
OrientStore: A Schema Based Native XML Storage System

Xiaofeng Meng† Daofeng Luo† Mong Li Lee‡ Jing An†

† Information School
Renmin University of China

Beijing 100872, China
 xfmeng@mail.ruc.edu.cn

‡School of Computing
National University of Singapore

3 Science Drive 2, Singapore 117543
leeml@comp.nus.edu.sg

1. Introduction
The increasing number of XML repositories has provided
the impetus to design and develop systems that can store
and query XML data efficiently. Research to improve
system performance has been largely concentrated on
indexing paths and optimizing XML queries. In fact, the
storage configuration of XML data on disk also has an
impact on the efficiency of an XML data management
system.

Existing XML storage strategies can be classified into
two categories: native XML storage and non-native XML
storage. The main distinction between them is their data
model. The former is based on the XML Data Models
such as Document Object Model (DOM), and Object
Exchange Model (OEM), while the latter is based on the
traditional relational data model, or object-oriented data
model. An evaluation of the alternative non-native storage
strategies has been given in [6]. Here, we will focus on
native XML storage strategies.

Several native storage strategies have been developed
in [1,2,3,5,8,11]. These can be classified into Element-
Based (EB), Subtree-Based (SB) and Document-Based
(DB). Both the Lore system [3] and TIMBER [1] utilize
the classic EB strategy, where each element is an atomic
unit of storage and is organized in a pre-ordered manner.
Natix [2] is a well-known SB strategy. It divides the XML
document tree into subtrees according to the physical
page size, such that each subtree is a record. The sizes of
the subtrees are kept as close as possible to the size of the
physical page. A split matrix is defined to ensure that
correlated element nodes remain clustered. Similar to the
EB strategy, the records are stored in a pre-ordered way.

The storage module in the Apache Xindice system [8]
employs the DB strategy, whereby the entire XML
document constitutes a single record.

Other variations of storage strategies can be found in
NeoCore XMS [11] where the XML data is first flattened
to expose only the pure XML information, before they are
passed on to a digital pattern process to create icons..
Tamino [5] is a leading commercial native XML database,
but details of its storage structure are fairly sketchy.

All the above native storage strategies are schema-
independent, when schema information in the form of
XML Schema or DTD is usually available or even
indispensable. In order to facilitate data exchange, a
standard schema (or DTD) is typically defined on the
underlying XML files and published. Examples of
available standard schema or DTDs include Chemical
Markup Language, Mathematical Markup Language,
News Markup Language, etc. Popular XML datasets such
as the DBLP [9], Movie database [10], Shakespeare’ Play
[12] and XMark [4] come with its own DTD.

The availability of schema information is crucial to
data exchange applications, and query optimizations. We
observe that schema information also has a key role to
play in designing efficient and effective storage strategies
for XML management systems.

In this work, we develop a prototype native XML
storage system, called OrientStore. OrientStore
implements two schema-guided storage strategies, namely
Element-Based Clustering (EBC), and Logical Partition-
Based Clustering (LPC) strategies.

In contrast with the present storage systems for XML
data, OrientStore has the following unique features:

a. It concretely investigates how schema information
can be utilized to reduce the storage requirement and
the response time of queries.

b. It implements two schema-guided storage strategies:
EBC and LPC. These strategies cluster correlated
data in different ways to reduce the number of I/Os
required during retrieval.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

2. System Overview
Figure 1 shows the architecture of OrientStore. It has the
following components:

a. The underlying file manager communicates with file
system to create and delete data files, in units of
fixed size such as 8 MB.

b. The storage manager manages the storage space of
the file in units of a physical page, which is set to 8
KB. This is equivalent to the physical page size of
the operating system.

c. The buffer manager employs the standard Least
Recently Used (LRU) replacement policy. All read
and write requests are sent to the buffer manager.

d. The external data processor communicates with
other database systems to retrieve the data stored in
these systems.

e. The access manager provides a uniform access
interface to record manager, index manager, and
meta-data manager. Details of the buffer manager
and storage manager are hidden from them.

f. The record manager formats a record into (and from)
a byte-stream.

g. The data manager provides functions for importing,
exporting, and retrieving the root of a document, etc.

h. The index manager keeps track of indices built on
the XML data. OrientStore supports two types of
indices: value index and path index [7].

i. The meta-data manager maintains the meta-data of
the system, one of which is the schema information.
Schema information can be viewed as a graph, or
schema graph. The schema graph is encoded such
that each node in the graph is represented by a
unique 4-bytes code, referred to as the
schemaNodeID.

3. Utilizing Schema Information
As mentioned earlier, we can take advantage of the
information available in an XML schema to reduce
storage space consumption and improve query processing.
Specifically, OrientStore utilizes the schema information
in the following four ways:
a. Since the schema graph is encoded, we can replace

the element tag names by their corresponding
schemaNodeIDs. Each schemaNodeID takes up 4-
bytes, which is much smaller than the space
requirement for a typical tag name, thereby reducing
the overall space consumption.

b. Relative paths “//” and paths with wildcards “*” are
common in XPath and XQuery. Based on the
schema information, we can translate the relative
path into one or more absolute paths. Path
expressions in XML queries can also be validated
before it is evaluated by the system.

c. Tag names in a query are also mapped to their
corresponding schemaNodeID. Queries are
subsequently processed using the schemaNodeIDs.
Based on the encoded schemaNodeIDs, the system
can quickly determines whether two elements have
ancestor-descendant relationship or not. A node (and
its descendant nodes) will not be further evaluated if
it is not found to be the ancestor of target nodes. As
a result, the query evaluation process can be
dramatically accelerated since it avoids the full
traversal of the entire document tree.

d. The schema also serves as a guide to how the XML
data files can be stored such that the number of I/Os
required for their retrieval is reduced. The following
section elaborates on the proposed schema-guided
storage strategies.

4. Schema-Guided Storage Plan
OrientStore exploits schema information in the design and
implementation of two storage strategies: Element-Based
Clustering (EBC), and Logical Partition-Based Clustering
(LPC) strategies.

4.1 Element-Based Clustering

The Element-Based Clustering (EBC) storage strategy is
similar to element-based storage plan as used in Lore and
TIMBER in that each element node is a record. However,
instead of storing the records in a pre-order fashion, EBC
clusters the element records such that records with the
same schemaNodeID are placed close together.

Figure 2 shows a sample XML document and its
corresponding DTD. The EBC storage plan will cluster all
the title elements together with their text values together.
Note that pointers (either physical or logical) are needed
to link the parent records to their children records. Given
a query wants to find the titles of books published by a

Data Storage and Management

Figure1: Architecture of OrientStore.

 AccessManager

Storage
Manager

FileManager

External

Data
Processor

Buffer
Manager

 DataManager Index
Manager

MetaData
Manager

RecordManager

Query Processor

specified publisher, OrientStore is able to retrieve all the
relevant books directly, without involving other
unnecessary element nodes, thus reducing the number of
I/Os required.

4.2 Logical Partition-Based Clustering

The Logical Partition-Based Clustering (LPC) storage
strategy partitions the schema graph into semantic blocks.
A semantic block describes a relatively integrated logical
unit. Consider Figure 2 where the element book together
with its children title and publisher constitutes a semantic
block. We use the following heuristic to obtain semantic
blocks:

A node in a schema graph is the start (or the root) of a
semantic block if:

a. it is a root of the schema graph, or

b. it has a cardinality of ‘*’ or ‘+’, and it has child
nodes.

Figure 3(a) shows the schema graph and the semantic
blocks obtained for the XML document in Figure 2:
vendor (name, book) and book (publisher, title).

A record in the LPC storage strategy is an instance of
a semantic block. In Figure 3(b), the records b1 (p1, t1)
and b2 (p2, t2) are instances of the semantic block book
(publisher, title), while the record v(n, b1, b2) is an
instance of vendor (name, book).

The records obtained by the LPC storage strategy has
the following characteristics and advantages over those
obtained by existing schema-independent storage
strategies, particularly the Subtree-Based strategy:

a. The size of a LPC record is typically much smaller
than the size of a physical page. That is, the
granularity of a record obtained from the LPC
strategy lies between the records obtained by the
Element-Based and Subtree-Based storage strategies.

b. A LPC record is an instance of a semantic block,
while a record in the Subtree-Based storage plan is a
physical unit that is determined by the page size.
Hence, the element nodes in a LPC record are more
correlated than those in the Subtree-Based strategy.
In fact, the element nodes in a semantic block are
more likely to be retrieved together in a query.

Further, all the instances of the same semantic block
are clustered together. Thus the records b1 (p1, t1) and b2
(p2, t2) in Figure 2(b) will be stored in a physical page,
while v (n, b1, b2) may be stored in another physical page.
This implies fewer I/Os for a query.

For comparison purposes, we also implemented the
schema-independent Element-Based (EB) and Subtree-
Based (SB) storage strategies in OrientStore. Figure 4
shows the results of our experiments. We use XMark
dataset and run 4 kinds of queries (Q1:point query,
Q2:aggregate query, Q3:join, Q4:ordered access query).
We found that on average, the number of I/Os incurred by
the proposed LPC and EBC storage strategies is 30% less
than that incurred by EB and SB.

5. Plan of Demonstration
For this demonstration, we will show the performance of
these schema-independent storage plans, and the proposed
schema-guided strategies, EBC and LPC. A wide range of
queries will be issued on the schemas of datasets such as

<!ELEMENT vendor (name,book*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT book (publisher, title)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT title (#PCDATA)>

<vendor>
 <name>Star</name>
 <book>
 <publisher> ABC</publisher>
 <title>C++ </title>
 </book>
 <book>
 <publisher>DEF</publisher>
 <title>Java </title>
 </book>
</vendor>

Figure 2: Sample XML document and its DTD.

Figure 3: LPC Storage

a) Semantic Blocks

title

* book name

vendor

publisher

b) Records

t2 t1 p2

b2b1 n

v

p1
Figure 4: Comparative Experiment

0

1000

2000

3000

4000

5000

Q1 Q2 Q3 Q4

I
O

c
o
u
n
t EB

SB

LPC

EBC

XMark, DBLP, Shakespeare, and the response time
recorded.

6. Acknowledgements
This research was partially supported by the grants from
863 High Technology Foundation of China under grant
number 2002AA116030, the Natural Science Foundation
of China (NSFC) under grant number 60073014,
60273018, the Key Project of Chinese Ministry of
Education (No.03044) and the Excellent Young Teachers
Program of Chinese Ministry of Education (EYTP)．

7. References
[1] H. V. Jagadish, Shurug AL-Khalifa, et al. TIMBER:

A Native XML Database. Technical Report,
University of Michigan, April 2002.

[2] C.-C. Kanne and G. Moerkotte.. Efficient Storage of
XML data. In Proceedings of 16th ICDE, page 198.
San Diego, California, USA, February 2000.

[3] J. McHugh, S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. Lore: A Database Management
System for Semistructured Data. SIGMOD Record,
Vol.26(3):54-66, September 1997.

[4] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, R. Busse. XMark: A Benchmark for
XML Data Management. In Proceedings of 28th
VLDB, pages 974-985. Hong Kong, China, August
2002.

[5] H. Schoning. Tamino – A DBMS Designed for
XML. In Proceedings of 17th ICDE, pages 149-154.
Heidelberg, Germany, April 2001.

[6] F. Tian, D. J. DeWitt, J. Chen, C. Zhang. The
Design and Performance Evaluation of Alternative
XML Storage Strategies. SIGMOD Record,
Vol.31(1), March 2002.

[7] J.Wang. SUPEX: A Schema-Guided Path Index for
XML Data. In Proceedings of 28th VLDB. Hong
Kong, China, August 2002.

[8] Apache Xindice. http://XML.apache.org/xindice/

[9] DBLP dataset. http://dblp.uni-trier.de/xml/

[10] Internet Movie Database. http://imdb.com

[11] NeoCore XMS. http://www.neocore.com/

[12] Shakespeare dataset. http://sunsite.uncedu/pub/sun-
info/standards/xml/eg/

