
VizTree: a Tool for Visually Mining and Monitoring Massive
Time Series Databases

Jessica Lina Eamonn Keogha Stefano Lonardia Jeffrey P. Lankfordb Daonna M. Nystromb

aComputer Science & Engineering Department

University of California, Riverside
Riverside, CA 92521

{jessica, eamonn, stelo}@cs.ucr.edu

bThe Aerospace Corporation
 El Segundo, CA 90245-4691

{Jeffrey.P.Lankford, Donna.M.Nystrom}@aero.org

Abstract

Moments before the launch of every space vehicle,
engineering discipline specialists must make a critical
go/no-go decision. The cost of a false positive,
allowing a launch in spite of a fault, or a false negative,
stopping a potentially successful launch, can be
measured in the tens of millions of dollars, not including
the cost in morale and other more intangible detriments.
The Aerospace Corporation is responsible for providing
engineering assessments critical to the go/no-go decision
for every Department of Defense (DoD) launch
vehicle. These assessments are made by constantly
monitoring streaming telemetry data in the hours before
launch. For this demonstration, we will introduce
VizTree, a novel time-series visualization tool to aid the
Aerospace analysts who must make these engineering
assessments. VizTree was developed at the University of
California, Riverside and is unique in that the same tool
is used for mining archival data and monitoring incoming
live telemetry. Unlike other time series visualization
tools, VizTree can scale to very large databases,
giving it the potential to be a generally useful data
mining and database tool.

1. Introduction
One of the crucial responsibilities of The Aerospace Corporation
is to provide engineering assessments for the government
engineering discipline specialists who make the critical go/no-go
decision moments before the launch of every DoD space vehicle.
The analyst making these engineering assessments has access to
data from previous launches and must constantly monitor
streaming telemetry from the current mission. Currently, the
analysts use electronic strip charts similar to those used to record
earthquake shock on paper rolls. However, while these charts

illustrate the recent history of each sensor, they do not provide any
useful higher-level information that might be valuable to the
analyst.

To reduce the possibility of wrong go/no-go decisions, The
Aerospace Corporation is continually investing in research. There
are two major directions of research in this area.
• Producing better techniques to mine the archival launch data

from the massive databases collected during previous
missions. Finding rules, patterns, and regularities from past
data can help us “know what to expect” for future missions,
and allow more accurate and targeted monitoring,
contingency planning, etc [3].

• Producing better techniques to visualize the streaming
telemetry data in the hours before launch. This is particularly
challenging because analysts may have to monitor dozens of
rapidly changing sensors [3].

Although these two tasks are quite distinct, and are usually tackled
separately, the contribution of this work is to introduce a single
framework that can address both. Having a single tool for both
tasks allows knowledge gleaned in the mining stage to be
represented in the same visual language of the monitoring stage,
thus allowing a more natural and intuitive transfer of knowledge.

More concretely, we will demonstrate VizTree, a time series
pattern discovery and visualization system based on augmenting
suffix trees. VizTree simultaneously visually summarizes both the
global and local structures of time series data. In addition, it
provides novel interactive solutions to many pattern discovery
problems, including the discovery of frequently occurring patterns
(motif discovery), surprising patterns (anomaly detection), and
query by content. The user interactive paradigm allows users to
visually explore the time series, and perform real-time hypotheses
testing.

2. Our approach: VizTree
Our visualization approach works by transforming the time series
into a symbolic representation, and encoding the data in a
modified suffix tree in which the frequency and other properties of
patterns are mapped onto colors and other visual properties.

In [5], we introduced Symbolic Aggregate approximation
(SAX), a novel symbolic representation for time series that
transforms a time series into equiprobable symbols. The utility of
SAX has been demonstrated in [5], and adaptations or extensions
of SAX by other researchers further shows its impact in diverse
fields such as medical data mining and video indexing [1, 7]. We
refer interested readers to [5] for more details on SAX. Figure 1

* Dr. Keogh is supported by NSF Career Award IIS-0237918

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1269

shows an example of how a time series of length 1024 is
converted to a string of length eight: “acdcbdba.” In this example,
the number of SAX symbols is eight, and the cardinality of
alphabet is four (i.e. a, b, c, and d).

Figure 1: A time series dataset of length 1024 is converted into an eight-
symbol string “acdcbdba.” Note that the general shape of the time series is
preserved, in spite of the massive amount of dimensionality reduction.

To construct a tree representing the input time series,
subsequences of specified lengths are extracted from the time
series via a sliding window and normalized to have a mean of zero
and a standard deviation of one. Applying SAX on these
subsequences, we obtain a set of strings, and these strings are
inserted into the tree one by one. Each branch/node represents one
symbol. The resulting tree is a complete tree with depth equals to
the number of SAX symbols. Each node in the tree has α
children, where α is the cardinality of alphabet (i.e. if the alphabet
size is four, then each node has children denoting a, b, c, and d,
respectively).

Figure 2 shows a simple example of the tree, representing
strings of length three with cardinality of two. If we have a string
aba, then we insert it into the tree, following the top thick path: the
first symbol, a, is inserted into the first child node, A, of the root;
the second symbol, b, is inserted into the second child node, AB,
of node A; and the last symbol, a, is inserted into the first child
node, ABA, of node AB. Each time a symbol is inserted, its
frequency of occurrence, which is reflected as the thickness of the
branch, is updated. The frequently occurring patterns (motifs)
“aba” and “bab” can be easily identified from the tree, since these
two paths are thicker compared to the other branches.

We call such trees subsequence trees. Differing from a
classic suffix tree, a subsequence tree maps all subsequences onto
the branches of the tree. Thus, given the same parameters, the
trees have the same overall shape for any dataset. This approach
makes comparing two arbitrarily long time series easy and, as we
shall see, it makes anomaly detection possible.

Figure 2: Subsequence tree for strings of length three and cardinality of
two. The motifs “aba” and “bab” can be easily identified.

2.1 A first look at VizTree
Figure 3 shows a screen shot of VizTree1. When the program is
executed, four blank panels and a parameter-setting area are

1 We note that all the figures in this text suffer from their small scale and

monochromatic printing. We encourage the interested reader to visit [4] to
view high-resolution full-color examples.

displayed. To load a time series dataset, the user selects the input
file using a familiar dropdown menu. The input time series is
plotted in the top left-hand panel. Next to the time series plotting
window is the parameter setting area; the analyst can enter the
sliding window length, the number of SAX segments per window,
and select alphabet size from a dropdown menu. Once the
parameters are entered, the user can click on the “Show Tree”
button to display the subsequence tree on the bottom left panel.

The time series used for this example is an industrial dataset
of smog emissions from a motor vehicle. The length of the time
series is 2478. The length of the sliding window is arbitrarily set to
53; the number of segments (i.e., the depth of the tree) is four, and
the alphabet size (i.e., the number of children for each node) is
four.

The mappings of the symbols are consistent with the natural
shape of the tree. For example, for any given node, a branch at a
higher position denotes segments with higher values. Traversing
breadth-first from the top-most branch of any given node, the
symbols that represent the branches are a, b, c, and d, respectively.
Each level of the tree represents one segment. To retrieve any
string, we simply traverse down the appropriate branches.

The frequency of a pattern is encoded in the thickness of the
branch. For clarity, the full tree is drawn. Branches with zero
frequency are drawn in light gray, while others are drawn in red
with varying thicknesses.

Figure 3: A screenshot of Viztree. The top panel is the input time series.
The bottom left panel shows the subsequence tree for the time series. On
the right, the very top is the parameter setting area. Next to the
subsequence tree panel, the top window shows the zoom-in of the tree,
and the bottom window plots the actual subsequences when the analyst
clicks on a branch.

On the right hand side of VizTree, there are two panels. The
upper one shows the zoom-in of the tree shown in the left panel.
This is very useful especially for deep and bushy trees. The user
can click on any node (on the subsequence tree window, or
recursively, on the zoom-in window) and the sub-tree rooted at
this node will be displayed in this upper panel. The sub-tree
shown in Figure 3 is rooted at the node representing the string
“abxx,” where the “xx” denotes don’t-care since we are not at the
leaf level. If the user clicks on any branch, then the actual
subsequences having the string represented by this particular
branch will be displayed in the bottom panel and highlighted in
the time series plot window. In the figure, subsequences encoded
to “abdb” are shown.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

- 2

1 . 5

- 1

0 . 5

0

0 . 5

1

1 . 5

2

2 . 5

a

c

d

c

b

d

b

a a

b

c

d

a b a

1270

2.2 Subsequence matching
Similarity search can be done very efficiently with VizTree.
Instead of feeding another time series as query, the user provides
the query in an intuitive way. The top branch corresponds to the
region with the highest values, and the bottom branch corresponds
to the region with the lowest values. Therefore, any path can be
easily translated into a general shape and can be used as a query.
For example, the top-most branch at depth one (i.e., string “axxx”)
represents all subsequences that start with high values, or more
precisely, whose values in the first segment have the mean value
that resides in the highest region. In the previous example, the
user is interested in finding a concave-down pattern (i.e., a U-
shape). This particular pattern, according to the domain experts,
corresponds to a change of gears in the motor vehicle during the
smog emission test. From the U shape, the user can approximate
the query to be something that goes down and comes up, or a
string that starts and ends with high branches, with low branches
in the middle. As a result, clicking on the branch representing
“abdb” as shown in the figure uncovers the pattern of interest.

2.3 Motif discovery
A substantial body of literature has been devoted to techniques to
discover frequently recurring, overrepresented patterns in time
series; however, each work considered a different definition of
pattern. In previous work, we unified and formalized the problem
by defining the concept of “time series motif” [6].

VizTree provides a straightforward way to identify motifs.
Since the thickness of a branch denotes the frequency of the
subsequences having the same, corresponding strings, we can
identify approximate motifs by examining the subsequences
represented by thick tree paths. A feature unique to VizTree is
that it allows users to visually evaluate and inspect the patterns
returned. This interactive feature is important since different
strings can also represent similar subsequences, such as those that
differ by only one symbol. Figure 4 shows an example.

Figure 4: Example of motif discovery on the winding dataset. Two nearly
identical subsequences are identified, among the other motifs.

The subsequences retrieved in the lower right panel have the string
representation “dacb.” Examining the motifs in this dataset
allowed us to discover an interesting fact: while the dataset was
advertised as real, we noted that repeated patterns occur at every
1000 points. For example, in Figure 4, the two nearly identical
subsequences retrieved are located at offsets 599 and 1599,
exactly 1000 points apart. We checked with the original author

and discovered that this is actually a synthetic dataset, composed
from parts of a real dataset, a fact that is not obvious from
inspection of the original data.

2.4 Simple anomaly detection
The complementary problem of motif discovery is anomaly
detection. While frequently occurring patterns can be detected by
thick branches in the VizTree, unusually thin branches can signal
simple anomalous patterns. Figure 5 demonstrates both motif
discovery and simple anomaly detection on an MIT-BIH Noise
Stress Test Dataset (ECG recordings) obtained from PhyioBank
[2]. Here, motifs can be identified very easily from the thick
branches. More remarkably, there is one very thin line straying off
on its own (the path that starts with “a”). This line turns out to be
an anomalous heartbeat, independently annotated by a cardiologist
as a premature ventricular contraction.

Figure 5: Heartbeat data with anomaly. The thick lines represent the
reoccurring normal heartbeat; the thin line pointed to by the short arrow
suggests an infrequently occurring pattern, an anomaly. Simply by clicking
on this line the source of the data is highlighted in the top panel, and a
zoom-in is shown in the bottom right panel.

As another motivating example, we used a power demand dataset
provided by a Dutch research facility. Electricity consumption is
recorded every 15 minutes; therefore, for the year of 1997, there
are 35,040 data points. Figure 6 shows the resulting tree with the
sliding window length set to 672 (exactly one week of data), and
both alphabet size and number of segments to 3. The majority of
the weeks follow the regular Monday-Friday, 5-working-day
pattern, as shown by the thick branches. The thin branches denote
the anomalies. The one circled is from the branch “bab.” The
zoom-in shows the beginning of the three-day week during
Christmas (Thursday and Friday off). The other thin branches
denote other “anomalies”2 such as New Year’s Day, Good Friday,
Queen’s Birthday, etc.

While anomalies can be detected this way for trivial cases, in
more complex cases, the anomalies are usually detected by
comparing the time series against a normal, reference time series.
Anything that differs substantially from this reference time series
can signal anomalies. This is exactly the objective of the Diff-
tree, as described in the next section.

2 “Anomalies” in the sense that the electricity consumption is abnormal

given the day of the week.

1271

Figure 6: Anomaly detection on power consumption data. The anomaly
shown here is a short week during Christmas.

3. Diff-tree
We have described how global structures, motifs, and simple
anomalies can be identified by a subsequence tree. In this section,
we extend these ideas to further allow the comparison of two time
series by means of a “diff-tree.” A diff-tree shows the distinction
between two time series. It is constructed by computing the
difference in thickness (i.e., frequency of occurrence) for each
branch between two subsequence trees. Intuitively, time series
data with similar structures can be expected to have similar
subsequence trees, and in turn, a sparse diff-tree. In contrast, those
with dissimilar structures will result in distinctively different
subsequence trees and therefore a relatively dense diff-tree.

3.1 Anomaly detection
The datasets used for anomaly detection, constructed
independently of the current authors and provided by The
Aerospace Corporation for a sanity check, are shown in Figure 7.
The one on the top is the normal time series, and the one below is
similar to a normal time series, except it has a gap in the middle as
anomaly. Figure 8 shows a screenshot of the anomaly detection
by diff-tree. The tree panel shows the diff-tree between the two
datasets. The two thick paths denote the beginning and the end of
the anomaly, respectively. This is a very trivial example for
demonstration purpose. However, the effect is similar for more
complex cases.

Figure 7: The input files used for anomaly detection by diff-tree. (Top)
Normal time series. (Bottom) Anomaly is introduced as a gap in the middle
of the dataset.

Figure 8: Diff-tree on the datasets shown in the previous figure. The gap is
successfully identified.

3.2 Scalability
The pixel space of the subsequence tree is determined solely by
the number of segments and alphabet size. In particular, we note
that the pixel size of the tree is constant and independent to the
length of time series. With a slider on the time series-viewing
panel (not shown on the simple examples in this paper), VizTree
can accommodate massive time series with a constant-size tree.
This desirable property makes it easy to view and summarize large
time series database on one screen. We have already shown that
large amounts of dimensionality reduction do not greatly affect the
accuracy of our results (in Section 2.4, the dimensionality is
reduced from 672 to 3, a compression ratio of 224-to-1). The size
of the database plays a role in memory requirements only for
subsequence retrieval purpose, and here we use modified B-trees
to allow real time retrieval.

4. References
[1] Chen, L., Ozsu, T. & Oria, V. (2003). Symbolic Representation and

Retrieval of Moving Object Trajectories. Univ. of Waterloo. 2003.
[2] Goldberger, A. L., et. al. (2000). PhysioBank, PhysioToolkit, and

PhysioNet: Componenets of a New Research Resource for Complex
Physiologic Signals. Circulation. vol. 101(23), June 13. pp. e215-e220.
http://circ.ahajournals.org/cgi/content/full/101/23/e215]

[3] Lankford, J. P. & Quan, A. (2002). Evolution of Knowledge-Based
Applications for Launch Support. In proceedings of Ground System
Architecture Workshop. El Segundo, CA.

[4] Lin, J. VizTree Website. http://www.cs.ucr.edu/~jessica/VLDB04.htm
[5] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003). A Symbolic

Representation of Time Series, with Implications for Streaming
Algorithms. In Workshop on Research Issues in Data Mining and
Knowledge Discovery, the 8th ACM SIGMOD. San Diego, CA. June
13, 2003.

[6] Lin, J., Keogh, E., Patel, P. & Lonardi, S. (2002). Finding Motifs in
Time Series. In the 2nd Workshop on Temporal Data Mining, the 8th
ACM Int'l Conference on Knowledge Discovery and Data Mining.
Edmonton, Alberta, Canada. July 23-26, 2002.

[7] Ohsaki, M., Sato, Y., Yokoi, H. & Yamaguchi, T. (2003). A Rule
Discovery Support System for Sequential Medical Data, in the Case
Study of a Chronic Hepatitis Dataset. In Discovery Challenge
Workshop, the 14th ECML/the 7th PKDD. Cavtat-Dubrovnik, Croatia.
Sep 22-26, 2003.

1272

