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Abstract

Traditional databases have focused on the is-
sue of reducing I/O cost as it is the bottleneck
in many operations. As databases become
increasingly accepted in areas such as Geo-
graphic Information Systems (GIS) and Bio-
informatics, commercial DBMS need to sup-
port data types for complex data such as spa-
tial geometries and protein structures. These
non-conventional data types and their asso-
ciated operations present new challenges. In
particular, the computational cost of some
spatial operations can be orders of magnitude
higher than the I/O cost. In order to im-
prove the performance of spatial query pro-
cessing, innovative solutions for reducing this
computational cost are beginning to emerge.
Recently, it has been proposed that hard-
ware acceleration of an off-the-shelf graph-
ics card can be used to reduce the compu-
tational cost of spatial operations. However,
this proposal is preliminary in that it es-
tablishes the feasibility of the hardware as-
sisted approach in a stand-alone setting but
not in a real-world commercial database. In
this paper we present an architecture to show
how hardware acceleration of an off-the-shelf
graphics card can be integrated into a popu-
lar commercial database to speed up spatial
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queries. Extensive experimentation with real-
world datasets shows that significant improve-
ment in the performance of spatial operations
can be achieved with this integration. The vi-
ability of this approach underscores the signif-
icance of a tighter integration of hardware ac-
celeration into commercial databases for spa-
tial applications.

1 Introduction

The cost of a DBMS query consists of two factors:
I/O cost, the time spent in loading the data from the
secondary storage into the main memory, and compu-
tational cost, the time spent by the DBMS in process-
ing this data and returning the result. Traditionally,
database research has focused on reducing I/O cost
during query processing as it is the major bottleneck
in many operations.

With the increased acceptance of databases in var-
ious areas such as Geographic Information Systems
(GIS) and Bio-informatics, commercial DBMS, which
historically handled simple data types like numbers
and alpha-numeric characters, need to support com-
plex data types. These new data types and the as-
sociated operations present new challenges for DBMS
researchers. One such case is the support for efficient
storage and retrieval of spatial data, which typically
consists of large complex datasets representing real
world GIS and CAD information.

Spatial database queries are typically evaluated in
two steps: the filtering step and the refinement step.
In the filtering (also referred to as primary filtering)
step, the Minimum Bounding Rectangles (MBRs) of
the objects and spatial indexes such as R-tree [9] are
used to quickly determine a set of candidate results.
In the refinement step (also referred to as secondary
filtering step), the final results are determined by re-
trieving the actual geometries of the candidates from
the database, and comparing them to either a query
geometry or to each other. For complex geometries
such as polygons, the cost of the secondary filtering
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step usually dominates the query cost due to the com-
plexity of the underlying computational geometry al-
gorithms in this step. The ratio of the computational
cost of comparing the geometries to the I/O cost for
loading the geometries varies significantly depending
on the type of spatial queries and the complexity of
the geometries, which can be roughly characterized
by the number of vertices of a geometry. Generally
speaking, the more complex the data, the higher the
computational cost. For instance, a recent study on
spatial selections [13] shows that for point geometries,
the I/O cost is the dominant factor, but for polygon
geometries, both costs are significant. In the case of
a spatial join, the computational cost could be several
orders of magnitude higher than the I/O cost. This
is because once a geometry is loaded, it is buffered in
the main memory and compared to many other ge-
ometries.

In order to reduce the computational cost of the
secondary filtering step, various intermediate filter-
ing techniques have been proposed. For intersection
queries, Brinkhoff et al. [4] proposed using simple ge-
ometries such as convex hulls, n-corners, and max-
imum enclosing rectangles to approximate complex
polygons. These simple geometries serve as an inter-
mediate filtering step, in addition to the MBR filtering,
and can identify a significant number of false positive
hits without performing the costly geometry-geometry
comparison. Recent work has proposed several tiling
based intermediate filters [24, 2, 13], which approxi-
mate polygons with rectangular tiles.

With recent advancements in the graphics hard-
ware technology, several proposals [19, 10, 11, 1, 15, 8]
have been made to use commodity Graphics Processor
Unit (GPU) to speed up conventionally computation-
intensive applications. It is believed that the perfor-
mance enhancement reported in these works will fur-
ther improve because the peak performance of graphics
processors is increasing at the rate of 2.5 - 3.0 times a
year: much higher than the corresponding rate for the
central processing units (CPUs) [14].

In the spatial database context, Sun et al. [19] de-
veloped a hardware-assisted intersection test as an in-
termediate filter for spatial database operations. How-
ever, this work was preliminary in that it established
the feasibility of the approach, referred to as the hard-
ware filter, in a stand-alone setting and not in a real-
world commercial database where different storage lay-
outs, index structures, query plans and proprietary
optimizations may effect the effectiveness of this tech-
nique.

In this paper, we show how hardware acceleration
of a commodity graphics card can be integrated into
a commercial DBMS. We use Oracle 9I as a repre-
sentative of a commercial DBMS. We present various
approaches of integration provided by Oracle’s exten-
sibility architecture [7] and discuss their suitability for

integration with the hardware filter. We chose to inte-
grate the hardware filter as an external procedure [7]
and the hardware filter itself was implemented using
OpenGL because OpenGL provides a generic high level
interface to any graphics hardware. We built spatial
query operators using the integrated hardware filter
and Oracle’s primary and secondary filters thus pro-
viding similar functionality as Oracle’s spatial opera-
tors [16]. We provide a cost analysis of different query
operators and use it for discussing the results of the ex-
perimental section where we compare the performance
of our spatial query operator against Oracle’s corre-
sponding operators. Through a detailed analysis of
the experimental results, we not only validate the ef-
fectiveness of the hardware filter but also intend to
provide feedback which will be helpful to database de-
signers in integration of hardware acceleration.

The main contributions of this paper are:

• We discuss various integration options provided
by Oracle and develop a system framework for in-
tegrating hardware acceleration into a commercial
DBMS.

• Though many techniques have been proposed to
use graphics hardware for non-visualization appli-
cations, few of them [19, 1] have made the effort to
compare hardware-assisted techniques with lead-
ing software solutions. To the best of our knowl-
edge, this paper is the first work which imple-
ments and evaluates a hardware acceleration tech-
nique in a commercial database setting.

• We conducted extensive experimentation using
real world datasets, indexed by both R-tree as well
as fine-tuned Quadtree indexes. The performance
results of spatial selection and join confirm the ad-
vantage of the hardware filter [19], even against a
preprocessing filter in most cases. The analysis
also gives more insights regarding filtering tech-
niques at different stages of spatial processing in
a complex commercial database environment.

The rest of the paper is organized as follows. In
Section 2, we summarize the hardware-assisted inter-
section test proposed by Sun et al. [19]. In Section 3,
we present the details of Oracle’s support for extensi-
bility. In Section 4, we propose our architectures for
integration and discuss its details. Section 5 presents
the details of the data and query models of Oracle
Spatial. In Section 6, we analyze the performance of
the hardware filter for spatial selection and spatial join
queries. Section 7 concludes the paper.

2 Hardware Acceleration of Spatial
Operations

In [19], Sun et al. propose using graphics hardware to
speed up the refinement step in spatial query opera-
tions. The technique is based on the observation that
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most low-level algorithms used in spatial databases
have been well studied by the computational geometry
community. Under current computer architectures, it
is unlikely that algorithmic advances will significantly
reduce the cost of geometry-geometry comparison. On
the other hand, the last few years have seen tremen-
dous advances in graphics hardware technologies. Off-
the-shelf graphics cards are capable of handling thou-
sands of polygons in real time, and are widely used
in computer games, 3D modeling, and virtual reality
applications. Since both graphics hardware and spa-
tial databases work on geometries such as points, lines,
and polygons, and they both deal with geometric re-
lations such as intersection and containment in a 2D
or 3D space, it is only natural to exploit the computa-
tional power of graphics hardware to speed up spatial
database operations.

The idea is based on the intuitive notion of inter-
section of two polygons in the digital domain:

1. Render the first polygon with color c1.

2. Render the second polygon with color c2 adding
the pixel-to-pixel color values of the second poly-
gon to the first polygon.

3. Search for overlapping pixels with color c1 +c2. If
such pixels exist, these two polygons intersect.

Figure 1: Hardware Intersection Test
An example of this strategy is illustrated in Fig-

ure 1, where the two polygons are rendered with color
gray, and the overlapping pixels are black. However, it
should be noted that a naive implementation of this
approach will lead to both false hits and false dis-
missals due to the limited window resolution of the
graphics hardware. So in [19], the hardware inter-
section test is implemented with a combination of a
software point-in-polygon test and the rendering of
only the polygon boundaries. Because of the rendering
property of the anti-aliased line segments, this hard-
ware test guarantees no false dismissals at any window
resolution. However, false hits may exist because two
disjoint objects might be mapped to the same pixel.
Therefore, the hardware test is used as an intermediate
filter as a part of the following 3-step filtering setup:

1. Primary filtering where MBR filtering and point-
in-polygon tests are performed to determine a
candidate set.

2. Intermediate filtering with graphics hardware to
further reduce the candidate set.

3. Secondary filtering where a software intersection
test is performed to determine the final results.

In the intermediate filtering step, which we will re-
fer to as hardware filtering, the two geometries are ren-
dered using graphics hardware, and the frame buffer
is searched for overlapping pixels using the efficient
hardware minmax test [18]. Using this hardware filter,
[19] showed that significant reductions in the compu-
tational costs of spatial operations for complex queries
resulted. In the experimental setup, the spatial data
was stored in flat files and simple MBR comparison
was used for primary filtering. In this paper, we eval-
uate the effectiveness of the hardware filter in a more
realistic commercial database setup. In particular, we
use Oracle’s R-tree and Quadtree in the primary fil-
tering step, and the geometry comparison functions in
the refinement step. In the following sections, we first
present how to integrate the hardware filter with Ora-
cle Spatial, then report on the experimental setup and
results.

3 Database Extensibility

In addition to the efficient and secure management
of data specified by the relational model, commercial
databases like Oracle and DB2 now provide support
for data organized under the object model. Object
types and other features such as large objects (LOBs),
external procedures, extensible indexing and query op-
timization can be used to build powerful, reusable
server-based components called data cartridges by Or-
acle [7] and Data Blades by DB2 [6]. In this paper,
we use a data cartridge to integrate the hardware fil-
ter with the Oracle database engine. Through data
cartridges, Oracle allows users to capture the business
logic and the processes associated with domain-specific
data in user-defined data types. It also allows them to
build and integrate their own indexing and query op-
timization techniques into the database. For example,
the Oracle extension for spatial data, popularly known
as Oracle Spatial, is simply a data cartridge consisting
of all the relevant spatial data types, as well as the
associated indexes, functions, and operators [16].

The data types and operations encapsulated in a
data cartridge can be used in user queries written
in PL/SQL, which is the query language in Oracle.
PL/SQL itself is a powerful programming language,
but is not suitable for implementing complex algo-
rithms due to performance reasons. For example, a
numerical routine is faster when implemented in C
or Java. To support such special-purpose processing,
PL/SQL provides an interface for calling routines writ-
ten in other languages, which makes the strengths and
capabilities of third generation languages (3GL) like
C and Java available through calls from a database
server. Such a 3GL routine, called an external proce-
dure or a stored procedure, is stored in a shared library,
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registered with PL/SQL, and called from PL/SQL at
runtime to perform special-purpose processing. For in-
stance, suppose we have a database table X with two
columns A and B, and a data cartridge Y which pro-
vides operation C. A user query selecting information
from X can be written as

select /* */ from X where Y.C(A, B) = value;
In the rest of this section, we discuss the details

of stored procedures and external procedures, which
are later used for integrating the hardware filter into
Oracle.

3.1 Stored procedures

Stored procedures are implemented on the server side
and are written in an interpreted language such as
Java. Oracle provides an area in the database ad-
dress space for the execution of the stored procedure,
called the Java Virtual Machine (JVM). Since a stored
procedure implemented in Java runs in the same ad-
dress space as Oracle, a stored procedure invocation
causes a context switch from Oracle’s run-time threads
to the JVM. Although both PL/SQL and Java are in-
terpreted languages, Java is preferable over PL/SQL
for implementing efficient procedures because Java has
hundreds of classes, allowing interfaces with diverse
functionality. Oracle does not allow C stored proce-
dures for normal developers because unlike Java pro-
grams where program failures are handled by the JVM,
C program failures can lead to database failure which
is not desirable. However, Oracle allows C stored pro-
cedures for trusted developers i.e., people who write
Oracle’s proprietary software.

3.2 External procedures

External procedures are written in compiled lan-
guages, such as C and C++, and executed in an exter-
nal address space separate from the database server.
The external address space is managed by a process
known as Listener. This separation ensures that the
database server is insulated from any program failures
that might occur in external procedures and, under
no circumstances, is an Oracle database corrupted by
such failures. But at the same time, the execution of a
procedure in a separate address space implies an Inter
Process Communication( IPC) overhead between Or-
acle and the external procedure. So implementing an
algorithm as an external procedure is efficient only if
the IPC overhead is insignificant with respect to the
CPU cost incurred by the algorithm. The architecture
of a typical external procedure is given in Figure 2

An important detail in the discussion of external
procedure is the mapping of the PL/SQL data types of
Oracle to the data types of the external procedure lan-
guage, e.g., C. While conventional PL/SQL data types
like numbers and varchar have corresponding mapping
data types in C, complex data types like Large OBjects
(LOB) do not have a simple mapping. These LOBs

SQL

C

PL/SQL

JAVA

Inter Language Method Service Listener

Extproc

Oracle 9I

External Address Space

Database
Oracle

Oracle’s Address Space

Figure 2: External Procedure - Architecture
are transferred to the external procedure in a complex
format and the external procedure needs to map these
LOBs into its data structures using the Oracle Call In-
terface (OCI) [17] data manipulation callbacks. These
callbacks are particularly useful for processing LOBs
such as the Spatial Data Objects (SDO) [16]. For ex-
ample, by using callbacks, an external procedure can
perform piece-wise reads or writes of the SDOs stored
in the database.

3.3 Comparison

The decision of whether to use an external procedure
or a stored procedure depends on various factors. Java
class procedures are generally slower than a compiled
C external procedure because of the interpreted na-
ture of Java which makes external procedures obvious
choice if speed is the main concern. If the IPC over-
head is more significant than the processing cost, then
stored procedures are preferable. One other factor is
the amount of library support offered by the program-
ming language. If the user wants to integrate hardware
acceleration into the database, he/she would prefer to
use a language like C. This is because current state of
the art interfaces to access most hardware devices are
more widely available in C than in Java. In particu-
lar, we use OpenGL for interacting with the graphics
hardware. OpenGL provides a high level interface to
the developers while hiding driver level details of the
graphics hardware. OpenGL is a widely accepted stan-
dard and typically every graphics card manufacturer
provides an implementation for this interface. Despite
the IPC overhead drawback, we chose to integrate the
hardware filter as an external procedure because C in-
terfaces to OpenGL are ubiquitous; Java interfaces are
not yet standardized and are not widely available.

4 Hardware Filter Integration

Traditional OpenGL programs are designed to run in
an infinite loop waiting for interactive events to oc-
cur. Typically these event-driven programs consist of
a set of initialization operations followed by a recurring
set of rendering operations which handle event occur-
rences. The hardware filter consists of the following
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operations in sequential order: data retrieval, MBR
filtering, point-in-polygon test, rendering the polygons
and doing the minmax test. As the hardware filter
requires rendering operations for performing the hard-
ware test, initialization must be completed before the
rendering operations can be performed. Since a typical
spatial query would require the rendering operations
(for the hardware tests) to be performed a number of
times, it is not desirable to execute the initialization
operations every time as these operations are very ex-
pensive. In order to avoid this initialization overhead,
we propose to separate the process of accessing the
graphics hardware from the process of data retrieval
and software tests. This separation will make the hard-
ware filter efficient because initialization is done only
once for any query.

We present an architecture, referred to as Dual
thread architecture, where we separate the hardware
access and implement it as a separate thread within
the address space of the external procedure. The
external procedure consists of two threads (primary
thread and graphics thread) running synchronously to
perform the intersection test (Figure 3). The pri-
mary thread deals with the data retrieval and the ini-
tial filtering tests like the MBR test and the Point in
the Polygon test. The graphics thread performs the
OpenGL initializations and the hardware test. While
the graphics thread is created at the beginning of the
query and remains alive as long as the query runs, the
primary thread is loaded in a nested manner. The two
threads share data using global variables. Synchro-
nization between the threads is done using the system
calls provided by the pthread library. We describe the
dual thread architecture below.

SQL

C

PL/SQL

JAVA

Inter Language Method Service Listener

Extproc

Oracle 9I

External Address Space

Database
Oracle

Oracle’s Address Space

Primary
Thread

Graphics
Thread

Figure 3: Dual Thread Architecture
The primary thread performs the following opera-

tions in sequential order:

1. Retrieve the data corresponding to the Spatial
Data Objects (SDO) using Oracle Call Interface
(OCI) callbacks into global variables.

2. Test the query polygons for Minimum Bounding
Rectangle (MBR) intersection. If this test suc-
ceeds, go to step 3 else the two polygons do not
intersect.

3. Test the query polygons for the Point in the Poly-
gon condition. If this test succeeds the two poly-
gons intersect, else go to step 4 for the hardware
test.

4. Inform the graphics thread, which is waiting for
a signal from the primary thread (as will be de-
scribed below), so that the polygons are rendered.

5. Wait for a signal from the graphics thread. Upon
receiving the signal from the graphics thread
check the result of the hardware intersection test
given by the graphics thread. If the result is true
the software intersection test needs to be done.
Otherwise the polygons do not intersect.

The graphics thread performs the following opera-
tions in sequential order:

1. Wait for the primary thread to generate the re-
quired data so that polygons can be rendered for
doing the hardware test.

2. Upon receiving the signal from the primary
thread, render the polygons and check for the in-
tersection condition using hardware minmax test.
Store the result of this test in a global variable
and signal the waiting primary thread. Go back
to step 1.

5 Oracle Spatial

As described in the previous section, Oracle Spatial
[16] is an integrated set of functions and procedures
that enables spatial data to be stored, accessed, and
analyzed quickly and efficiently in an Oracle database.
In this section, we give the details of the data and
query models of Oracle Spatial.

5.1 Data Model

Oracle Spatial’s data model is a hierarchical struc-
ture consisting of elements, geometries, and layers,
which correspond to representations of spatial data.
An element is the basic building block of a geometry.
The supported spatial element types are points, line
strings, and polygons. A geometry (or geometry ob-
ject) is the representation of a spatial feature, modeled
as an ordered set of primitive elements. A layer is a
collection of geometries having the same attribute set.
Each layer’s geometries and the associated spatial in-
dex are stored in the database in standard tables.

5.2 Indexes and Query Model

Oracle provides support for both linear Quadtree and
R-tree indexes. These indexes are implemented us-
ing the extensible framework of Oracle [7, 16]. The
linear Quadtree (or Quadtree for short) computes tile
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approximations for the interior and boundary of ge-
ometries and uses existing B-tree indexes for perform-
ing spatial search and other operations. The R-tree
indexing in Oracle is implemented logically as a tree
and physically uses tables inside the database. The
search involves recursive SQL from the root to the rel-
evant leaves.

R−tree
Intermediate

Filter Comparison

Geometry − Geometry

Quadtree

Geometries
Candidate

(Excluded from the result set)

False Hits

Result
Geometries

(send directly to the result set)
True Hits

Priimary

Filter

Figure 4: Oracle Spatial Query Model

Oracle Spatial uses a multi-stage query model as
shown in Figure 4. In the first stage, referred to as the
primary filter, the spatial index is used for query fil-
tering. Candidate geometries that may satisfy a given
query criterion are first identified in this stage with the
help of exterior approximations in the spatial index. In
the case of a Quadtree, Quadtree tiles are used as ex-
terior approximation and in the case of an R-tree, min-
imum bounding rectangles (MBRs) are used. In the
intermediate stage, candidate geometries from the pri-
mary filtering step are compared with the query geom-
etry using a sorted list of interior tiles approximating
the interior of the query geometry. This is referred to
as the interior approximation filter [13] and is used ei-
ther to accept or reject candidate geometries based on
the query criterion. The rest of the geometries whose
interaction are not determined in the intermediate fil-
ter are then passed through to the final stage, referred
to as the secondary filter, and the exact result set is
determined and returned to the user. Whereas the sec-
ondary filter uses computational geometry algorithms
to determine the interaction between query and candi-
date geometries, the primary and intermediate filters
use the exterior and interior approximations of query
and data geometries (from the index).

As described above, during the intermediate filter-
ing stage, Oracle uses the interior approximation filter
[13] to reduce the candidate set for the secondary filter.
If Quadtree indexing is used then interior approxima-
tions of both the query and also the data geometries
are used during the interior filtering step. This is be-
cause, in the case of Quadtree indexing, the interior
approximations of the datasets are calculated stati-
cally during index creation and stored inside the index
tables. For queries that use R-trees, the interior ap-
proximations are calculated during run-time and hence
are done only for query geometries. For R-trees, the
choice of tiling level for interior approximations is de-
cided by the Oracle run time optimizer.

5.3 Spatial Operators and Functions

In order to define a spatial query in Oracle three pa-
rameters must be defined: two for the geometries used
in the spatial query, and the third for parameters defin-
ing the type of spatial query (selection or join). Given
below are two spatial operators and a function pro-
vided by Oracle Spatial.

1. SDO FILTER : This operator functions as a pri-
mary filter and returns a super-set of the actual
query result.

2. SDO RELATE : This operator performs both the
primary and the secondary filtering operations
and returns the exact query result. In addition
to using the indexing for primary filtering, it also
performs interior approximation filtering [13] be-
fore secondary filtering. This operator has two
options specified by the third argument:

• WINDOW: When this option is enabled,
it performs a selection of the query geometry
(second parameter) over the data geometries.

• JOIN: When this option is enabled, it per-
forms a spatial join of the geometry columns
specified by the two parameters. Currently,
Oracle allows join queries only when the ge-
ometries are indexed using Quadtrees. In
the case of R-trees, it performs a nested
join in the same way as a selection query.
This operator requires the second column
to be indexed using the same tiling level as
the first column. When both data columns
are indexed using Quadtrees, it performs a
hash join during the primary filtering step
followed by a direct application of the sec-
ondary filter. If the second column is not
indexed, a nested join is performed as in the
case of selection queries.

3. SDO GEOM.RELATE : This function (not op-
erator) applies exact computational geometry to
find out the kind of interaction between two given
geometries and is used as the secondary filter in
SDO RELATE.

6 Performance Evaluation

In this section, we evaluate the effectiveness of the
hardware filter integrated with an Oracle database,
and compare the performance of intersection queries
with and without the hardware filter. We build a
hardware intersection operator by applying the hard-
ware filter to the result set produced by the primary
filter (SDO FILTER) and then apply the secondary
filter (SDO GEOM.RELATE). We call this the hard-
ware operator. We also give a conservative estimate
for the performance of the hardware operator, if the
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hardware filter is implemented right after the primary
filter as a part of Oracle’s Spatial data cartridge and
not as an external procedure. This is done by deduct-
ing the IPC overhead which occurs because of trans-
ferring the data to the external procedure. We refer
to the hardware operator without the IPC overhead as
hardware-no-ipc operator. In the rest of this section we
discuss the experimental setup, describe a theoretical
cost analysis for the hardware operator, and analyze
the performance of selection and join operations.

6.1 Experimental Setup

The experiments were performed on a desktop PC
with an AMD AthlonXP 1800+ CPU and 1GB Dou-
ble Data Rate (DDR) memory. The graphics card is
equipped with an NVIDIA GeForce4 Ti4600 processor
and 128MB on-board memory. Experiments are per-
formed on an Oracle database (version 9.2.0.1) run-
ning on Linux Operating System. The hardware filter
is coded in C++, compiled to a shared library using
g++ and integrated with Oracle using the Dual Thread
architecture.

The experiments are conducted with the following
real world datasets:

• PRISM [5]. Average annual precipitation in the
contiguous United States at 1:2,000,000 scale for
the climatological period 1961-1990.

• HYDRO [23]. Hydrological unit boundaries for
the United States, Puerto Rico and the US Virgin
Islands at 1:2,000,000 scale.

• COUNTY [22]. The boundaries of the US coun-
ties at 1:2,000,000 scale.

• STATES50 [20]. The boundaries of the main
land boundaries of the 50 US states at 1:2,000,000
scale.

• LSOVER [21]. The boundaries of Landslide
Incidence and Susceptibility distribution in the
United States at 1:2,000,000.

Some statistics of the datasets are summarized in
Table 1, where N is the number of objects in a dataset.

Number of Vertices Per Polygon
Dataset N

Min Max Average

STATES50 50 91 70238 4416
PRISM 6243 4 45854 94
HYDRO 5348 4 12450 218

COUNTY 4933 4 10838 139
LSOVER 2814 4 91752 92

Table 1: Statistics of experimental Datasets

6.2 Operator Cost Analysis

In this subsection, we describe the cost analysis for
the hardware operator and Oracle’s software operator.
Here, the cost refers to the total elapsed time for a spa-
tial query. This cost analysis will provide the details
of the various costs which constitute the total cost of
hardware and software operators and will be used in
later subsections to discuss the results.

6.2.1 Hardware operator

As described before, the hardware operator is built
by applying an ordered sequence of filters: primary,
hardware and secondary. It should be noted that
for the primary and secondary filtering, we use Or-
acle’s SDO FILTER and SDO GEOM.RELATE re-
spectively. Since the hardware filter is implemented
inside an external procedure, the total cost (ttotal) of
the hardware operator can be expressed as the sum of
the costs of the following components:

1. cost of the primary filter (tprimary).

2. cost of the external procedure.

3. cost of the secondary filter (tsecondary).

The cost of the primary filtering step (tprimary) not
only includes the cost of loading and using the index
tables for calculating a superset of the actual result but
also the cost of loading the geometries corresponding
to the result set of the primary filter from secondary
storage to Oracle’s address space.

The cost incurred by the external procedure
(textproc) can be partitioned into the following com-
ponents.

1. cost of transferring data geometries to the address
space of the external procedure (ttransfer).

2. cost of retrieval of the received data into local data
structures using OCI function calls (tretrieval).

3. cost of hardware filtering test which includes
MBR test, Point-in-Polygon test, hardware test
and also the thread synchronization overhead
(thardware).

The cost of secondary filtering (tsecondary) com-
prises of the time for retrieval of data into internal data
structures (same as tretrieval mentioned above) and
the actual cost of comparing the data geometries us-
ing the computational geometry algorithms. It should
be noted that both the external procedure and the sec-
ondary filter have to make OCI callbacks for retrieving
data into local data structures before any processing.
This implies that for those geometry pairs which suc-
cessfully pass through the hardware filter, these OCI
callbacks are made twice. This can be avoided if the
external procedure is tightly integrated on the Oracle
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server itself as a part of the Oracle Spatial cartridge
instead of being integrated as an external procedure.
Since Oracle does not allow normal developers to mod-
ify its proprietary data cartridges, this overhead is cur-
rently unavoidable. Furthermore, tretrieval can be re-
duced to a great extent by efficient cache management
which can be done once the hardware filter is tightly
integrated into Oracle Spatial as a stored procedure.
Overall, the cost of the hardware-no-ipc operator de-
scribed in the beginning of this section gives a con-
servative estimate of the performance of the hardware
operator if integrated into Oracle Spatial.

6.2.2 Software operator

We now describe the cost analysis for Oracle’s soft-
ware operator. The software operator is a sequence
of two filters: the primary and the secondary filters
and for certain operations, an interior filter in be-
tween. The cost of the primary (tprimary) and sec-
ondary (tsecondary) filters is defined in the same way as
for the hardware operator. When the interior filter is
used by the software operator, it uses interior approx-
imations to filter out geometry pairs thereby reducing
the processing cost of the secondary filter. The cost in-
curred by the interior filter (tinterior) is predominantly
the time taken for contracting the interior approxima-
tions. Although a general breakdown of the total cost
into primary filter and the remaining cost can be cal-
culated, Oracle does not provide a breakdown of the
remaining cost into interior and secondary filter cost.
Since the interior filter is supposed to have insignifi-
cant cost [13], we assign the cost of the interior filter
(tinterior) to 0.

We also add the costs of the intermediate (hardware
and interior) filter and the secondary filter for both
the hardware and software operators respectively and
name the total cost as tcomp. We use tcomp because
the total I/O cost which is incurred during the load-
ing of the geometries is included inside the primary
filter cost (tprimary). It should be noted that in the
case of the hardware operator, we also add tretrieval

to tcomp apart from the hardware and secondary fil-
ter costs while noting that this cost can be greatly
reduced once the hardware filter is tightly integrated
into Oracle Spatial. A comparison of tcomp for the
hardware operator with that of the software opera-
tor gives a conservative estimate of the performance
enhancement due to the hardware filter over the inte-
rior filter. We consider it conservative because in the
case of the software operator, the interior filter does
not need to retrieve the data geometries (by making
OCI callbacks) for calculating the polygonal approx-
imations (MBRs or interior approximations) as these
approximations are precomputed and stored in the in-
dex structures.

6.3 Spatial Selections

In this subsection, we analyze the performance of spa-
tial selection queries by measuring the time taken
for selection queries using the following operators:
SDO RELATE, hardware and hardware-no-ipc. We
refer to the selection query with the SDO RELATE
operator as software selection when discussing the re-
sults in this subsection. We evaluate the performance
of these queries using the R-tree and Quadtree indexes.
Using the boundaries of STATES50 of the United
States, we perform the selection queries over three
datasets, PRISM, HYDRO, and LSOVER. Based on
the experimental results in [19], we chose a fixed 12x12
window resolution for the hardware filter and use it in
all the experiments. In the following subsections we
discuss the results for R-tree and Quadtree indexes
over these data sets.

6.3.1 R-trees

The results of the R-tree selection for the above queries
are shown in Figure 5. A breakdown of various costs
incurred during the selection query for the hardware
and the software operators are shown in the Tables 2
and 3. A comparison of the costs of primary (tprimary)
and secondary filters (tsecondary) for the software op-
erator (Table 3) shows that the primary filtering cost
is minimal when compared to the secondary filtering
cost. This implies that years of research efforts which
focused on providing better spatial indexes have been
able to reduce the primary filtering cost to the point
where the secondary filtering cost becomes the bottle-
neck.
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Figure 5: Selection results for R-trees
For the PRISM dataset, the hardware and the

hardware-no-ipc selections improve the overall perfor-
mance of the selection queries by 48.3% and 68.84% re-
spectively. A comparison of computation cost (tcomp)
values in Tables 2 and 3 shows that the hardware
operator improves the performance of the software
operator’s computation cost for the PRISM dataset
by 78.9%. Results for the case of selection over the
LSOVER dataset show a computation cost improve-
ment of 93% for the hardware operator over the soft-
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ware operator. These results also confirm the results
reported in [19] where similar improvements are re-
ported for the computation cost.

Cost parameter PRISM LSOVER HYDRO

tprimary 1156 470 3000

textproc

ttransfer 3137 1627 9294
tretrieval 310 349 156
thardware 304 160 1019

tsecondary 2980 3774 36291

Total Cost 7903 6647 49117

tcomp 3594 4444 37466

Table 2: Cost breakdown of hardware operator for R-
Tree selections (milliseconds)

For the HYDRO dataset, the hardware-no-ipc se-
lection performs marginally better than the software
selection. It should be noted that although the hard-
ware filter can assert when two polygons intersect by
containment and also when two polygons do not in-
tersect, it cannot assert when two polygons intersect
by overlapping. In the case of datasets such as HY-
DRO where many data polygons have an overlapping
intersection with the query polygon, the hardware op-
erator has to go through the secondary filtering step
to check for this condition in which case the hardware
filter becomes an overhead. However, a close look at
Table 2 indicates that in all the experiments, the hard-
ware filtering step (thardware) consumes less than 3%
of the total query response time in the worst case (2%
for HYDRO). This implies that the hardware filter is a
perfect run-time filter which can potentially enhance
the performance of spatial queries without incurring
any significant overhead.

For the PRISMS dataset, the large difference be-
tween hardware and hardware-no-ipc selections shows
that IPC overhead (ttransfer) can account for a signif-
icant proportion of the total query cost. In the above
result, ttransfer accounts for 40% of the overall hard-
ware operator’s cost. As discussed before, the sum of
the costs of IPC overhead (ttransfer) and the retrieval
time (tretrieval) gives an estimate of the amount of cost
reduction that can be achieved if the hardware filter
is tightly integrated into Oracle as a stored procedure.
For the PRISM, HYDRO and LSOVER datasets, this
cost accounts for 43%, 19% and 30% respectively of
the total cost thus underscoring the need for a tighter
integration.

In the current query model of Oracle Spatial, the
interior filter is tightly integrated into the database
where it has direct access to the polygonal approxima-
tions (MBRs) stored inside the index structures. This
means that the interior filter incurs very little cost be-
cause it directly operates on the MBRs from the index
and saves on the I/O and retrieval costs of loading
the actual data geometries and calculating the MBRs
respectively. We find this tightly integrated interior
filter to be complimentary to the hardware filter be-
cause the interior filter uses the MBRs stored in the

R-tree index, and reduces the I/O cost of retrieving the
actual geometries, while the hardware filter operates
on the geometries that are already loaded in memory,
and thus reduces the computation required for the sec-
ondary filtering. So an ideal setup would integrate the
hardware filter right after the interior filter inside the
Oracle Spatial data cartridge.

Cost parameter PRISM LSOVER HYDRO

tprimary 1156 470 3000
tsecondary 14137 57784 40235

tcomp 14137 57784 40235

Table 3: Cost breakdown of software operator for R-
Tree selections (milliseconds)

6.3.2 Quadtrees

In this subsection, we analyze the performance of selec-
tion queries when the data geometries are indexed us-
ing Quadtrees. When Quadtrees are used, a 2n∗2n grid
of tiles is used to approximate the interior and bound-
aries of geometries, where n is a user specified value
usually referred to as the Quadtree tiling level. These
interior and boundary approximations are calculated
during the index creation step and stored in the index
tables. Quadtree interior filtering has the advantage of
using these preprocessed interior approximations dur-
ing the filtering process. However, these approxima-
tions become very expensive to calculate and consume
a lot of disk storage when the tiling levels become high.
Timing and storage statistics of Quadtree index struc-
tures for the PRISM and HYDRO datasets shown in
Figures 6 and 7 suggest an exponential growth for in-
dex creation time and disk utilization with increasing
tiling levels. These statistics can be compared with the
timing and storage details of the corresponding R-tree
index structures in Table 4.

Intuitively, queries using Quadtree indexes have
better query performance than R-tree indexes because
the interior and the boundary tiles provide a better ap-
proximation of a geometry than the MBR, hence more
results can be identified without accessing the geome-
tries in the database table. However, this advantage of
query performance comes at the costs of longer index
creation time, larger index storage, as well as degraded
update performance. Ideally, it would be desirable to
have a filter which has the high performance of a pre-
processing filter without incurring any preprocessing
overhead.

It should be noted that the R-tree hardware filter
(hardware filter using R-tree index for primary filter-
ing) discussed in the previous subsection is absolutely
run-time because the required R-tree index can be
built very quickly (Table 4) and the hardware filter
is inherently run-time. In the rest of this subsection,
we analyze the performance of selection queries using
the run-time R-tree hardware filter and compare the
performance with the preprocessed Quadtree software
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Figure 6: Quadtree index storage for PRISM and HY-
DRO (in log scale)
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Figure 7: Quadtree index creation time for PRISM
and HYDRO (in log scale)

type PRISM HYDRO

Index Creation time (seconds) 5 5
Index Storage cost (Megabytes) 0.5625 0.5

Table 4: Index statistics for R-Trees
The Quadtree software selection queries are per-

formed for Quadtree tiling levels between 3 and 11.
Results for selection queries over the PRISM dataset
are given in the Figure 8. It can be observed that
the response time for the software selection query de-
creases as the tiling level increases. This is because
the candidate set returned by the primary filter gets
increasingly refined with the increase in tiling level
thus requiring less disk I/O during the ensuing filter-
ing steps. As the tiling level is not defined for R-trees,
the performance of the R-tree hardware filter appears
as a straight line. For lower tiling levels, the hard-
ware and the hardware-no-ipc selections outperform
the preprocessed selection query. At higher tiling lev-
els, the difference in the response time of hardware
assisted selection queries and the preprocessed selec-
tion query decreases. This is because of the increase in
effectiveness of the Quadtree interior filter due to im-
proved approximation of interior of data geometries.
But at higher tiling levels, the Quadtree indexes in-

cur very high preprocessing cost which is not reflected
in the performance cost of the selection query. These
results suggest that the hardware filter coupled with
the inexpensive R-tree indexing can significantly im-
prove the performance of spatial intersection queries
for complex datasets without incurring any preprocess-
ing overhead. Results for the selection query over the
LSOVER dataset (can be found in [3]) show that the
R-tree hardware filter outperforms the static interior
filter for all tiling levels thus supporting our argument
that, the R-tree hardware filter is a perfect replace-
ment for the Quadtree interior filter.
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Figure 8: Timing results for selection over PRISM

Results for selection queries over the HYDRO
dataset are shown in the Figure 9. As in the case of R-
tree selection, the hardware-no-ipc operator performs
at par with the Quadtree software operator. A closer
look at the performance of the nested indexed join sug-
gests that its query performance tends to converge to
an asymptotic value. This supports our earlier argu-
ment made for the hardware filter that the intersec-
tion of certain pairs of geometries cannot be asserted
by the intermediate filter (here the interior filter) and
they have to go through the secondary filter, and this
asymptotic value is the cost of the secondary filtering
step.
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Figure 9: Timing results for selection over HYDRO
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6.4 Spatial Joins

In this subsection, we analyze the performance of spa-
tial join operations when assisted by the hardware
filter. Here, we compare the performance of the R-
tree hardware join against software joins of both R-
trees and Quadtrees. For R-tree indexed cases, Ora-
cle9i currently supports only a indexed nested join,
which we refer to as R-tree software join. If both
geometry columns are indexed using Quadtree tiles,
SDO RELATE performs a hash join during primary
filtering followed by a direct application of the sec-
ondary filter. We refer to this join as the Quadtree
hash join. If only the first column is indexed, then it
performs the nested loop join using primary, interior
and secondary filters. We call this the indexed nested
join. In the rest of this subsection, we analyze the
performance of a spatial join query by measuring the
time taken for the following approaches: hash join, in-
dexed nested join, hardware join and hardware-no-ipc
join. We consider the join of the datasets COUNTY
and HYDRO, PRISM and HYDRO followed by join
on the datasets COUNTY and PRISM.
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Figure 10: Timing results for join of COUNTY X HY-
DRO

Figure 10 shows the results of the above spatial
join queries over COUNTY and HYDRO with vari-
ous levels of tiling for the Quadtree indexing. These
results show that the R-tree hardware-no-ipc join out-
performs the R-tree software join and also both the
Quadtree software joins for all the tiling levels. Among
the Quadtree software joins, the indexed nested join
performs better than the hash join because of the ef-
fectiveness of the interior filter which is not used in
the latter. Results of the join of the PRISM and
HYDRO datasets are given in Figure 11. It can be
noted that at higher tiling levels, the indexed nested
join performs well because the interior filter uses more
accurate preprocessed approximations which identify
more positive results, thereby reducing the I/O re-
quired for loading the actual geometries. These re-
sults show that although the hardware filter signifi-
cantly improves the performance of Quadtree joins at
lower tiling levels, the interior filter can be efficient
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Figure 11: Timing results for join of HYDRO X
PRISM

enough at higher tiling levels. However as shown in
Figures 6 and 7, higher tiling levels have very expen-
sive preprocessing and storage costs which is the rea-
son why Oracle, in general, recommends using R-trees
over Quadtrees [12]. Results for the join of COUNTY
and PRISM (shown in [3]) also confirm that the R-
tree hardware filter is very effective in improving the
performance of joins.

7 Conclusion and Future Work

In this paper, we addressed the problem of integrating
hardware acceleration into a commercial databases.
We analyzed various approaches of integration pro-
vided by Oracle and integrated hardware acceleration
for spatial operations as an external procedure. Using
the hardware filter and the primary filter of an inex-
pensive R-tree index, we developed a run-time spatial
intersection operator which has similar functionality
as Oracle’s software intersection operator. We ana-
lyzed the performance of this operator for spatial se-
lection and join operations through extensive experi-
mentation over real-world datasets and compared its
performance with Oralce’s run-time and preprocessed
intersection operators. Our experimentation demon-
strates that the hardware operator not only can im-
prove the performance of the Oracle’s run-time soft-
ware operator significantly, but also can perform as
well if not better than the preprocessed intersection
operator without incurring any preprocessing and stor-
age overhead. Since the hardware operator uses an R-
tree index which has very low index update, creation
and storage costs, we achieve the best of both worlds:
low storage requirement and very low processing time.
We also suggest that performance improvements can
be expected if the hardware filter is integrated after
the R-tree interior filter, as part of the DBMS itself.
In the near future, we plan to explore the use of hard-
ware filter integration for alternative complex queries.
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