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1. Introduction 
The increasing number of XML repositories has provided 
the impetus to design and develop systems that can store 
and query XML data efficiently. Research to improve 
system performance has been largely concentrated on 
indexing paths and optimizing XML queries. In fact, the 
storage configuration of XML data on disk also has an 
impact on the efficiency of an XML data management 
system. 

Existing XML storage strategies can be classified into 
two categories: native XML storage and non-native XML 
storage. The main distinction between them is their data 
model. The former is based on the XML Data Models 
such as Document Object Model (DOM), and Object 
Exchange Model (OEM), while the latter is based on the 
traditional relational data model, or object-oriented data 
model. An evaluation of the alternative non-native storage 
strategies has been given in [6]. Here, we will focus on 
native XML storage strategies. 

Several native storage strategies have been developed 
in [1,2,3,5,8,11]. These can be classified into Element-
Based (EB), Subtree-Based (SB) and Document-Based 
(DB). Both the Lore system [3] and TIMBER [1] utilize 
the classic EB strategy, where each element is an atomic 
unit of storage and is organized in a pre-ordered manner. 
Natix [2] is a well-known SB strategy. It divides the XML 
document tree into subtrees according to the physical 
page size, such that each subtree is a record. The sizes of 
the subtrees are kept as close as possible to the size of the 
physical page. A split matrix is defined to ensure that 
correlated element nodes remain clustered. Similar to the 
EB strategy, the records are stored in a pre-ordered way. 

The storage module in the Apache Xindice system [8] 
employs the DB strategy, whereby the entire XML 
document constitutes a single record.  

Other variations of storage strategies can be found in 
NeoCore XMS [11] where the XML data is first flattened 
to expose only the pure XML information, before they are  
passed on to a digital pattern process to create icons.. 
Tamino [5] is a leading commercial native XML database, 
but details of its storage structure are fairly sketchy. 

All the above native storage strategies are schema-
independent, when schema information in the form of 
XML Schema or DTD is usually available or even 
indispensable. In order to facilitate data exchange, a 
standard schema (or DTD) is typically defined on the 
underlying XML files and published. Examples of 
available standard schema or DTDs include Chemical 
Markup Language, Mathematical Markup Language, 
News Markup Language, etc. Popular XML datasets such 
as the DBLP [9], Movie database [10], Shakespeare’ Play 
[12] and XMark [4] come with its own DTD. 

The availability of schema information is crucial to 
data exchange applications, and query optimizations. We 
observe that schema information also has a key role to 
play in designing efficient and effective storage strategies 
for XML management systems.  

In this work, we develop a prototype native XML 
storage system, called OrientStore. OrientStore 
implements two schema-guided storage strategies, namely 
Element-Based Clustering (EBC), and Logical Partition-
Based Clustering (LPC) strategies. 

In contrast with the present storage systems for XML 
data, OrientStore has the following unique features: 

a. It concretely investigates how schema information 
can be utilized to reduce the storage requirement and 
the response time of queries. 

b. It implements two schema-guided storage strategies: 
EBC and LPC. These strategies cluster correlated 
data in different ways to reduce the number of I/Os 
required during retrieval. 
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2.   System Overview 
Figure 1 shows the architecture of OrientStore. It has the 
following components: 

a. The underlying file manager communicates with file 
system to create and delete data files, in units of 
fixed size such as 8 MB.  

b. The storage manager manages the storage space of 
the file in units of a physical page, which is set to 8 
KB. This is equivalent to the physical page size of 
the operating system.  

c. The buffer manager employs the standard Least 
Recently Used (LRU) replacement policy. All read 
and write requests are sent to the buffer manager. 

d. The external data processor communicates with 
other database systems to retrieve the data stored in 
these systems. 

e. The access manager provides a uniform access 
interface to record manager, index manager, and 
meta-data manager. Details of the buffer manager 
and storage manager are hidden from them.  

f. The record manager formats a record into (and from) 
a byte-stream.  

g. The data manager provides functions for importing, 
exporting, and retrieving the root of a document, etc.  

h. The index manager keeps track of indices built on 
the XML data. OrientStore supports two types of 
indices: value index and path index [7].  

i. The meta-data manager maintains the meta-data of 
the system, one of which is the schema information. 
Schema information can be viewed as a graph, or 
schema graph. The schema graph is encoded such 
that each node in the graph is represented by a 
unique 4-bytes code, referred to as the 
schemaNodeID. 

 

 

 

 

 

 

 

 

 

 

 

 

3.   Utilizing Schema Information 
As mentioned earlier, we can take advantage of the 
information available in an XML schema to reduce 
storage space consumption and improve query processing. 
Specifically, OrientStore utilizes the schema information 
in the following four ways: 
a. Since the schema graph is encoded, we can replace 

the element tag names by their corresponding 
schemaNodeIDs. Each schemaNodeID takes up 4-
bytes, which is much smaller than the space 
requirement for a typical tag name, thereby reducing 
the overall space consumption. 

b. Relative paths “//” and paths with wildcards “*” are 
common in XPath and XQuery. Based on the 
schema information, we can translate the relative 
path into one or more absolute paths. Path 
expressions in XML queries can also be validated 
before it is evaluated by the system.  

c. Tag names in a query are also mapped to their 
corresponding schemaNodeID. Queries are 
subsequently processed using the schemaNodeIDs. 
Based on the encoded schemaNodeIDs, the system 
can quickly determines whether two elements have 
ancestor-descendant relationship or not. A node (and 
its descendant nodes) will not be further evaluated if 
it is not found to be the ancestor of target nodes. As 
a result, the query evaluation process can be 
dramatically accelerated since it avoids the full 
traversal of the entire document tree. 

d. The schema also serves as a guide to how the XML 
data files can be stored such that the number of I/Os 
required for their retrieval is reduced. The following 
section elaborates on the proposed schema-guided 
storage strategies. 

4. Schema-Guided Storage Plan 
OrientStore exploits schema information in the design and 
implementation of two storage strategies: Element-Based 
Clustering (EBC), and Logical Partition-Based Clustering 
(LPC) strategies. 

4.1   Element-Based Clustering 

The Element-Based Clustering (EBC) storage strategy is 
similar to element-based storage plan as used in Lore and 
TIMBER in that each element node is a record. However, 
instead of storing the records in a pre-order fashion, EBC 
clusters the element records such that records with the 
same schemaNodeID are placed close together.  

Figure 2 shows a sample XML document and its 
corresponding DTD. The EBC storage plan will cluster all 
the title elements together with their text values together. 
Note that pointers (either physical or logical) are needed 
to link the parent records to their children records. Given 
a query wants to find the titles of books published by a 
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Figure1: Architecture of OrientStore. 
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specified publisher, OrientStore is able to retrieve all the 
relevant books directly, without involving other 
unnecessary element nodes, thus  reducing the number of 
I/Os required. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2   Logical Partition-Based Clustering 

The Logical Partition-Based Clustering (LPC) storage 
strategy partitions the schema graph into semantic blocks. 
A semantic block describes a relatively integrated logical 
unit. Consider Figure 2 where the element book together 
with its children title and publisher constitutes a semantic 
block. We use the following heuristic to obtain semantic 
blocks: 

A node in a schema graph is the start (or the root) of a 
semantic block if: 

a. it is a root of the schema graph, or 

b. it has a cardinality of ‘*’ or ‘+’, and it has child 
nodes. 

Figure 3(a) shows the schema graph and the semantic 
blocks obtained for the XML document in Figure 2: 
vendor (name, book) and book (publisher, title). 
 

 

 

 

 

 

 

 

 

A record in the LPC storage strategy is an instance of 
a semantic block. In Figure 3(b), the records b1 (p1, t1) 
and b2 (p2, t2) are instances of the semantic block book 
(publisher, title), while the record v(n, b1, b2) is an 
instance of vendor (name, book). 

The records obtained by the LPC storage strategy has 
the following characteristics and advantages over those 
obtained by existing schema-independent storage 
strategies, particularly the Subtree-Based strategy: 

a. The size of a LPC record is typically much smaller 
than the size of a physical page. That is, the 
granularity of a record obtained from the LPC 
strategy lies between the records obtained by the 
Element-Based and Subtree-Based storage strategies. 

b. A LPC record is an instance of a semantic block, 
while a record in the Subtree-Based storage plan is a 
physical unit that is determined by the page size. 
Hence, the element nodes in a LPC record are more 
correlated than those in the Subtree-Based strategy. 
In fact, the element nodes in a semantic block are 
more likely to be retrieved together in a query. 

Further, all the instances of the same semantic block 
are clustered together. Thus the records b1 (p1, t1) and b2 
(p2, t2) in Figure 2(b) will be stored in a physical page, 
while v (n, b1, b2) may be stored in another physical page. 
This implies fewer I/Os for a query.  

For comparison purposes, we also implemented the 
schema-independent Element-Based (EB) and Subtree-
Based (SB) storage strategies in OrientStore. Figure 4 
shows the results of our experiments. We use XMark 
dataset and run 4 kinds of queries (Q1:point query, 
Q2:aggregate query, Q3:join, Q4:ordered access query). 
We found that on average, the number of I/Os incurred by 
the proposed LPC and EBC storage strategies is 30% less 
than that incurred by EB and SB.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. Plan of Demonstration 
For this demonstration, we will show the performance of 
these schema-independent storage plans, and the proposed 
schema-guided strategies, EBC and LPC. A wide range of 
queries will be issued on the schemas of datasets such as 

<!ELEMENT vendor (name,book*)> 
<!ELEMENT name (#PCDATA)> 
<!ELEMENT book (publisher, title)> 
<!ELEMENT publisher (#PCDATA)> 
<!ELEMENT title (#PCDATA)> 

<vendor> 
   <name>Star</name> 
   <book> 
       <publisher> ABC</publisher> 
       <title>C++ </title> 
   </book> 
   <book> 
       <publisher>DEF</publisher> 
       <title>Java </title> 
   </book> 
</vendor> 

Figure 2: Sample XML document and its DTD.

Figure 3: LPC Storage 
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XMark, DBLP, Shakespeare, and the response time 
recorded. 
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