administrator, coupled with
workload analysis, can be used to dynamically control the
configuration of the system. Use of closed loop control,
intention based design, and profile guided tuning can
result in a system that is more responsive; resource
efficient; and much less prone to mis-configuration
Systems build with these techniques require much less
direct human input to maintain; freeing administrators to
perform tasks that provide much more direct business
value.

References
[1] Chaudhuri, S., Narasayya V., “An Efficient, Cost-
Driven Index Selection Tool for Microsoft SQL Server.”
Proceedings of the 23rd VLDB Conference Athens,
Greece, 1997, pages 146-155

1197

