
COMPASS: A Concept-based Web Search Engine
for HTML, XML, and Deep Web Data

Jens Graupmann, Michael Biwer, Christian Zimmer, Patrick Zimmer,
Matthias Bender, Martin Theobald, Gerhard Weikum

Max-Planck Institute for Computer Science
66123 Saarbruecken, Germany

{graupman, mbiwer, czimmer, pzimmer, mbender, mtb, weikum}@mpi-sb.mpg.de

1 Introduction

Today’s web search engines are still following the
paradigm of keyword-based search. Although this is
the best choice for large scale search engines in terms
of throughput and scalability, it inherently limits the
ability to accomplish more meaningful query tasks.
XML query engines (e.g., based on XQuery or XPath),
on the other hand, have powerful query capabilities;
but at the same time their dedication to XML data
with a global schema is their weakness, because most
web information is still stored in diverse formats and
does not conform to common schemas. Typical web
formats include static HTML pages or pages that are
generated dynamically from underlying database sys-
tems, accessible only through portal interfaces.

We have developed an expressive style of concept-
based and context-aware querying with relevance rank-
ing that encompasses different, non-schematic data
formats and integrates Web Services as well as Deep
Web sources. Coined COMPASS (Context-Oriented
Multi-Format Portal-Aware Search System), our sys-
tem features this new language that combines the sim-
plicity of web search engines with the expressiveness
of (simple forms of) XML query languages ([7]).

2 Features of COMPASS

2.1 Concept-based Search

All web search engines are based on keyword-based
search, but this style of query is strongly limited in
its expressiveness. For example, neither a search for
documents that contain either the keyword or one of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

its synonyms is possible, nor a search for documents in
which one search term describes a concept or concept
property while another one describes an instance value
or a refinement of the first term.

Also, today’s search engines are, for example, not
capable of including Deep Web sources because they
are unable to assign keywords to matching form fields.
XML query languages, on the other hand, can support
this feature by interpreting some keywords as element
names corresponding to concepts, while interpreting
other keywords as element contents corresponding to
instance values, but are typically rather obscure to the
average user.

As an example, consider a query about the book
’War and Peace’ written by Tolstoy. If we can only
use keywords to express this query, there is no way to
specify any semantic relationship between these terms.
In our system, we can express this query as follows:
title=’war and peace’ AND author=tolstoy. Thus, we
can use the semantic relationships between the terms
for query processing purposes.

2.2 Context-aware Search

Another limitation of current web search engines is the
fact that all keywords have to be matched on a single
page. In reality, however, the desired information is
often spread over multiple pages. Consider a query
about a book store in our home town selling the book
’War and Peace’. Whereas the address of the book
store (in our case ’Saarbrucken’) is typically on the
book store’s home page A, a list of all available titles,
including ’War and Peace’, might be on a different
page B that can be reached via a direct link from A.
By following HTML-style href-links as well as XML-
style XLinks, our system allows to exploit this link
structure in order to find the combination of pages A
and B as an appropriate query result.

1313

2.3 HTML, XML, and Beyond

XML is the desired format for all kinds of semistruc-
tured data. If XML were already ubiquitously used,
the semantic relationships between query terms would
be explicit by the hierarchical tree structure of the
document. Thus, we apply heuristics to transform
HTML pages and other web formats into semantically
annotated XML documents. In most cases, simple
heuristics can lead to meaningful XML data with a
clearer structure than the original HTML documents.
An example for our heuristics is the transformation
of HTML structures like Title:Tolstoy into
the following structure: <Title>Tolstoy</Title>.

We have implemented a framework with different
modules to convert various data formats into XML.
Currently these modules include HTML2XML and
PDF2XML. Other modules are under development.
These modules are based on heuristic rules, and may
be combined with other information extraction ap-
proaches such as [1, 8].

2.4 Web Services and the Deep Web

Many information sources are not accessible via craw-
ling. Rather, one needs to fill out a query form for
retrieving documents that are dynamically generated
from underlying database systems. The key difficulty
in automatically generating meaningful queries against
such web portals is to assign the appropriate values
(which may be given merely as a set of keywords) to
the available set of form fields. For this task, our sys-
tem can analyzes the interface (e.g., the HTML form)
to determine the available parameters ([4]). The re-
sult of the analysis is stored as meta information in
a registry and used to generate wrappers that encap-
sulate the portal interface as a web service. Thus,
each HTML form that we have successfully analyzed
is represented by a WSDL interface in our system ([2])
and its information can be exploited when executing a
query.

3 The COMPASS Query Language

The internal query language of COMPASS resembles
a highly simplified version of mainstream languages
like SQL, XPath, or XQuery. Search conditions refer
to concepts and values, which correspond to element
names and contents in an XML setting and attribute
names and values in a SQL setting. Our query lan-
guage includes the following types of conditions:

Keyword conditions: Keyword search is sup-
ported because of its benefits for querying data with-
out a global schema or even an unknown strucuture
(see also [3] for keyword search in an XML context).
An example is: A[keyword]=Tolstoy.

Concept-value conditions: A concept-value con-
dition has the form concept=value and would be the
preferred type of searching if all web or intranet data

were richly annotated with concepts corresponding to
XML tags and values appearing in element or at-
tribute contents. The comparison operator could be
generalized to include type-specific comparisons (e.g.,
on dates). An example for this condition type is
A.title="War and Peace".

Similarity conditions: We have added a similar-
ity operator ~ that can be applied to both concepts
and values. This operator was first introduced in the
XXL query language ([7]). It expands a term in the
query with similar terms, supplied by an ontology ser-
vice that the user can interact with. For example,
adding the similarity operator to the concept author
would not only return matches for the concept author
but also for writer and other highly similar results. An
example is A.~author=Tolstoy.

Path conditions: To express that different pages
should be connected (within a small distance), we use
two kinds of path conditions: Reachability through
a direct link is expressed by a dot notation com-
bining multiple variables, and reachability through a
path of arbitrary length uses the wildcard symbol ’#’.
These conditions take into consideration hyperlinks,
the parent-child relationship within XML documents,
and also arbitrary XPointer or XLink references across
document boundaries; so we consider connectivity in
a global data graph.

For efficiency, COMPASS currently supports only
conjunctions of search conditions. We believe that this
is sufficient to cover almost all typical queries that
users pose. Upon query execution, documents that
satisfy one specific search conditions are bound to a
variable; by using this variable as a prefix in other
conditions one can reference this document in other
search conditions. For example, once again consider
the query about a book store in our home town that
offers the book ’War and Peace’ by Tolstoy. In our
query language, this query could be expressed as fol-
lows:

SELECT A,B FROM INDEX
WHERE A.~address=Saarbrucken
AND A[keyword]="book store"
AND B.title="War and Peace"
AND B.~author=Tolstoy
AND A.B

In this case, matches for the conditions address =
Saarbrucken and bookstore are bound to the variable
A, which can be used to express the path condition
A.B that additionally requires all matches for A to
directly link to a match B for title=”War an Peace”
and ∼author=Tolstoy.

4 The Architecture of COMPASS

4.1 System Overview

Figure 1 illustrates the main parts of the COMPASS
prototype system. The crawler component collects the

1314

Figure 1: The architecture of COMPASS

data. It offers the functionalities of a Web Crawler
combined with a local File Crawler. Depending on the
data format, a transformation and semantic annota-
tion into XML is performed by the Analyzer compo-
nent in a heuristic manner. If applicable, the WSF
component (see Section 4.3) creates a Web Service
wrapper and saves the resulting WSDL description
into a Web Service registry for later use during query
processing. Eventually, all transformed data is in-
serted into the centralized index by the Indexer com-
ponent.

We provide a graphical user interface that allows
users to construct search requests in a visual manner
without any knowledge of the COMPASS query lan-
guage itself. For semantic expansion of similarity con-
ditions, the user can interact with an ontology service.
The query processor analyzes the query and can in-
voke further modules. In order to include Deep Web
sources, the query processor interacts with the Web
Service registry that attempts to find applicable Deep
Web sources and accesses these using Web Services
when executing the query. Finally, the results of the
query evaluation are scored and returned to the user
as a ranked list.

The system is completely implemented in Java run-
ning on a Tomcat application server. COMPASS uses
Oracle 9.2i as its underlying relational database. The
graphical user interface is implemented in the form of
a JAVA applet using the JHotDraw library.

4.2 Data Indexer

COMPASS uses a centralized data index for efficent
search evaluation. All data and also the relation-
ships between documents are represented in a rela-
tional database. All data formats are transformed into
XML by using heuristics as well as external annota-
tion tools such as GATE ([6]). The documents’ struc-
ture and tags are available for efficient evaluation of
concept-value conditions, because all documents are
inserted preserving their original link structure. This
link structure is captured to evaluate path conditions.
Moreover, to efficiently probe reachability by arbitrary
paths (including paths across documents via XLink,
XPointer, or href references), the transitive closure is

materialized. Information about dynamically created
Web Services is included in the index as well to se-
lect appropriate services when a user wishes to include
Deep Web portals in her search.

4.3 Web Service Framework

When a crawl discovers a portal candidate (a web page
that contains at least one HTML form), the Web Ser-
vice Framework ([2]) is invoked which applies heuris-
tic rules for generating a WSDL description on the fly.
Typically, highlighted text next to form fields will be-
come parameter names, and the type of a form field
determines the corresponding parameter type (e.g., an
enumeration type in the case of a pull-down menu).
The generated WSDL descriptions and additionally
generated Java classes are stored in a registry. The
main index holds pointers to Web Services for invoca-
tion during query processing.

4.4 Query Processing and Ranked Retrieval

Internally, the query processor transforms each sub-
mitted query into an operator tree consisting of Java
objects. A concept-value condition (see Section 3) is
evaluated by first looking up the occurrences of both
the concept name and the value in the index and then
comparing the relative positions of each occurrence
pair. In a good match, the concept is found ’above’
the value with regard to the document structure; that
is, the value should occur in a child node or a descen-
dant of the node that matches the concept name. The
distance between the two matches is reflected in the
scoring of a result.

Simple keyword conditions are satisfied if the key-
word occurs on a page. If the similarity operator ~ is
used and, thus, this query condition is expanded with
similiar terms, a page is matched if at least one of these
terms is found. The score for this condition depends
on the similarity of the matched term compared to the
original query term as well as on the term frequency.

Path conditions (i.e., reachability through a single
link or arbitrary path) refer to multiple pages bound
to different variables. Whenever the query processor
has determined candidate matches for local conditions
and bound to variables, it tests the path condition
using the materialized transitive closure, and discards
candidates that are not connected or too far apart.
The score of a path condition is based on the path
length between the considered pages.

The order in which the conditions are evaluated
is determined by a coarse selectivity estimation using
simple statistics about term frequencies. Portals are
included if the concepts of one or more concept-value
conditions can be matched with parameter descriptors
of generated Web Services. When portals are included
into the search, the corresponding Web Services are
invoked during query evaluation and their results are
stored and indexed in a temporary table. The query

1315

processor treats the page with the query form and a
result page returned by the portal as a single logical
unit. This way, a result page is bound to the corre-
sponding variable even if some conditions are actually
satisfied by the query submission page (e.g., names of
concepts appearing as labels in the form and values
appearing in the result page).

The overall ranking of a query match is computed
based on the partial scores for all conditions, using a
simple probabilistic model with independence assump-
tions.

5 Demo

We demonstrate the search on a large XML data col-
lection, queries on a combined index containing XML
and HTML web documents, and finally the additional
integration of Deep Web portals.

5.1 Web Encyclopedia Data

We indexed a version of the Wikipedia project ([9]), a
free web encyclopedia that is collaborately created by
the internet community. The data collection consists
of more than 215000 documents which do not follow
a common schema. The documents are highly inter-
connected, with a total of more than 2 million links to
other Wikipedia articles.

For example, consider a query about towns along
the river Rhine that have hosted the Olympics. Figure
2 illustrates how this query can be posed using our
graphical user interface. The system will search for
information units that include the keyword Olympics
and, at the same time, are connected to an information
unit that matches the keyword condition town as well
as the concept-value condition river=rhine.

Figure 2: Query: Web Encyclopedia Data

5.2 Extended Bibliographic Data

The DBLP project ([5]) provides bibliographic infor-
mation on major computer science journals and pro-
ceedings with almost 500000 articles. From this data
we have created single XML files representing each oc-
curing author, publication, and conference journal re-
spectively; preserving their interconnections by adding
more than 4000000 XLinks between the documents.
Additionally, we crawled the authors’ home pages that
were also linked to by DBLP.

For example, consider a query about German pro-
fessors that published an article in the journal of
VLDB’02. This query is difficult because the neces-
sary information is spread over multiple information

units: while the authors of VLDB’02 are contained
in the respective conference document, the origin of
the author can only be found on the author’s home-
page on the web. COMPASS can exploit the fact that
conference journals contain XLinks to the respective
authors and all authors’ documents contain XLinks
to the respective authors’ homepages. The resulting
COMPASS query is shown in 3.

Figure 3: Query: Extended Bibliographic Data

5.3 Deep Web Data

We automatically generated Web Service wrappers for
some popular portal sites including www.amazon.com
and www.imdb.com. Thus, we are able to transpar-
ently access these portals when executing a query.

For example, consider a query about all conference
articles and published books of Michael Stonebraker.
This query combines the conference articles matched
from Stonebraker’s bibliographic data with the results
about his other publications returned from Amazon.

References

[1] R. Baumgartner, S. Flesca, and G. Gottlob:. Vi-
sual web information extraction with lixto. VLDB,
2001.

[2] J. Graupmann and G. Weikum:. The role of web
services in information search. IEEE Data Engi-
neering Bulletin 25(4), 2002.

[3] L. Guo, F. Shao, C. Botev, and J. Shanmugasun-
daram. Xrank: Ranked keyword search over xml
documents. ACM Sigmod Conference, 2003.

[4] H. He, W. Meng, C. T. Yu, and Z. Wu. Wise-
integrator: An automatic integrator of web search
interfaces for e-commerce. 28th Conference on
Very Large Data Bases (VLDB), 2003.

[5] M. Ley. Digital bibliography & library project.
http://www.informatik.uni-trier.de/ ley/db/.

[6] U. of Sheffield. GATE – General Architecture for
Text Engineering. http://gate.ac.uk/ie/.

[7] A. Theobald and G. Weikum. The index-based xxl
search engine for querying xml data with relevance
ranking. EDBT, 2002.

[8] V.Crescenzi, G. Mecca, and P. Merialdo. Road-
runner: Automatic data extraction from data-
intensive web sites. SIGMOD, 2002.

[9] Wikipedia project. http://www.wikipedia.org.

1316

