
Implementing XQuery 1.0: The Galax Experience

Mary Ferńandez
AT&T Labs

Jérôme Siḿeon
Bell Laboratories

Byron Choi
University of Pennsylvania

Amélie Marian
Columbia University

Gargi Sur
University of Florida

Abstract

Galax is a light-weight, portable, open-source im-
plementation of XQuery 1.0. Started in Decem-
ber 2000 as a small prototype designed to test the
XQuery static type system, Galax has now be-
come a solid implementation, aiming at full con-
formance with the family of XQuery 1.0 specifi-
cations. Because of its completeness and open ar-
chitecture, Galax also turns out to be a very con-
venient platform for researchers interested in ex-
perimenting with XQuery optimization.

We demonstrate the Galax system as well as
its most advanced features, including support
for XPath 2.0, XML Schema and static type-
checking. We also present some of our first ex-
periments with optimization. Notably, we demon-
strate query rewriting capabilities in the Galax
compiler, and the ability to run queries on doc-
uments up to a Gigabyte without the need for pre-
indexing. Although early versions of Galax have
been shown in industrial conferences over the last
two years, this is the first time it is demonstrated
in the database community.

1 Introduction

XQuery 1.0 [9] is the XML Query language promoted by
the World Wide Web Consortium. After several years of
development, XQuery starts being adopted, implemented
and used [6, 1, 8, 2, 5]. Being based on quickly evolv-
ing working drafts, few implementations support XQuery’s
latest and most complex features. Galax is a light-weight,
portable, open-source implementation of XQuery that aims

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

at full conformance with the family of XQuery 1.0 speci-
fications. Galax is keeping track very closely of the latest
XQuery working drafts, with a new release often following
each publication by the XML Query working group. Our
first goal with this demo is to present Galax, describe its
architecture, and demonstrate its most advanced features
notably support for XPath 2.0 semantics (support for doc-
ument order, overloaded arithmetic and comparison opera-
tors, etc.), and support for XML Schema (XML Schema
import, validation, dynamic operations on types such as
typeswitch , static typing checking, etc.).

Because of its completeness and open architecture,
Galax is also well suited as a platform for experimenta-
tion. Users who need support for specific datatypes and
operations can easily extend the Galax interpretor with
their own libraries. Researchers interested in optimization
for XQuery can implement their work in a context where
the details of XQuery cannot be overlooked. Our second
goal with this demo is to present some of our first exper-
iments with query optimization in Galax. More precisely,
we demonstrate features related to query rewriting, and to
memory management for large documents.

The development of Galax started in December 2000,
and it was first released to the public in April 2002.
Although some early prototypes have been presented in
a few industrial venues (at XML DevCon 2001 and at
XML’2001), this is the first time it is demonstrated to the
database community.

2 Galax

2.1 Overview

Galax is an implementation of the family of XQuery 1.0
specifications, with completeness, strict conformance to
the specifications, and semantic integrity as first goals.
Galax’s implementation is based directly on the XQuery
1.0 Formal Semantics [10], as it is the surest way to achieve
these goals.

Galax tracks down the XML Query working drafts very
closely. At the time we write, the current version of Galax
(0.3.0) was released on January 20th 2003, and implements
the latest W3C working drafts published on November 15



Static Error
for non
well−typed
queries!

XQuery
Expression

XML
Document

XQuery Parser

XML Parser XML Data Model
Loader

XML Parser

Parsing Layer

Static Type
Analysis

Dynamic
Evaluation

XQuery
Syntax Tree

Schema Validation

Execution LayerMapping Layer

XQuery Type System

XQuery Core
Normalization

XML Data Model
Instance

Result in XML
Data Model

Inferred Type

XML Schema
Import

XML Schema SAX Events

SAX Events

Figure 1: Galax’s Architecture

2002. In some cases, Galax even implements decisions of
the XML Query working group which have not yet been
made public. For instance, some aspects of the semantics
of function calls which were decided in at the XML Query
face to face meeting in December 2002 are already imple-
mented in the most recent version of Galax.

Galax implements all of the standard XQuery opera-
tions, such as path expressions, FLWOR expressions, user
defined functions, etc. We do not recall those operations
here and refer the reader to other XQuery material [9] and
to the Galax online demo1 for more details. More advanced
XQuery features, such as operations on types, overloaded
built-in functions, and XML Schema import and validation
are illustrated in Section 3.

Galax is written in Objective Caml [3], a modern, stat-
ically typed, functional language developed at INRIA.
Galax is reasonably light weight (its footprint on Linux is
about 1.2 MB) and very portable (OCaml targets include
Win32, Macintosh, and virtually all Unix platforms). Al-
though most implementations of XQuery will not be im-
plemented in functional languages, we found that OCaml
was ideal for implementing Galax. Its algebraic types and
higher-order functions simplify the symbolic manipulation
that is central to the query transformation, analysis, and op-
timization that we need to perform.

2.2 Architecture

Figure 1 depicts Galax’s architecture and relates Galax’s
modules with XQuery’s processing model and formal se-
mantics. Inputs to the Galax engine comprise one or more
input XML documents, one or more XML Schema asso-
ciated with input documents, and one or more queries that
process the input documents. The system is decomposed
into three layers:

Parsing Layer. The XQuery parser takes and XQuery ex-
pression and builds an abstract syntax tree (AST) of the
query. The XML parser is used for both the XML docu-
ments and the schemas. In those cases, an abstract syntax
tree is never materialized. Instead, a stream of SAX events
is produced and consumed by the data model loader (resp.

1http://db.bell-labs.com/galax/demo/

the XML Schema import module) to create an instance of
XML query data model (resp. an instance of the XQuery
type system). Data model instances tend to be very large
in memory and are often the bottleneck of query process-
ing. In Section 4.2, we illustrate some Galax optimizations
that can be used to evaluate queries on documents up to a
gigabyte.

Mapping Layer. The mapping layer transforms the in-
put ASTs into their corresponding internal representations.
XQuery expressions are normalized into XQuery Core ex-
pressions and XML Schema documents are mapped into
XQuery’s internal type values. The XQuery normalization
rules are implemented (almost) literally in Galax making it
possible to correlate easily the definition of an expression
with its implementation. Input documents that have associ-
ated XML Schemas are validated while the documents are
parsed and instantiated in the XQuery data model. Nor-
malization often results in large and complex expressions,
containing many unnecessary operations. In Section 4.1,
we illustrate query rewriting techniques used in the Galax
compiler to address that problem.

Execution Layer. The execution layer implements the
static type analysis and dynamic evaluation phases of the
XQuery processing model. First, static type analysis is ap-
plied to the Core expressions and input types. The type
inference rules are implemented (almost) literally in Galax
making it possible to correlate easily each typing rule with
its implementation. If static typing fails, the system raises
an error and halts.

If static typing succeeds, the evaluation module is ap-
plied to the core expressions and to the data model repre-
sentation of the input documents. The value inference rules
are implemented (almost) literally in Galax making it pos-
sible to correlate easily each evaluation rule with its imple-
mentation. Evaluation can either raise a run-time error (for
errors that static analysis cannot detect) or return an XML
value as the result.

3 Advanced Features

In the first part of the demonstration, we show some of
the more advanced features of XQuery, notably support



for XML Schema and support for the new XPath 2.0 se-
mantics. The demo will use examples from the various
XML Query usecases, queries from the XMark benchmark
demo, and some queries on live data, including the EDICT
English-Japanese dictionary2 (about 28Mb), the XML ver-
sion of DBLP3 (about 145Mb).

3.1 XML Schema import and validation

XQuery gives the ability to work on typed data. In
XML, typed data can be obtained from document validated
against a schema. For instance, consider the following
XML Schema description:

<element name="person" type="Person"/>
<complexType name="Person">

<sequence>
<element name="name" type="xs:string"/>
<element name="age" type="xs:integer"

minOccurs="0"/>
<element name="address" type="xs:integer"

maxOccurs="unbounded"/>
</sequence>

</complexType>

This schema can be imported and used for validation
directly in the text of the query, as follows:

import schema "person.xsd"

let $bilbo :=
validate {

<person>
<name>Bilbo Baggins</name>
<age>111</age>
<address>Bag End</address>

</person>
}

After validation, elements are annotated with the name
of the type against which they have been validated [7]. In
the example above, theperson element is annotated with
the typePerson . Type annotations are then used when
matching a value against a type. For instance, the following
function call would be rejected since the person element
passed to theget name function has not been validated
and therefore does not have the right type annotation:

define function get_name(
$p as element of type Person

) as xs:string
$p/name

get_name(<person/>)

3.2 XPath 2.0 semantics

XPath 2.0 has been designed to preserve backward com-
patibility with XPath 1.0 as much as possible. However,
the semantics of XPath 2.0 differs from XPath 1.0 on
a few important operations. Notably, arithmetic opera-
tions are defined on the hierarchy of XML Schema nu-
meric types (xs:integer , xs:decimal , xs:float

2http://www.csse.monash.edu.au/ ˜ jwb/j jmdict.html
3http://dblp.uni-trier.de/xml

and xs:double ). To deal with this hierarchy XQuery
arithmetic operations are overloaded, that is they behave
differently depending on the type of their operands. As an
example, here are the results for a few simple arithmetic
operations applied on the previous example:

$bilbo/age + 1 ==> 112
$bilbo/age + 1.0 ==> 112.0
$bilbo/age + <a>1</a> ==> 1.12E2

In all cases, the typed-value of theage element is ex-
tracted, returning the integer111 . In the first case, integer
addition is applied resulting in the integer112 . In the sec-
ond case, the age is cast to the type of the other operand,
here a decimal value. Finally, in the last case, the age is
added to the (untyped) content of thea element, both of
which are cast to a double.

3.3 Static type checking

Galax has been designed from the ground up for static type
checking. Static typing can be used to detect errors at com-
pile time rather than at run time. Static typing is a con-
servative analysis, which preventsany type errors to oc-
cur at run-time. For instance, the following query raises a
static error, since some execution of theget name func-
tion might raise an error, depending on the value of the
variable$cond .

let $person :=
if ($cond) then $bilbo else <person/>

return
get_name($person)

The type inferred for the variable person is either the
type of the variable$bilbo (which is an elementperson
with the type annotationPerson ), or an elementper-
son with the type annotationxs:anyType (since it has
not been validated). This type is written as follows in the
XQuery type system.

element person of type Person
| element person of type xs:anyType

Then a subtyping check is perform to see if that type is
a valid type for the parameter of the function. Here this
subtyping check fails and raises a static type error.

4 Optimization Features
In the second part of the demonstration, we show some of
the optimization features that were recently implemented
in the Galax engine. Those optimizations are targeted to
address the very first bottlenecks we encountered during
the development and use of Galax.

4.1 Query rewriting

In order to deal with XPath 2.0 semantics, Galax first per-
forms somenormalizationof the original query. Query ex-
pressions as normalized by removing the syntactic sugar
and by always using explicit operations instead of implicit



XPath 2.0 operations (automatic casting, existential quan-
tification, sorting by document order, etc.). Normalization
being an automatic process, it often results in redundant,
complex expressions. For instance, consider the following
XMark query:

for $b in /site/people/person[@id="person0"]
return $b/name

The resulting normalized query in the XQuery core is
similar to the following query:

for $dot at $position in / return
for $dot at $position in child::site return

for $dot at $position in child::people return
for $dot at $position in child::person return

if ((some $id in (attribute::id) satisfies
typeswitch ($id)

case $n as node return data($n)
default $d return $d) = "person0")

then child::name
else ()

This expression makes each operation explicit, for in-
stance it binds the context item (’. ’ in XPath) as a variable
($dot ), the context position (’position() ’ in XPath)
as another ($position ). Path navigation is normalized
as an explicit iteration with afor expression. Finally, the
XPath predicate is normalized to a conditional expression
with an explicit existential quantification and a typeswitch
to implement the implicit extraction of values from a node.

The Galax compiler can rewrite that expression to a
more concise and more efficient one as follows: (i)$po-
sition variables are bound but never used and can be
removed, (iii) the attributeid being always a node, the
first case clause in the typeswitch is always executed, (iii)
assuming the schema indicates there is exactly oneid at-
tribute for each person, the existential quantification can be
removed. This results in the following simplified expres-
sion:

for $dot in / return
for $dot in child::site return

for $dot in child::people return
for $dot in child::person return

if (data(attribute::id) = "person0")
then child::name
else ()

4.2 Running queries on large documents

The second important bottleneck is due to the memory
overhead imposed by XML data models. As explained
in [4], current main-memory XQuery implementations
break for even small document sizes as they build large data
models in memory before even starting query processing.
In the case of Galax, the biggest document we could run on
an IBM laptop with 256Mb memory was about 30 Mb.

In [4], we proposed a technique based ondocument pro-
jection to drastically reduce the size of the data model rep-
resentation before query processing starts. The idea be-
hind document projection is to analyze the query to iden-
tify the paths required to evaluate that query. In most cases,

only specific paths in the documents are used, and a smaller
projecteddocument can be built in memory. For instance,
in the case of the previous XMark query, only the nodes
reachable through the two following paths are necessary:

/site/people/person/@id
/site/people/person/name

In the case of XMark, the nodes reachable with those
paths represents only 2% of the original size of the doc-
ument. Using that technique, we will demonstrate Galax
queries running on documents of up to a Gigabyte on a
simple IBM laptop with 256Mb memory.

Acknowledgments. We would like to address special
thanks to the people who contributed to Galax’s devel-
opment: Philip Wadler, Volker Renneberg, Lori Resnick,
Cindy Chen, Trevor Jim, Volker Stoltz, and M. Radhakr-
ishnan.

References
[1] Enosys software.http://www.enosys.com/ .

[2] Peter Fankhauser, T. Groh, and S. Overhage. Xquery
by the book: The ipsi xquery demonstrator. InPro-
ceedings of the International Conference on Extend-
ing Database Technology, 2002.

[3] Xavier Leroy. The Objective Caml system, release
3.04, Documentation and user’s manual. Institut Na-
tional de Recherche en Informatique et en Automa-
tique, December 2001.

[4] A. Marian and J. Siḿeon. Projecting XML docu-
ments. Technical report, Columbia University, Com-
puter Science Department, February 2003.

[5] Quip. developer.softwareag.com/tamino/quip .

[6] M. Rys. State-of-the-art XML support in RDBMS:
Microsoft SQL Server’s XML features.Bulletin of the
Technical Committee on Data Engineering, 24(2):3–
11, June 2001.

[7] Jérôme Siḿeon and Philip Wadler. The essence of
XML. In Proceedings of ACM Symposium on Prin-
ciples of Programming Languages (POPL), New Or-
leans, LA, January 2003.

[8] XQRL, Inc. http://www.xqrl.com/ .

[9] XQuery 1.0: An XML query language. W3C Work-
ing Draft, November 2002.

[10] XQuery 1.0 and XPath 2.0 formal semantics. W3C
Working Draft, November 2002.


