
Web Service Composition with O’Grape and Osiris

Roger Weber Christoph Schuler Patrick Neukomm Heiko Schuldt
Hans-J. Schek

Database Research Group, Swiss Federal Institute of Technology (ETH), CH–8092 Zurich, Switzerland
Email: {weber,schuler,schuldt,schek}@inf.ethz.ch,neukommp@student.ethz.ch

1 Introduction

Services are well known building blocks in modern in-
formation systems. Technologies and standards like
XML, SOAP (Simple Object Access Protocol) [8], and
WSDL (Web Service Description Language) [10] pro-
vide a simple means to describe these services and to
make them accessible to a large community in a dis-
tributed environment. Yet, the full potential of web
services becomes only apparent if we can combine sev-
eral service invocations in a well-defined order and
with well-designed execution guarantees to establish
even more powerful composite services. Among oth-
ers, processes provide a simple mechanism to compose
services [1]. A process defines the logical dependencies
between independent services by specifying an invoca-
tion order (control flow) as well as rules for the trans-
fer of data items between different invocations (data
flow). In addition and following the model of trans-
actional processes [7], we can define the transactional
behavior and execution guarantees to ensure a correct
execution of processes in case of concurrency and fail-
ures. An infrastructure for transactional processes has
to support all these run-time features. Furthermore,
a graphical process modeling tool should support the
specification of all these features. An important aspect
is that such a modeling tool is transparently integrated
into the process management environment.

In addition to the transactional semantics of ser-
vice composition, several other run-time aspects are
crucial. Usually, several semantically equivalent web
services are available at different places. An infrastruc-
ture for process execution should equally distribute the
load over all web service providers. Similarly, process
executions should take costs and expected execution
times into account to optimize response times. To this

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

end, the infrastructure should bind services dynami-
cally at run time instead of at hard-coding this binding
at process definition time. This decoupling provides a
high degree of flexibility since new providers and ser-
vices are seamlessly integrated (following the ideas of
autonomic computing [9]).

With the Osiris (Open Service Infrastructure for
Reliable and Integrated process Support) prototype
infrastructure for the execution of transactional pro-
cesses and the O’Grape (Osiris GRAphical Process
Editor) modeling tool, the aspects of modelling and
execution of transactional processes can be seamlessly
combined. O’Grape allows to graphically specify
processes by combining web services. This includes
both control and data flow aspects as well as transac-
tional semantics. An application developer can then
export new/revised processes from O’Grape to the
Osiris system, where they can be executed. Osiris
combines the advantages of several infrastructures,
namely: i.) discovery and invocation of web services
from frameworks like .NET [3], ii.) process support and
execution guarantees from workflow management sys-
tems, iii.) late binding of service calls and load balanc-
ing from grid infrastructures [2], and, finally, iv.) Peer-
to-Peer systems. With the peer–to–peer based execu-
tion of processes, navigation costs can be accumulated
only on nodes that are directly involved in the execu-
tion of a process.

In the following, we first give a brief overview
of Osiris in Section 2. Section 3 then describes
O’Grape, our modeling tool. Finally, Section 4 enu-
merates the subjects of our demonstration.

2 The Osiris System

The Osiris architecture consists of two parts: besides
a small software layer on every node, the so-called hy-
perdatabase layer, Osiris runs a set of global sys-
tem services that manage global settings and meta
data (cf. middle box in Figure 1).

2.1 The Hyperdatabase Concept

Osiris follows the vision of a hyperdatabase sys-
tem [4, 5, 6]. In short, a hyperdatabase (HDB) pro-



H
D

B Layer

Services &
 D

ata

HDB Layer

Services & Data

HDB Layer

Services & Data

H
D

B 
La

ye
r

Se
rv

ic
es

 &
 D

at
a

Process
Repository (PR)

Load
Repository (LR)

Subscription
Repository

(SR)

ü ü
ü

ü ü
ü

ü
Service

Repository (SR)

Figure 1: Peer–to–peer process execution

vides transactional guarantees for processes over dis-
tributed components using existing services. The HDB
provides sophisticated routing strategies to dynami-
cally choose among the available providers. Prior to
the invocation of a service a hyperdatabase requires
that each service provider locally installs an additional
software layer, a so-called hyperdatabase layer (HDB
layer). Hence, a hyperdatabase does not follow a
monolithic system architecture but consists of a set
of additional thin software layers. Ideally, this HDB
layer comes together with the operating system much
like the TCP/IP stack does (comparable to the .NET
framework).

2.2 Architecture of Osiris

The main emphasis of our architecture is to avoid any
central component for process execution. Instead, a
process instance should run only on those nodes of the
Osiris community that contribute a service to that
process (cf. Figure 1). We call this Peer-to-Peer Ex-
ecution of Processes (P2PEP). With P2PEP, a node
works off its parts of the process, and then directly
migrates the instance data to nodes offering a suitable
service for one of the next steps in the process. To
do so, the HDB layer requires global meta informa-
tion about the system, e.g., about providers and their
services, about load information, and about process
definitions. A set of central repositories collect, main-
tain, and store this information. The local HDB layers
replicate from these sources those pieces of informa-
tion that are locally required to drive process execu-
tions. It is important to distinguish between the flow
of process execution and the meta-data flow. While
process execution follows a true peer-to-peer pattern,
the meta-data flow has a centralized organization. To
enable P2PEP, it is crucial to decouple process nav-
igation from meta-data replication. In other words,
process navigation always relies on the currently and
locally available meta information (to this end, it has
to be garatieed by the Osiris system that this load

information is sufficiently consistent). Replication of
meta information runs in the background and exploits
some week constraints on the freshness of the data.
For instance, load information changes permanently.
However, an HDB layer should only receive signifi-
cant changes to balance the load. For that purpose,
Osiris deploys a publish/subscribe based replication
scheme with freshness predicates. A freshness pred-
icate defines when to publish changes on subscribed
meta-data.

2.3 Core Services

The services essential for process navigation are:
The Subscription Repository keeps the primary

copy of the service subscription lists. These lists sub-
sume providers offering semantically equivalent ser-
vices. The HDB layers replicate those lists from the
subscription repository, that are needed to migrate
subsequent steps within the set of processes that run
through this layer. In general, an HDB layer only re-
quires a portion of information out of the subscription
list.

The Service Repository maintains the interface
definitions (WSDL) of all services available in the
Osiris system. The modeling tool O’Grape down-
loads these descriptions to offer them to the applica-
tion developer as basic steps of a process. Apart of
this, the repository contains the executables of services
for on-demand installation of hot-spot services.

The Process Repository holds the global def-
initions of all processes of the community. Appli-
cation developers upload new/revised processes with
O’Grape. As a result, pieces of the process descrip-
tion are distributed to all HDB layers that potentially
may receive an instance of this new process type (again
using publish/subscribe mechanisms).

Monitoring Repositories store the history and
states of recently and currently executed processes. A
monitoring repository subscribes itself for events re-
lated to process execution. These events are published
by the HDB layers whenever a process instance ad-
vances or a significant change of its state occurs. Fur-
thermore, the monitoring component condenses infor-
mation to provide monitoring clients a coherent view
of the current state of a process instance.

Web Service Proxy Gateways offer a hyper-
database layer for external services. To integrate such
services into the Osiris system, their WSDL descrip-
tions are uploaded into the proxy service. As a side
effect, the proxy service registers these services in the
system. For the Osiris system, external services look
like ordinary Osiris services with the exception that
process navigation takes place on the proxy node.

Apart of these services, there exists a number of
further core services related to concurrency control and
generic tasks like, for instance, XSLT transformation.



Figure 2: Osiris Process modeling tool O’Grape

3 Modelling with O’Grape

A crucial part of the Osiris system is the graphical
modelling tool O’Grape for easy composition of web
services into processes. O’Grape is implemented in
Java and runs as a standalone application as well as an
applet. Figure 2 shows a screen shot of the standalone
version. On the right hand side, the figure depicts
the so-called whiteboard of the current process (tool
box ”Whiteboard”), which contains the global vari-
ables of a process instance. During process execution,
the whiteboard of a process instance is first filled with
the process arguments (tool box ”Process Input Argu-
ments”). Whiteboard parameters might be modified
during process execution by service invocations. Fi-
nally, the return parameters of a service invocation
are fed back to the whiteboard and the result of the
process invocation is assembled from its contents (tool
box ”Process Output Arguments”).

The ellipses in Figure 2 denote the activities of the
process, i.e., service invocations. For each activity, the
designer can choose among the list of services and pro-
cesses known in Osiris. To this end, O’Grape down-
loads WSDL descriptions of services and processes
from the global service repository and process reposi-

tory (see the selection box at the left hand side at the
bottom of the figure ). A service invocation retrieves
its input parameters from the whiteboard (see tool box
”Activity Input Arguments” at the bottom), and maps
output parameters back to the whiteboard (tool box
”Activity Output Arguments”). Further, arrows de-
fine the control flow of a process. The Osiris process
model allows to fork and join execution paths, and to
introduce loops. In the case of loops, it is the task
of the application designer to guarantee the termina-
tion of the process. To this end, our model supports
conditional edges between activities. Finally, the ap-
plication developer can upload new/refined versions of
a process into the process repository of Osiris, and
immediately test the process using a standardized in-
put form to enter process input parameters.

So far, O’Grape provides the same functionalities
as other modelling tools. Beyond these basic meth-
ods, Osiris and O’Grape feature sophisticated fail-
ure handling strategies at the application level. In
terms of failure handling, our model provides compen-
sation activities and alternative execution paths. An
example of the later one is depicted in Figure 2: if
the activity ”check small amount” fails, the alterna-
tive execution path over activity ”External survey” is



followed. Only if this activity succeeds, the process
continues with the usual path over activity ”calculate
rate”. Hence, alternatives are a means to react on
failures of service invocations. If no alternatives are
provided and a service invocation fails, Osiris rolls
back the process instance until an alternative path is
found or the entire process is undone. Furthermore,
the model allows to specify explicit compensation ac-
tivities that undo the side effects of an earlier service
invocation even in absence of an automatic compensa-
tion provided by the service itself (for an example, see
the shaded activity ”delete info” at the top).

Other interesting aspects of Osiris that is enabled
with O’Grape are transactional and activation prop-
erties. Each activity is described by a set of proper-
ties like execution costs, compensatability, retriability,
and failure probabilities. Moreover, the commutativ-
ity characteristics of all activities are given. Osiris
consults these properties to ensure a correct execution
of processes as described in [7]. Furthermore, costs for
service executions and success probabilities are taken
into account to optimize the overall costs of processes
and to avoid the compensation of costly activities due
to concurrency control. These transactional properties
come together with the service interface definitions.
To this end, we have extended the WSDL format to
further encompass these properties.

Finally, O’Grape supports the application de-
signer in deriving these properties for the entire pro-
cess (recall, a process may be again a service in an
other process). A toolbox assistent checks the integrity
of the specified process, and derives, as far as possible,
transactional properties and expected execution cost
for the overall process.

4 Demonstration

The demonstration shows how easily existing services
are integrated into processes with a graphical tool, and
how peer-to-peer process execution combines the ad-
vantages of existing service infrastructures. Our cur-
rent prototype system Osiris provides standardized
service interfaces and fully-fledged peer-to-peer exe-
cution of transactional processes, and it runs a num-
ber of central repositories. Among these reposito-
ries, the service and process repository play a cen-
tral role of the demonstration. The smooth integra-
tion of O’Grape into Osiris allows application de-
velopers to choose and download WSDL descriptions
of known services (and processes) from these reposi-
tories. Among many possible scenarios, the demon-
stration of O’Grape features the design and imple-
mentation of processes in the context of banking, e-
business, and image retrieval. In the latter case, exter-
nal services (like Google search) and internal services
are seamlessly combined.

A second part of the demonstration features the
process engine of Osiris. We have implemented a

number of services for content-based and region-based
image retrieval like feature extraction, segmentation,
and indexing. These services are connected by several
processes to implement an image retrieval application
and to maintain consistency between repositories and
indexes. We demonstrate during process execution
how the system is able to automatically install and
remove service instances whenever needed. Finally, a
monitoring client displays the current state of executed
process instances in the system.

References

[1] M. Schmid F. Leymann, D. Roller. Web services and
business process management. IBM Systems Journal,
41(2):198–211, 2002.

[2] I. Foster, C. Kesselmann, J. Nick, and S. Tuecke.
The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integra-
tion. http://www.gridforum.org/ogsi-wg/.

[3] Microsoft .NET. http://www.microsoft.com/net/.

[4] H.-J. Schek, K. Böhm, T. Grabs, U. Röhm,
H. Schuldt, and R. Weber. Hyperdatabases. In Pro-
ceedings of the 1st International Conference on Web
Information Systems Engineering (WISE’00), pages
14–23, Hong Kong, China, June 2000.

[5] H.-J. Schek, H. Schuldt, C. Schuler, and R. Weber.
Infrastructure for information spaces. In Proceedings
of Advances in Databases and Information Systems,
6th East European Conference, ADBIS 2002, volume
2435 of Lecture Notes in Computer Science, pages 23–
36, Bratislava, Slovakia, September 2002. Springer.

[6] H.-J. Schek, H. Schuldt, and R. Weber. Hyper-
databases – Infrastructure for the Information Space.
In Proceedings of the 6th IFIP 2.6 Working Confer-
ence on Visual Database Systems (VDB’02), Bris-
bane, Australia, May 2002.

[7] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek.
Atomicity and Isolation for Transactional Processes.
ACM TODS, 27(1), March 2002.

[8] SOAP – Simple Object Access Protocol. http://www.
w3.org/TR/SOAP/.

[9] I. Wladawsky-Berger. Advancing the Internet into
the Future. Talk at the International Conference
Shaping the Information Society in Europe 2002,
April 2002. http://www.ibm.com/de/entwicklung/
academia/index.html.

[10] WSDL – Web Service Description Language. http:
//www.w3.org/TR/wsdl/.

http://www.gridforum.org/ogsi-wg/
http://www.microsoft.com/net/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://www.ibm.com/de/entwicklung/academia/index.html
http://www.ibm.com/de/entwicklung/academia/index.html
http://www.w3.org/TR/wsdl/
http://www.w3.org/TR/wsdl/

	Introduction
	The Osiris System
	The Hyperdatabase Concept
	Architecture of Osiris
	Core Services

	Modelling with O'Grape
	Demonstration

