
IrisNet: An Architecture for
Internet-scale Sensing Services

Suman Nath†,∗, Amol Deshpande‡,∗, Yan Ke†,∗

Phillip B. Gibbons∗, Brad Karp∗, Srinivasan Seshan†,∗

∗Intel Research Pittsburgh †Carnegie Mellon University ‡U.C. Berkeley

Abstract

We demonstrate the design and an early proto-
type of IrisNet (Internet-scale Resource-Intensive
Sensor Network services), a common, scalable
networked infrastructure for deploying wide area
sensing services. IrisNet is a potentially global
network of smart sensing nodes, with webcams or
other monitoring devices, and organizing nodes
that provide the means to query recent and his-
torical sensor-based data. IrisNet exploits the
fact that high-volume sensor feeds are typically
attached to devices with significant computing
power and storage, and running a standard op-
erating system. It uses aggressive filtering, smart
query routing, and semantic caching to dramat-
ically reduce network bandwidth utilization and
improve query response times, as we demonstrate.

Our demo will present two services built on Iris-
Net, from two very different application domains.
The first one, a parking space finder, utilizes
webcams that monitor parking spaces to answer
queries such as the availability of parking spaces
near a user’s destination. The second one, a
distributed infrastructure monitor, uses measure-
ment tools installed in individual nodes of a large
distributed infrastructure to answer queries such
as average network bandwidth usage of a set of
nodes.

1 Introduction

Imagine driving towards a destination in a busy metropoli-

tan area. While stopped at a traffic light, you query your

PDA specifying your destination and criteria for desirable

parking spaces (e.g., within two blocks of your destination,

at least a four hour meter). You get back directions to

an available parking space satisfying your criteria. Hours

later, you realize that your meter is about to run out. You

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

query your PDA to discover that, historically, meter en-

forcers are not likely to pass by your car in the next hour.

A half hour later, you return to your car and discover that

although it has not been ticketed, it has been dented! Query-

ing your PDA, you get back images showing how your car

was dented and by whom.

This scenario demonstrates the potential utility of
sensor-based services such as a Parking Space Finder,
Silent (Accident) Witness and Meter Enforcement
Tracker. While several research projects [1, 5, 6, 7]
have begun to explore using and querying networked
collections of sensors, these systems have targetted
the use of closely co-located resource-constrained sen-
sor “motes” [3, 4]. In this demo, we demonstrate an
early prototype of a sensor network system architec-
ture, called IrisNet (Internet-scale Resource-Intensive
Sensor Network services) based on much more intelli-
gent participants. We envision an environment where
different nodes (standard PCs, laptops and PDAs)
on the Internet have attached sensing devices. To-
gether, these nodes form an Internet-scale collection
of sensors, from webcams collecting live video to net-
work monitors collecting real-time traffic measure-
ments. Sensing services can retrieve information from
this collection of sensors and provide service to users.

While webcams and other smart sensors are often
inexpensive and easy to deploy across a wide area,
realizing useful services requires addressing a num-
ber of challenges including preventing the transfer of
large data feeds across the network, efficiently discov-
ering relevant data among the distributed collection
of sensor nodes, efficiently handling static meta-data
information (e.g., parking meter details and map di-
rections) and multiple sensor feeds, etc. Our goal in
IrisNet is to create a common, scalable software in-
frastructure that allows services to address these chal-
lenges in a manageable fashion. This would enable
rapid development and deployment of distributed ser-
vices over a worldwide network of sensor feeds.

IrisNet is composed of a potentially global collec-
tion of Sensing Agents (SAs) and Organizing Agents
(OAs). SAs collect and process data from their at-
tached webcams or other sensors, while OAs provide
facilities for querying recent and historical sensor data.



Any Internet connected, PC-class device can play the
role of an OA. Less capable PDA-class devices can act
as SAs. Key features of IrisNet include:

• IrisNet provides simple APIs for orchestrating the
SAs and OAs to collect, collaboratively process
and archive sensor data while minimizing network
data transfers.

• The user is presented with a logical view of the
data as a single XML document, while physically
the data is fragmented across any number of host
nodes (data transparency).

• IrisNet supports the entire unordered fragment of
XPATH 1.0, a standard XML query language, for
querying the data in the system.

• IrisNet handles issues of query routing, semantic
caching of responses and load balancing in a scal-
able manner for all services.

We believe that IrisNet can enable a wealth of
new sensor-based services. Examples include provid-
ing live virtual tours of cities, answering queries about
the waiting time at different restaurants, unobtrusive
monitoring of your children playing in the neighbor-
hood, witnessing whose dog pooped on your lawn, and
determining where an umbrella was left behind.

2 The IrisNet Architecture

In this section we briefly describe the overall architec-
ture of IrisNet, its query processing features, and its
caching and data consistency mechanisms.
Architecture. IrisNet is composed of a dynamic col-
lection of SAs and OAs. Nodes in the Internet partic-
ipate as hosts for SAs and OAs by downloading and
running IrisNet modules. Sensor-based services are de-
ployed by orchestrating a group of OAs dedicated to
the service. These OAs are responsible for collecting
and organizing the sensor data in a fashion that al-
lows for a particular class of queries to be answered
(e.g., queries about parking spaces). The OAs index,
archive, aggregate, mine and cache data from the SAs
to build a system-wide distributed database for a ser-
vice.

In contrast, SAs are shared by all services. An SA
collects raw sensor data from a number of (possibly
different types of) sensors. The types of sensors can
range from webcams and microphones to network traf-
fic monitors. The focus of our design is on sensors that
produce large volumes of data and require sophisti-
cated processing, such as webcams. The sensor data is
copied into a shared memory segment on the SA, for
use by any number of sensor-based services.

OAs upload service-specific scripting code (called
a senselet) to any SA collecting sensor data of inter-
est to the service, basically telling the SA to take its
raw sensor feed, perform the specified processing steps,
and send the distilled information to the OA. For video

feeds, the senselet consists primarily of calls to an im-
age processing library. (IrisNet uses the OpenCV li-
brary.) Filtering data at the SAs prevents flooding
the network with high bandwidth video feeds and is
crucial to the scalability of the system.

IrisNet also provides mechanisms for different ser-
vices to share computations among senselets. For ex-
ample, if both the Parking Space Finder service and
the Silent Accident Witness service perform common
steps of filtering for motion detection and for identify-
ing vehicles, SAs automatically detect them and enable
one service to use the intermediate results computed
by another service.

Further details on the IrisNet architecture can be
found in [8].

Query Processing. Central to IrisNet is distributed
query processing. We here describe its key features
briefly, and refer the readers to [2] for more details.
IrisNet stores data in XML databases associated with
each OA. We envision a rich and evolving set of data
types, aggregate fields, etc., best captured by self-
describing tags – hence XML was a natural choice.
Larger objects such as video frames are stored outside
the XML databases; this enables inter-service sharing,
as well as more efficient image and query processing.

Data for a particular service is organized hierarchi-
cally, with each OA owning a part of the hierarchy.
An OA may also cache data owned by other OAs. A
common hierarchy for OAs is geographic, because each
sensor feed is fundamentally tied to a particular geo-
graphic location.1 XML is well-suited to organizing
data hierarchically.

A user’s query, represented in the XPATH language,
selects data from a set of nodes in the hierarchy. We
exploit the hierarchical nature of the OA organization
to expedite the routing of queries to the data. Ob-
serve that each XPATH query contains a (maximal)
hierarchical prefix, which specifies a single path from
the root of the hierarchy to the lowest common an-
cestor (LCA) of the nodes potentially selected by the
query. For a query posed anywhere in the Internet,
IrisNet constructs a DNS-style name from its hierar-
chical prefix and performs a DNS lookup (in a DNS
server hierarchy identical to the OA hierarchy) to de-
termine the IP address of the OA (the starting point
OA) that owns the LCA node. The query is routed
directly to that OA. This reduces the response time
and avoids having the root of the hierarchy become a
bottleneck.

Upon receiving a query, the starting point OA
queries its local database and cache, and evaluates the
result. If necessary, it gathers missing data by sending
subqueries to its children OAs, who may recursively
query their children, and so on. Finally the answers
from the children are combined and the result is sent

1A service may define indices based on non-geographic hier-
archies too.



Figure 1: Webcams monitoring toy parking lots

back to the user. Note that the children IP addresses
are found using the same DNS-style approach, with
most lookups being served by the local host. The key
technical challenge to overcome in our approach is how
to efficiently and correctly detect, for general XPATH
queries, what parts of a query answer are missing from
the local database, and where to find the missing parts.
XPATH queries supported. In our current pro-
totype, we take the common approach of viewing an
XML document as unordered, in that we ignore any
ordering based solely on the linearization of the hier-
archy into a sequential document. We support the
entire unordered fragment of XPATH 1.0, ignoring the
few operators such as position() or axes like following-
siblings that are inappropriate for unordered data.
Partial-Match Caching and Data Consistency.
An OA may cache query results from other OAs. Sub-
sequent queries may use this cached data, even if the
new query is only a partial match for the original
query.

IrisNet allows queries to specify a consistency cri-
teria indicating a tolerance for stale data. It stores
timestamps along with the data, so that an XPATH
query specifying a tolerance is automatically routed to
the data of appropriate freshness. In particular, each
query will take advantage of cached data only if the
data is sufficiently fresh.

3 A Parking Space Finder Service

The first example service that we demonstrate is that
of a parking space finder. This service utilizes web-
cams that are monitoring parking spaces to gather in-
formation about the availibility of the parking spaces.
Sensing Agents. We use four cameras that are mon-
itoring toy parking spaces set up as part of our demo
(Figure 1). These cameras are attached to laptop ma-
chines that process the video feed, and perform image
processing to decide whether a parking spot is full or
empty. The setup simulates four parking lots near In-
tel Research Pittsburgh.
Organizing Agents. Figure 2 shows the part of the
hierarchy that is used in this demonstration. This log-

NE PA Allegheny

Shadyside

Oakland

Pittsburgh

Craig St at Forbes Ave

Morewood St at Forbes Ave

5th Ave at Morewood St

Dithridge St at Winthrop St

Figure 2: The hierarchy used in the demonstration
and the mapping of the hierarchy onto the OAs

Figure 3: Driving directions to the parking spot are
displayed using Yahoo Maps (maps.yahoo.com)

ical hierarchy is mapped onto seven OAs running on
seven PCs in CMU and Intel Research Pittsburgh, as
follows: (1) the four blocks corresponding to the park-
ing lots are mapped onto one OA each, (2) the two
neighborhoods, Oakland and Shadyside, are mapped
onto one OA each, and (3) the remaining nodes in the
hierarchy are mapped onto one OA.
Web Frontend. The web frontend for this service
essentially presents the user with a form that she can
fill out to specify her destination, and also other con-
straints that she might have (e.g., that the parking
spot must be covered). Currently, we only allow the
user to pick from five destinations near the parking
lots using a drop-down menu. Once the user speci-
fies her criteria and submits the query, the frontend
finds the nearest available parking spot that satisfies
the user’s constraints using IrisNet, and then uses the
Yahoo Maps Service to find driving directions to that
parking space from the user’s current location. These
driving directions are then displayed to the user (Fig-
ure 3).

The driving directions are continously updated as
the user drives towards the destination, if the availabil-
ity of the parking spot changes, or if a closer parking
spot satisfying the constraint is available. We envi-
sion that a car navigation system will repeatadly and
periodically ask the query as the user nears the des-
tination. Lacking that, we currently simulate such a
behavior by resubmitting the query periodically and
by assuming that the user has reached the next inter-



Figure 4: A modified version of NAM is used to show
the messages during a query execution

section along the route.

Logging and replaying messages. We also demon-
strate a mechanism that we have built for logging and
replaying the messages exchanged by the web frontend
and by the OAs. The collected log information dur-
ing execution of a query is used to lazily replay the
messages that were sent during the execution of the
query. We use the NAM network simulator to show
these messages. NAM is part of the popular open-
source network simulator, ns, with a graphical display
that shows the configuration of the network under con-
sideration (Figure 4), and uses animation to show mes-
sages being communicated in the network.

A series of XPATH queries of increasing complexity
are used to demonstrate visually various aspects of our
system such as routing to the starting point, recursive
query processing, partial-match caching, and query-
based consistency.

4 A Distributed Infrastructure Moni-
toring Service

Our second example service, a distributed infrastruc-
ture monitor, demonstrates the usefulness of IrisNet
in a different domain. The service allows users to ef-
ficiently query the current state of different nodes in
an infrastructure. For the demo, we run the service on
PlanetLab [9], an open, shared planetary-scale appli-
cation testbed consisting of over 100 nodes distributed
across dozens of sites spanning three continents: North
America, Europe, and Australia.

Sensing Agents. Each PlanetLab node runs an SA.
The senselet of this service is composed of two com-
ponents. The first component, a monitoring daemon,
constantly computes different statistics (e.g., CPU and
memory load, bandwidth usage, etc.) of the node
through well-defined interfaces (e.g., /proc, kstat, and
kvm). The second component, a publishing thread pe-
riodically reports the statistics in XML format to the
OA running on the same node.

Organizing Agents. Each node runs an OA that

���
�

���
�

���
�

���
�

��	
	



�
�

��


���
�

���
�

���
�

�����������������������������������������������������������������������������

���������������������������������������������������������������

������������������������������������������������������

������������������������������������������������������

Planet Lab

USA−West

USA−East

Europe

CMU

MIT Node 1

Node 2

Node 3Harvard

Region Site Node

Figure 5: Part of the hierarchy used in the distributed
infrastructure monitor on PlanetLab

collects the measurement statistics from the local SA
and stores them in its local XML database. Additional
OAs are deployed to construct a hierarchy that suits
the query workload, and as backups for fault tolerance.
In our demo, we use a hierarchy that organizes the OAs
geographically. Figure 5 shows part of the hierarchy.
Web Frontend. In our demo we use a web frontend
for this service which presents the user with a form
that she can fill out to specify the set of PlanetLab
nodes she is interested in (e.g., all the nodes in the site
CMU), the particular metrics she wants to consider
(e.g., CPU load, network bandwidth usage etc.), and
the aggregate function (e.g., average load of a site) to
be used within the query. The frontend also allows the
user to type any arbitrary XPATH query on the global
XML database of the measurement data collected by
the monitoring daemons.
Acknowledgement: We thank M. Satyanarayanan
for many valuable suggestions.

References
[1] Bonnet, P., Gehrke, J. E., and Seshadri, P. Towards

sensor database systems. In ACM Mobile Data Management
(2001).

[2] Deshpande, A., Nath, S., Gibbons, P. B., and Seshan, S.
Cache-and-query for wide area sensor databases. In ACM
SIGMOD (2003).

[3] Estrin, D., Govindan, R., Heidemann, J., and Kumar,
S. Next century challenges: Scalable coordination in sensor
networks. In ACM MOBICOM (1999).

[4] Kahn, J., Katz, R. H., and Pister, K. Next century chal-
lenges: Mobile networking for ‘smart dust’. In ACM MO-
BICOM (1999).

[5] Madden, S., and Franklin, M. J. Fjording the stream:
An architecture for queries over streaming sensor data. In
IEEE ICDE (2002).

[6] Madden, S., Franklin, M. J., Hellerstein, J. M., and
Hong, W. Tag: A tiny aggregation service for ad hoc sensor
networks. In Usenix OSDI (2002).

[7] Madden, S., Franklin, M. J., Hellerstein, J. M., and
Hong, W. The design of an acquisitional query processor
for sensor networks. In ACM SIGMOD (2003).

[8] Nath, S., Ke, Y., Gibbons, P. B., Karp, B., and Seshan,
S. Irisnet: Enabling sensor-enriched internet services. Intel
Technical Report IRP-TR-03-04, 2003.

[9] Peterson, L., Anderson, T., Culler, D., and Roscoe,
T. A blueprint for introducing disruptive technology into
the internet. In ACM Hotnets-I (2002).


