XQueC: Pushing Queries to Compressed XML Data

Andrei Arion Angela Bonifati Gianni Costa Sandra D’Aguanno loana Manolescu Andrea Pugliese
INRIA Icar CNR Icar CNR INRIA INRIA Deis UNICAL
i XQueC
1 Introduction compressed ey XML auory
Initially proposed as a data interchange format, XML aims ~ jopostoy |

also at becoming a format for data storage and manage-
ment. However, XML documents in their textual form are -
rather verbose and tend to predate disk space, due to the’ XQueC
textual and repetitive nature of the XML tags and of sev- / JPxacude

N

XQueC Query
4 Stats | Parser XQueC
L] query
‘/b processor

eral XML types. ! ' /,[Executor }

One solution to this space occupancy problem consists: ,/' Indexes I =
of compressing XML. The XMill project [7] proposed ' ‘. |[swucture Compressed :;mp
an XML-specific compression method: it compresses the'._ kL TS —onaner
structure (XML tags) separately from the content (data ~b—csza - = — -

. . A sSz- ~~. K -

nodes, leaves of the XML tree), which is squeezed into a XQueC loader & compressor
set of semantically uniforneontainers for example, one Huffman, ALM, ...

container stores the text values of alURL> elements

in the document, another container stores<ahoneNo>

etc. Each container is again separately compressed, by
using the best suited compression algorithm; thus, XMi”compression at several possible points.

makes maximal use of inherent structure c:ommonalitiesrhe XQueC systemsolves all the above-mentioned prob-
among semantically similar items. However, an XM_'"' lems. Our system compresses XML data and queries it as
compressed document is opaque to a query processor: thygych as possible under its compressed form, covering all
one must fully decompress a full chunk of data before be'real-life, complex classes of queries. The XQueC system
ing able to query it. The XGrind project [9] pioneered the gqneres to the following approach:

field of query processing on compressed XML documents(l) XQueC takes advantage of the XMill principle of com-

XGrind does not separate data from structure: an XGrindy esqing separately data and structure for efficiently query-
compressed XML document is still an XML document, ing compressed data
whose tags have been dictionary-encoded, and whose dagf\) It adopts a simple storage model suitable for com-

p?hdrﬁs GhE;\;ﬁj It:‘tegt fr??rprleasc?;qn ?ﬁéngoihem';ﬁtﬁr?(agpng,g ressed XML, and a set of access support structures, allow-
: [6] Irp : u ¥ ' ing for many evaluation alternatives for complex XQuery

quUETY processor can be considered an extended SAX parsraruery_ Several storage methods are possible; we view ours
which can handlexact-match and prefix-match querms as a simple choice for making a proof of concept.

g?ln&pe):;s;e?e\slgleu de\s/a?gmalgyv:f/cehr ?grirna dn%iei_uﬁgf :u F;_III) XQueC seamlessly extends a simple algebra for evalu-

P X > ’ ; ating XML queries to include compression and decompres-
port severgl operations in .the compressed domain SUCh.%?on. This algebra is exploited by a comprehensive cost-
non-equality selectu_)ns, Joins, aggregations, nestgd quUeNesysed optimizer, able to devise query evaluation methods
or (construct) operations. .SUCh operations occur in many i at freely mix regular operator and compression-relevant
XML query scenarios, as illustrated by XML benchmarks

: L ones.
(e.g., all but the first two of the 20 queries in XMark [8]). The purpose of the demo is to demonstrate the above

Also, XGrind uses a fixedoot-to-leaf navigation strat- features on several XML data sets (see Section 4), among
egy, which is clearly insufficient to provide for interest- which, the XMark documents [8]. In the following sec-
ing alternative evaluation strategies, as it was done irtions, we will use these documents for describing XQueC.
existing works on querying compressed relational dataA simplified structural outline of these documents is de-
(e.g., [4], [11]). These works considered evaluating arbi-picted in Figure 2. Each document describes an auction
trary SQL queries on compressed data, by comparing (isite, with people and open auctions (dashed lines represent
the traditional framework of cost-based optimization) manylDREFs pointing to IDs and plain lines connect the other
guery evaluation alternatives, including compression / deXML items).

Figure 1: Architecture of the XQueC prototype.

K‘ This has two consequences. First, w.r.t. XMill, we use a
""" peiple fine-grained compressiowithin the container, i.e. com-
* closed_auction

_ Quttion person press each leaf data node individuqlly; to tha_t purpose,
C'Osed_auct'on%m itemref _ the document storagéas to be organized at a fine gran-
price seller buyer ularity, as opposed to storing full containers as “blobs”,
: W profte larity pposed to storing full cont blob
peﬁsqq] petson " | o incoif:frest as done in_ XMill. While applying fine-grained compres-
oy oregieard sion, data items of the same type are compressed using the
province category same algorithm. Thus, we can benefit from the data com-

monalities and provide the access to each compressed data
Figure 2: Simplified summary of the XMark XML docu- item at the same time. Fine-grained compression has been
ments. proved beneficial also in the context of compressed rela-
tional databases [11]. Second, in order to perform compar-
Our description of XQueC follows its architecture, de- jsons of the formz; < z, without having to decompress

picted in Figure 1. It contains the following modules: z; and z,, we choose to suppodrder-preserving com-
(1) Theloader and compressaronverts XML documents pression algorithmsas well as order-agnostic ones (unlike
in a compressed, yet queryable format. XGrind and XMill). A compression algorithmomp pre-

(2) Thecompressed repositosfores the compressed docu- serves order if for any:;, xs, comp(z1) < comp(zy) iff

ments and provides: (i) access methods to this compressed < x,. In the sequel, we will adopt the following short

data, and (ii) a set of compression-specific utilities that ennotationz; ¢ for a compressed valuemp(zy).

able, e.g., the comparison of two compressed values.

3) T_he query processopptimizes and evaluates XQuery 5 5 Compressed storage structures

gueries over the compressed documents. Its complete set

of physical operators allows for efficient evaluation over The XQuec loader and compressor parses an XML docu-

the compressed repository. ment and splits it into several data structures, summarized

The rest of this paper is organized as follows. In sec4n Figure 1.

tion 2, we motivate the choice of our storage structures foNode name dictionary: We use a dictionary to encode

compressed XML, and of the compression algorithms emthe element and attribute names present in an XML docu-

ployed. Section 3 describes the XQueC query processoment. Thus, if there ardV; distinct names, we assign to

its set of physical operators, and outline its optimization al-each of them a bit string of lengtlg.(N;). For example,

gorithm. Section 4 briefly presents the demonstration scethe XMark documents us® distinct names, which we en-

nario we intend to show. code on7 bits, for example:

site: 0000000 | regions: 0000001 | categories: 0000010

. . Structure tree: We assign to each non-value XML node

2 Compressing XML documents in a (element or attribute) an unique integer ID, reflecting the
queryable format order of nodes in the document. The structure tree is stored

In this section, we first present the principles behind our@S & Seéquence abde recordswhere each record contains:

approach for storing compressed XML documents, and th&S OWN ID, the corresponding tag code; the IDs of its chil-
resulting storage model. Then, we discuss our choice offén; and (redundantly) the ID of its parent. For better

compression algorithms. query performance, as an access support structure, we con-
struct and store a B+ search tree on top of the sequence of
2.1 Compression principles node records.
.) Value containers: All data values found under
Our approach for compressing XML was guided by the fol-the same root-to-leaf path expression in the docu-
lowing principles: ment, like site/open_auctions/ open_auction/interval/start,

site/people/person/homepage etc., are stored together into
homogeneous containers. In general, we may store in a
container values found under several distinct paths, e.g.,
auction start and end dates. A container is a sequence of
container recordseach one consisting of: a compressed

To that purpose, we follow the XMill principle ofom- Vvalue, and a pointer to parent of this value in the structure
pressing content separately from structurés we will tree. Records are placed in the order dictated by the orig-
see, this separation provides the basis for alternative QEP¥@l data values, to enable fast binary search. A sample
In particular, value containers fullfill a double role: com- Container instance Is:

pressed Storage, and access Support structure (lndex) Site/open,auCtiOnS/Open,aUCtion/intervallstart:
(“Jan 01, 2002")° | 90 || (“Mar 10, 2002")° | 7 ||

Allow, among other evaluation strategies, (“Aug 05, 2002™)¢ | 12 || (“Oct 12, 2002™)¢ | 9 ||
processing full XQuery on the compressed doc- We also extend thaode recordof each container entry’s
uments (also termeldzy decompressioim [4]). parents with a pointer to the entry, as shown in Figure 3.

Enable a full-fledged algebraic exploration
of alternative query evaluation plans (QEPSs), in-
cluding top-down, bottom-up, and direct (index-
based) access to a given node in the document.

STRUCTURE TREE DATAGUIDE

n CONTANERS ™ Hu-Tucker, and ALM algorithms [2]. Dictionary-based en-
. T coding has demonstrated its effectiveness w.r.t. other non-
ﬁ Y \ CZ.?;?"”(\ ﬂ dictionary approaches while ALM has outperformed Hu-
© e 3 e ool b“ Tucker. The former being both dictionary-based and effi-
w éé cient, is a good choice for our system. For order-agnostic
compression, we have chosen the non-adaptive version of
the Huffmann algorithm [6].

Figure 3: Storage structures in the XQueC repository.

_ 3 Evaluating XML queries over compressed
Dataguide: The loader also constructs, as a redundant ac- data

cess support structure srongdataguide of the XML doc-

ument. A dataguide [5] is a structural summary representThe XQueC Query Processor consists afuery parser

ing all possible paths in the document; for tree-structuredvhich is standard, aoptimizerand evaluator The opti-

XML documents, it will always have less nodes than themizer uses a regular set of logical operators, and the phys-
document (typically by orders of magnitude). A dataguideical operators which we describe next. Also, the optimizer
of the auction documents can be derived from Figure 2, byranslates XPath expressions using tiieaxis into parent-

(?) omitting the dashed edges, which brings it to a tree formghild ones, using our structure dataguide.

and () storing in each non-leaf node in Figure 3, accessi-

ble in this tree by a path, for examplesite/people/person, 3.1 XQueC physical operators

the list of nodes accessible in the XML document by the o _

pathp. Finally, the leaf nodes of our dataguide point to T_hese operators can _be divided in three classes: compres-
the corresponding value containers. Note that while FigSion and decompression, data access operators and regular
ure 3 depicts a complete dataguide, in the presence of queBperators likex (join) or o (selection), which have been
workload information, we may prune the parts that areProgrammed to uniformly operate on compressed and on

never accessed by queries. uncompressed data. .
Compression / decompression operators: To account

Other indexes and statistics: When loading a document, ¢, o compression applied on attributes in an XQueC re-

other indexes and/or statistics can be created, either on trg%lt set we enhance the column metadata of the result set
value containers, or on the structure tree. Our loader proto y

. L .—(in JDBC style) with itscompression statusa token in-
type currently gathers simple fan-out and cardinality Stat's'dicating its compression algorithm (if any), otherwise.
tics (e.g. numbe.r qﬁe.rson elements). To modify as desired the compression status of a set of
Storage alternatives: There are many ways to store XML tuples, we use two generic operatorsmp(attrs, algo)
in general [1]. Any storage mechanism for XML can be anddecomp(attrs, algo), whereattrs is a list of attributes
seamlessly adopted in XQueC, as long as it allows th

) . . present in the operator input, anéljo is the compression
presence of containers and the facilities to access contain Tgorithm to be usedcomp performs the compression of
|temts. Our prgposttre]dts}}olrl?lgetﬁtruct_urg IIS 3hlf_'ptle§t ?qﬂ attributes of the input tuples, amafdcomp the opposite.
g]eosinr?i?l m%?csenc?ionaz Lfl'ol rieaesuprremtﬂs ?)(S:clus znca of iuData access operators: This library includes the fol-

9 9 : pancy rowing access operators for tisgructure tree rootq..(d)
structures, we have used a set of documents produced erator, which, given a document name d, returns
means of thexmlgengenerator of the XMark project and ! . '

the node record of d’'s root; thear,..(ListID) and
ranged from 115KB to 46MB. They havg been redqced bychildacc(ListID) operators take as input a list of node IDs
an average factor of 60 after compression (these figures

) and, using the structure tree and the B+ tree index on them,
include all the above access support structures). return the node records of the children, resp. parents of the
input nodes; thelg,..(d,p) operator takes as parameters
the name of a documedtand a pattp and returns the list
If we want to enable comparison on compressed values dif pointers to the node records for the elements/attributes
rectly, the same compressed algorithm should be used fdound ind under pattp (indexed access). Then, there are
both items to be compared; therefore, we make the choiceavo specialized operators for tlwntainers: an operator
of compression algorithms once per data type (assuminthat makes a sequential scan of the containent ... (p),
only values of similar types are compared; otherwise, dewhich accesses the container records identified by the root-
compression and type cast are required). to-leaf path expressiop; the cont,..(p, 0, z¢) operator
Compression of numerical attributes is not crucial forthat takes as parameters a root-to-leaf parent-child path ex-
XML; in XQueC, we have chosen to encode numbers bypressionp, e.g.,auction/people/person/name, a compari-
means of a simple bit-encoding scheme. String compresson operatop like =, #, <, <, and a compressed value
sion instead can strongly impact performances already in°. The result ofcont,..(p, 8, z¢) is the set of container
the context of database compression and increasingly in thecords associated t@ whose encapsulated compressed
XML context. We had initially three choices for encod- valuesval® satisfyval® 6 z¢. If the compression on the
ing strings in an order-preserving manner: the Arithmetic,container fop preserves order, therf can be directly used

2.3 Container compression algorithms

decomp

as a search key (whehis =, <, <) to find the qualifying

records. Thus, with order-preserving compression, the con- ~ “*%°™ c

tainers act like indexes, allowing for efficient search. c‘, Y;"er;no.. c decomp
Finally, theval,..(cr) operator takes as input a set of ‘.‘.":;g;e..c val |

container recordsr, and (following their included parent ‘ P>< ash

. . hild
pointers) returns the node records whose values are in ¢ " %o = i /\
Comparison operators on compressed datathis library | par

contains the comparison operataxs ¢), which are able to pTr chitd pfr | oot
work uniformly on compressed and uncompressed iNputsicon _docipeopler pir com_(slpeoptl comacésgzrz(e;?]ﬁ[e)"':")
it is the task of the optimizer toi)Y determine which one -'?:;f;f,ﬁ'('ﬁ’éj"' ‘ scar o mame) ‘

to use andif) make sure that the proper compression / de- cont___ (sitelpeople/ comp('}\)f'rv's)ono"v
compression steps have been taken so that the attributes to person/name)

be compared by or o have the same compression status. (@) (b) (c)

We implement a simple, pipelinedphysical operator, and .]
two flavors of join: sort-merged,,,¢, and hash<i,qs,. Figure 4: Sample QEPs for XMark;.

Examples of XMark QEPsAs an example, consider qUery than in the uncompressed one. As a future development, we

from XMark: i ; ot
QFlOR $b IN document(-auction xml*)/site/people/ plan_to integrate in our framework.more sophisticated tex-
person(id="person0’] tual indexes, which should further improve performances.
RETURN $b/name/text() All the implementation (compressor and query proces-
For the sake of clarity, when illustrating query plans wesor) of XQueC is done in Java. We use Berkeley DB [3]
omitted the clasacc of the operator. Figure 4 shows three to implement our in-house storage system. Berkeley DB
QEPs for@,, applying lazy decompression; to do more Data Store provides a library of elementary database struc-
work on uncompressed data, one only needs to push dowmre (hash tables, B+ trees etc.) on top of which any desired
somedecomyp operators. The first one starts frdathele- storage can be configured. For our specific storage model,
ments and then navigates up and dowpeon andname Berkeley DB seemed to be the most performant, reliable,
elements. We compress the tags appearin@ino their and flexible choice for compressed data storage.
dictionary encoding, and we give them as parameters to The demonstration will be shown on a PC under Linux.
0tag’S Whenever we need to test an element’s tag. The plaiVe will use different kinds of synthetic and real XML data.
in Figure 4(b) starts from theame container. Finally, the Besides XMark, we plan to demonstrate it on other signifi-
third one starts from both containers and performs a joincant (regular and schema-driven or irregular) datasets.
Sinceid is an unique key for persons, the plan in Figure 4(a)
is likely to be the best one, and will be identified as such byReferences

the optimizer. [1] S. Amer-Yahia and M. Fernandez. Overview of existing XML stor-

age techniques. submitted for publication, 2002.

4 Demonstration ngh“ghtS [2] Gennady Antoshenkov. Dictionary-based order-preserving string
. o . compressionVLDB Journal 6(1):26-39, 1997.
Our demonstration addresses three main issues, regardmg] Berkeley DB Data Storehttp:/fwww.sleepycat.com/pro-

the compressor and the query procesSmmpressor: we ducts/data.shtml/
will flrSt ShOW the compression ratio and compression _tlme 4] Z.Chen, J. Gehrke, and F. Korn. Query optimization in compressed
of different kinds of data, from the regular schema-driven database systems. Froc. of ACM SIGMOD Conf2000.

ones to the |rregular ones, with heavy textual content. We 5] R.Goldman and J. Widom. Dataguides: Enabling query formulation

have implemented ALM and Huffman [6] and we will show and optimization in semistructured databasesProc. of the Int!
figures for both algorithms, revealing that they are as good VLDB Conf, pages 436-445, 1997.

as those for unqueryable compressor (i.e. XMiQuery [6] D. A. Huffman. A Method for Construction of Minimum-
Processor (1):we will pinpoint the querying time for the Redundancy Codes. roc. of the IRE1952.

gueries of the XML benchmark, and compare them with [7] H. Liefke and D. Suciu. XMILL: An efficient compressor for XML
the querying time of the same query while executed in a data. InProc. of ACM SIGMOD Conf2000.
compression-unaware query processor and in XGrind (only[8] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and
for the queries of the benchmark supported by the latter). EfoBcuzfteheTnT?\r/kﬁD% bceo”n‘;hz'"ggrzk for XML data management. In
Query Processor (2):we will draw the querying time for T _ ' ’ _

several XQuery Use Cases [10] and for some of the novell® EJO:ﬁglrggdoJf'tE:thSSExciﬁ;gg&; query-friendly XML compres-
XPath and XQuery Full-Text Use Cases [10]. In particular, | ' N

for the latter we realized that by using ALM, we can nearly [0 XQuery ~ (and _ Xpath = Fulltext) — Use — Cases.

o . . http://Iwww.w3.org/TR/xmlquery(-full-text)-
address all the proximity, wildcards and fuzzy-matching use-cases/

queries. [11] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The

L implementation and performance of compressed databaS€/
In any of these cases, the search for a word within a state- 51GMOD Record29(3):55-67, 2000.

ment is done in the compressed domain and needs less time

