Semantic Query Optimization in an Automata-Algebra Combined

XQuery Engine over XML Streams

Hong Su, Elke A. Rundensteiner and Murali Mani

Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609
{suhong, rundenst, mmani}@Qcs.wpi.edu

1 Introduction

Our Raindrop framework [6, 9] aims at tackling chal-
lenges of stream processing that are particular to
XML. In contrast to the tuple-based or object-based
data streams, XML streams are usually modeled as a
sequence of primitive tokens, such as a start tag, an
end tag or a PCDATA item. Unlike a self-contained
tuple or object whose semantics are completely deter-
mined by its own values, a token lacks semantics with-
out the context provided by other tokens in the stream.
This poses specific challenges for query processing over
such XML streams.

State-of-the-Art. Since the automata model was
originally designed for matching patterns over strings,
it is a natural paradigm for structural pattern retrieval
on XML token streams [7, 8, 4]. However the automata
model suffers from not being able to strike a balance
between the expressive power of the query it can han-
dle and the manageability of its constructs. It either
provides limited “recognizer-like” query capabilities,
e.g., [4] gives only boolean answers to XPath expres-
sions rather than constructing the results. Or, it may
require a huge number of states, actions and transi-
tions, resulting from the low level description of the
patches for providing more query capabilities [8, 7].
In contrast, the algebraic query processing paradigm
has been proven to be practical for query optimization,
because of (1) its modularity of composing a query
from individual operators, and (2) its support for it-
erative and thus manageable optimization decisions
at several abstraction levels (e.g., logical and physi-
cal plans). However, the data model underlying this
paradigm assumes sets of self-contained tuples. XML

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commerctal advantage, the VLDB copyright notice and
the title of the publication and its date appear, and motice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

token streams however do not meet this requirement.

Features of Raindrop. Either paradigm has its own
deficiencies. Yet, they complement each other. We
therefore propose a novel paradigm for XQuery stream
processing, called Raindrop, that is the first system to
strike a balance between the two paradigms. The novel
features of Raindrop include:

1. Uniform Modeling. Raindrop is a layered alge-
braic framework that uniformly models both the tuple-
based and token-based paradigms. This leads to the
optimization opportunities not studied in the previ-
ous literature [2, 8, 7, 4], namely, the tradeoff between
pushing computation into and out of the automata.
2. Layered Optimization. The framework supports
several abstraction levels of plan refinement, which
would not be as easily feasible as . We have devel-
oped XML stream-specific optimization techniques for
each level.

In this demo, we highlight the schema-based op-
timization (SQO) on one abstraction level. Schema
knowledge is used to rewrite a query into a more ef-
ficient one. Most current literature on SQOs in XML
focuses on techniques that are either (1) general re-
gardless of persistent or streaming XML sources [1] or
(2) specific to persistent XML sources [3]. For exam-
ple, query tree minimization [1] is a general technique.
It eliminates a pattern from the query if the pattern is
known to always exist. Since the pruned query in-
volves less computation than the original one, it is
more efficient to evaluate regardless of the nature of
data sources. For another example, the query rewrit-
ing using state extents [3] technique requires indices
on the data. Applications on persistent XML can usu-
ally afford the preprocessing of building indices while
this is often not the case for XML stream applications
due to the on-the-fly arriving nature of their data.
Therefore this technique is more suitable for persis-
tent XML. We instead focus on SQOs specific to XML
streams. To the best of our knowledge, no previous
work has proposed a comprehensive solution for XML
stream specific SQO techniques. [4] is the closest to
our work. It handles only limited query (i.e., boolean
XPath match) with one type of constraint. In con-

1293

trast, first, we handle more complex query type, i.e., a
subset of XQuery; Second, we support most commonly
used constraints in XML Schema.

2 Uniform Modeling

To exploit both algebraic and automata paradigms,
we choose to extend the algebraic model to accommo-
date automata for two reasons. First, this allows us to
reuse the well-studied algebra-based techniques. Sec-
ond, algebra provides multiple description levels which
allows us to present the details of automata computa-
tion at the lower level while presenting the semantics
of automata computation at the higher level.

Our Raindrop algebraic framework is composed of
four levels of abstraction [6, 9]. The highest level, a
semantics-focused plan, describes the semantics of a
query regardless of persistent or stream data sources.
We reuse Rainbow [10], an XQuery engine for persis-
tent inputs, for the initial plan construction and gen-
eral XQuery optimization. Next, the stream logical
plan extends the first level with new constructs for
tokenized stream inputs. The next lower level is the
stream physical plan describing implementation strate-
gies for each logical operator. The final level, the
stream execution plan, captures the synchronization
and data transfer mechanisms among physical oper-
ators (i.e., scheduling). Each level refines the plan at
the adjacent higher level with more details.

We here highlight the stream logical plan level since
new operators and plan structures are first introduced
into this level to model the token-based automata com-
putation as algebraic plans. Also this level is where
SQO techniques are applied. Such plans are seam-
lessly integrated with the tuple-based algebraic plans,
providing a uniform view of all computation.

Example 1 FOR $a in Stream(“onlinenews”)/news
LET $b = $a/source, $c¢ = $a/keyword
WHERE $b = “CNN”
RETURN <CNN>$c</CNN>

Example 1 gives an XQuery which asks for the key-
words of online news reported by CNN. Suppose we
perform all pattern retrieval in the automata, the pre-
vious literature [5, 2] models the whole automata com-
putation as a single operator. This operator (called
z-scan in [5]) exposes a fixed interface, namely, the
bindings to all the XPath expressions in the XQuery,
to its downstream operators. Such an operator can-
not be rewritten in combination with the other non-
automata operators due to its coarse granularity and
fixed interface. Instead, we propose to model the au-
tomata computation as an algebraic plan consisting
of operators at finer granularity compared to z-scan.
The benefit is that this overall algebraic plan can be
uniformly understood and optimized even it contains
more traditional tuple-based operators and the novel
token-based automata operators.

Tagger Tagger
<CNN>$c</CNN> <CNN>ﬁc</CNN>
StructuralJoin NonFilter-NavNest

$a $a, /keyword->$c
|
Select Select
$b="CNN" $b="CNN"
\ |
Filter-ExtractNest NonFilter-ExtractNest Filter-NavNest
a, $b $a, Sc Sa, /source->$b
~ — Y
Nav Nav .
$a, /source->$b $a, /keyword->$c ilter-ExtractUnnest
s, $a
Nav I
$s, /allnews/news->$a Nav
N $s, /alinews/news->$a
Source '
$S i Source
source, [.= N
allnews. news 9
(2] allnews. new:
e

Figure 1: Alternative Stream Logical Plans

The subplan in the dashed box in Figure 1 (a)
shows our modeling of the pattern retrieval in Exam-
ple 1. The intuition behind this modeling is that the
retrieval of a tree pattern in the automata can be de-
composed into (1) the retrieval of its “linear patterns”,
and (2) the combination of bindings of individual lin-
ear patterns into bindings of tree patterns. For ex-
ample, see Figure 1 (a). First, Navg,, /source—sp 10-
cates all the tokens that form the elements accessible
via /source from $a and binds these tokens to vari-
able $b. Second, Filter-ExtractNestg, g, composes
the tokens identified by Navg, jsource—sy into self-
contained elements. The linear pattern $a/keyword
is similarly resolved except that a different compo-
sition operator NonFilter-ExtractNestg, g. is used.
The difference between Filter-ExtractNestg, g, and
NonFilter-Extract Nestg, g. is that: in the former,
the absence of $b (i.e., the source elements) within
a news element filters out this $a (i.e., the news el-
ement); while in the latter, the absence of $b does not
filter out $a, e.g., <CNN></CN N> will be returned
for a news element whose source is CNN but does not
contain any keywords. Finally, Structural Joing, joins
together the composed source and keyword elements
that are within the same news element. The automa-
ton in Figure 1 (a), similar to those used in [5, 2], is
one implementation for Nav operators in the plan.

We now show that different amount of computation
can be done in the automata for the same semantics-
focused plan. Figure 1 (b) shows another stream logi-
cal plan for Example 1. This plan only retrieves news
elements from the token streams. Compared to Fig-
ure 1 (a), it has less computation done in the au-
tomata'. Suppose only a small proportion of news
are from CNN, then plan (b) may benefit from the
early applying of Selg,—»cnn», because this saves the
time of finding those keyword elements whose source
is not CNN. Figure 2 shows our experimental results
of the execution time of two plans for a query simi-
lar to Example 1 but with more path expressions and

LFilter-NavNest and NonFilter-NavNest [10] are non-
automata operators navigating into self-contained tree-
like elements (e.g., news elements composed by Filter-
ExtractUnnestg, g,) to find the targets.

1294

selections [9]. For data with different selectivities for
the select conditions, different plans are optimal. Note
that the previous literature [2, 7, 8, 4] simply embraces
a mazimal pushdown strategy (corresponds to the “5
Navs Pushed Down” strategy in Figure 2) which does
not ensure the optimality. This illustrates that our
framework opens up more optimization opportunities
beyond the existing solutions in the literature.

43000

- 41000
£ 39000 -
£ 37000 M .
i= 35000 ——=¢
§ 33000 //
5
g 31000 =¢=1 Nav Pushed Down
% 29000 -
X =%=5 Navs Pushed Down
27000 14
25000 L A A ‘

01 02 03 04 05 06 07 08 09
Selectivity of Selection
Figure 2: Execution Time of Two Alternative Plans
(on a 85M XML Stream)

3 Schema-Based Optimization

At the stream logical plan level, schema knowledge
is used to rewrite a query into a more efficient one.
We focus on SQO techniques specific to XML streams.
The distinguishing feature of pattern retrieval on XML
token streams is that it solely relies on the document-
order traversal of tokens due to the lack of indices.
We observe that the order or occurrence constraints of
XML elements can be used to expedite the traversal
by avoiding unnecessary pattern retrieval.

Let’s consider a query similar to Example 1 but ask-
ing for both the news and its keyword elements. For
ease of illustration, we use DTD as the schema descrip-
tion language here (even though we use XML schema
in our system). We suppose the element type news
is described as </ELEMENT news (source?, body, re-
lated, keyword")>.

Our approach consists of three phases. In the first
phase, i.e., the initiation phase, we construct query
trees describing the structural pattern to be resolved
in the automata (there can be multiple query trees
when there are multiple data sources). Figure 3 shows
the query tree for Figure 1 (a). The relationship be-
tween news and source (represented as solid line) is
distinguished from that between news and keyword
(represented as dashed line). As mentioned in Section
2, the absence of source subelement in a news element
would filter out this news while the absence of keyword
would not. Furthermore, we apply type inference [3]
on the query trees so that nondeterministic navigation
steps such as “//” or “*” are resolved as much as pos-
sible.

The second phase is the reasoning phase, namely,
to apply a set of schema-based rewriting rules on the

\\\\\

(b)
Figure 3: Query Tree for Figure 1 (a)

initialized query trees. An example rewriting rule is
pattern introduction. For example, a structural pat-
tern /body can be introduced to the query tree in Fig-
ure 3 (a). Figure 3 (b) shows the rewritten query tree.
The arc from body to source indicates that if body has
been encountered, the recognition of source will then
be dropped within the current news element. This is
because a source element, if any, must have appeared
before the body element. If the recognition of source el-
ement is dropped without finding any source elements,
all other pattern retrievals within the current news,
i.e., composing the news element and retrieving key-
word elements, will also be dropped. This can be a
major saving when the body, related and keyword ele-
ments are long.

We analyze the relationship among the rewriting
rules and derive an application order to ensure the
quality of modified query tree. This order ensures two
properties, completeness and minimality. Complete-
ness indicates that no beneficial rule application is
missed, e.g., the introduction of pattern /body will not
be missed. Minimality means no redundant rule ap-
plication is introduced. For example, pattern /related
will not be introduced since the pattern /body already
serves the purpose for marking the completion of pat-
tern /source and bindings of /body occur before bind-
ings of /related within a binding of news.

In the third phase, plan generation, we rewrite the
original plan to a new plan according to the new query
tree. Figure 4 shows the new plan corresponding to
the modified query tree in Figure 3 (b). Compared
to Figure 1 (b), a new state, i.e., state 5, is added
to the automaton. State 5 is associated with the
ExtractNestg, g, operator, indicating that if state 5
is activated, this operator is checked. If no outputs
within current binding of $a exist or no outputs sat-
isfy the predicate $6 = “CNN"| the transitions from
state 2 will be suspended which results in the automa-
ton in the left bottom part in Figure 4.

4 Demonstration

We will use two applications in the demonstration:

1. Sports news dissemination. We use the real data
set conforming to SportsML DTD (www.sportsml.
com), the standard for sharing sports data developed
by International Press Telecommunications Council.

2. On-line auction monitoring. We generate syn-
thetic data conforming to on-line auction DTDs pro-
posed by XMark (www.xml-benchmark.org), an XML
benchmark.

1295

Tagger
<CNN>$c</CNN>

/
allnews S StructuralJoin
$a

Select
$b = “CNN”
\

“a Filter-ExtractNest NonFilter-ExtractNest
$a, $b $a, $c
allnews \

@Dt @ Nay Nav

news $a, source->$b $a, keyword->$c

Nav
$s, /allnews/news->$a

Source
$s

Figure 4: Modified New Plan

Our demonstration is composed of two parts.

Stream Logical Plan.

1. Generating Alternative Plans. Given an XQuery,
we first show its semantics-focused plan. We gener-
ate a set of alternative stream logical plans from the
semantics-focused plan, using different computation
pushdown strategy. Users can choose a plan from the
left panel in Figure 5 and view the plan as well as its
automata in the right panel.

2. Comparing Alternative Plans. We deploy a
stream generator on one machine and send the stream
continuously to another machine on which the stream
processing engine runs. For comparison of alterna-
tive plans, alternative plans run in turn. We provide
a “plot all performances” functionality (in the bottom
panel) to visually compare their performances. We will
change the data characteristics of the stream source,
illustrating that under different circumstances, the op-
timal plan can be different.

E . =1olx|
B-HE a5 *-
B I Plan Explorer * % || @eln [A|auomats
 Semantics-Focused Plan 1
| = @ Stream Logical Plan B =

“CNM=$osiCN Nz

. Structuraldoin
$a

All Nav and Selection Pushdown
3 Al Mz Pushdown
Bottom-only May Pushdown
{8 Stream Physical Plan

Stream Execution Plan “. MonFiterE dractNest

$a, $c

av
¥a, keymord->§c

B
Inews-=§a l

-

| 2]

P %

Plan 1d J Cnmment] Throughput] Iermory

O
=

Current Performance Historical Performance Plat 41l Perfor mances

Le L)

Figure 5: GUI Showing Stream Logical Plans

Schema-Based Optimization.

1. Showing Static Structures. We show the required
static structures, including (1) query tree; (2) schema
(modeled in graphs), and (3) a library of rewriting
rules in the upper panel in Figure 6.

2. Tracing Reasoning Process. When a rule is ap-

plied on a query tree node, the rule in the library, the
node and any changes made to the query tree are high-
lighted in the bottom panel in Figure 6. The history of
rule applications can be traced by scrolling the bottom
panel.

3. Comparing Optimized Plans with Original Plans.
We plot the performances comparing an original plan
with those optimized ones under various data charac-
teristics of the stream.

File Edit Plan Run Help
BrE0a R K-
1 500 Explorer

=10lx

= x| Schema., Query T.. Sream ..

Strearn Logical Plan -
= Query Trees news
- Gchema Graphs
[a] Mormalizations / \\
= Rules G ? \+
Rule1l é @
Puis2 - source body keyward
Fdan

SQ0 Explorer | Running Plan

Trace Rule Application

|

il

2 7 3
(e,
Sw?)/&d)y key\gjrd
of

Figure 6: GUI Showing Schema-Based Optimization

ﬁiﬁ‘
g @/E_ _h%g’“k‘e%prd
fad=

References

(1] S. Amer-Yahia, S. Cho, L. V. Lakshmanan, and D. Srivas-
tava. Minimization of Tree Pattern Queries. In SIGMOD,
Santa Barbara, California, pages 497-508, June 2001.

[2] Y. Diao and M. Franklin. Query Processing for High-
Volume XML Message Brokering. In Proceedings of VLDB,
pages 261-272, 2003.

[3] M. Fernandez and D. Suciu.
Expressions Using Graph Schemas.
Florida, pages 14-23, February 1998.

[4] A. Gupta and D. Suciu. Stream Processing of XPath
Queries with Predicates. In Proceedings of SIGMOD, pages
419-430, 2003.

[5] Z. Ives, A. Halevy, and D. Weld. An XML Query Engine
for Network-Bound Data. VLDB Journal, 11 (4): 380-402,
2002.

(6] J. Jian, H. Su, and E. Rundensteiner. Automaton Meets
Query Algebra: Towards A Unified Model for XQuery Eval-
uation over XML Data Streams. In Proceedings of ER,
2003.

[7] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstanti-
nou. A Transducer-Based XML Query Processor. In Pro-
ceedings of VLDB, pages 227-238, 2002.

[8] F. Peng and S. Chawathe. XPath Queries on Streaming
Data. In Proceedings of SIGMOD, pages 431-442, 2003.

[9] H. Su, J. Jian, and E. A. Rundensteiner. Raindrop: A
Uniform and Layered Algebraic Framework for XQueries
on XML Streams. In Proceedings of CIKM, 2003.

[10] X. Zhang, K. Dimitrova, L. Wang, M. El-Sayed, B. Mur-
phy, B. Pielech, M. Mulchandani, L. Ding, and E. A. Run-
densteiner. Rainbow: Multi-XQuery Optimization Using
Materialized XML Views. In SIGMOD Demo, page 671,
2003.

Optimizing Regular Path
In ICDE, Orlando,

1296

