
The Zero-Delay Data Warehouse: Mobilizing Heterogeneous
Databases

Eva Kühn

TECCO AG
Austria

info@tecco.at

Abstract
„Now is the time… for the real-time enterprise“:
In spite of this assertion from Gartner Group the
heterogeneity of today’s IT environments and the
increasing demands from mobile users are major
obstacles for the creation of this vision. Yet its
technical foundation is available: software
architectures based on innovative middleware
components that offer a level of abstraction
superior to conventional middleware solutions,
including distributed transactions and the
seamless integration of mobile devices using
open standards, crossing the borders between
heterogeneous platforms and systems. Space
based computing is a new middleware paradigm
meeting these demands. As an example we
present the real time build-up of data
warehouses.

1. Introduction

In today’s IT world data warehouses must be
filled with data from an array of distributed and
heterogeneous database sources. The general
problem is an age old one; that of compatibility
and complexity. In any large enterprise system
there will exist many different DB platforms
(ORACLE, DB2, INGRES etc…) running on
many different operating systems and built on a
colorful foundation of hardware. To further the
problem in this system it is a surety that there

will be a variety of DB schemas being used to
model more or less the same data.
In addition, the real time enterprise requires data
to be always up to date. This criterion enables a
certain level of security at the level of decision
making. A decision should always be made
given valid and up to date data. e.g. Within the
banking standard for Basel 2 exists a scenario
where the decision of whether a customer may
get a loan is based on how many loans he/she
already has and the particulars of said loans. To
take an example of an enterprise rule in the
context of banking; In order to be entitled to a
loan the aggregate combined total of a client’s
loans must not supercede a certain amount. For
a decision to be made correctly, based on this
very simple rule, highly up to date data is
required. The problem is that the data
concerning the outstanding loans could exist in
different branches of the bank that may be
located in different countries and/or even
continents. Combined with the aforementioned
compatibility and complexity issues this
introduces a world of complexities into one very
simple rule.

2. Space Based Computing Middleware
Paradigm
CORSO (Coordinated Shared Object Spaces) is
a patented technology for the management of
distributed applications in heterogeneous IT
environments that has been developed to reduce
the mentioned complexity found in distributed
systems. CORSO is based on research work

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

carried out at Vienna University of Technology
and is marketed by TECCO, a university spin-
off. CORSO offers a new middleware paradigm
based on the idea of a virtually shared memory
[KuNo1998, Kuhn2001]. The IT landscape is
“abstracted” by the CORSO space: Applications
interact exclusively by reading and writing to
shared objects in the space, independent of
platforms, languages and communication
standards. Application programmers see a very
simple interface for:

• reading objects,
• writing objects,
• near-time notification,
• flexible transaction control [BuEK1993,

Kuhn1994] and
• distributed process coordination.

Load and data are distributed (replicated)
throughout the network. CORSO’s replication
protocols keep the copies consistent,
guaranteeing their secure and efficient diffusion.
There is no need for a central server,
consequently no bottleneck can ensue.
Data is never transported unnecessarily
(automatic caching). Only changes to data are
sent which leads to network traffic reduction.
Preference settings determine whether data is
sent to a host being needed there (eager pre-
fetching) or whether it is only sent upon demand
(lazy distribution) and whether it survives host
failures (persistence). These configuration

options are built-in and require no programming
expense.

This “black-board” communication requires
neither that the partner processes “know” one
another (anonymity), nor that they run
simultaneously (asynchronicity). This asynchro-
nous communication is advantageous for
publish/subscribe patterns.

CORSO, in contrast to other space based
products like Java Spaces [FrHA1999,
Ange2003], is more than a mere communication
platform. CORSO permits the entire business-
logic to be expressed in CORSO space with
transaction safety, coordinated by one or more
mediators.

Applications can be added to or taken from a
running system without requiring that existing
components must be rebooted. A new arrival
contacts a running CORSO server instance
which registers it for participation in the entire
virtual space. Clients can also connect directly
to a host upon which a CORSO server is
running. In this way the space grows organically
and offers unlimited scalability.

In contrast to traditional client/server based or
message oriented middleware technologies
CORSO holds needed data in a cache. The
programming effort concerning communication
and coordination is heavily reduced. ROI
computations for an insurance company
business scenario reach up to 80% of code
reduction.

CORSO V.3 is available for UNIX, Linux,
Windows and z/OS platforms, as well as mobile
devices. Language bindings are supported for
C/C++, Java and .NET.

3. Heterogeneous Database Replication with
GONG

GONG (General Database Notification
Gateway) is a further TECCO product
[Bind2003] based on the CORSO middleware,
taking advantage of the asynchronous and
reliable communication mechanisms. GONG
offers uni- or bi-directional replication of data
between homogeneous and/or heterogeneous
distributed databases – without changing
existing applications and without programming
effort.

GONG employs a publish/subscribe pattern to
control the communication between different
databases and consists of three components:
GONG Manager, GONG Database Adapter and
GONG Service.

• GONG Manager serves in configuring and

administering the entire replication context.
• GONG Database Adapter represents the

interface to an individual database model,
implemented using the vendor’s API.

• GONG Service offers automatic recovery
after system and network outages,
dependable asynchronous communication,
data compression on transmission, automatic
garbage collection of the transferred data as
well as of the database log tables and
efficient network-wide data distribution. The
GONG Service reads a log of changes
written by triggers associated with a given
local database and publishes them to a
shared object space implemented in
CORSO. Other, remote GONG Services are
thus automatically and instantly notified of
the changes affecting them; expensive
polling is thus avoided. The changes are
replicated with transaction safety and with
the certainty that they can neither be lost nor
applied more than once remotely. GONG
supports mobile devices despite volatile
connections: Changes are applied the
moment a previously unreachable device
returns online. A schedule for replication
(e.g. continuously in near-time or in certain
intervals) is fully configurable.

In contrast to data replication supported by
database vendors, GONG supports
heterogeneous replication in near-time and is
very easy to install and administrate.

GONG can be used in many business scenarios:
mirror, backup, distribution to branches,
replication from branches to a central server
(data warehouse), or proxy replication over
many levels in a tree structure (e.g. mobile
employees of an insurance company that report
their data to regional servers from where the
data are replicated back to a central server) and
full bi-directional multi-master replication
(peer-to-peer).

With bi-directional replication, semantic
conflicts may occur, which are automatically
detected by GONG and which are resolved
according to configurable rules.

As databases can differ in their data schemas
and in an heterogeneous environment a data
warehouse will not always need all data of its
sources, GONG supports filtering of data (e.g.
selection of certain records according to
selectable criteria) as well as data
transformation (e.g. time stamp of DB2 into
date time format of MS-SQL server).

For very large databases an optimized full
loading of all data to be replicated from source
into destination database is supported (e.g. DB2
load). This loading is required for the

initialization of the replication and can be done
also during runtime (re-synchronization).

GONG V.3 supports 24x7 operation (with
automatic recovery after network, system and
database errors). It is available for Windows and
UNIX platforms, supporting adapters for
ORACLE, MS-SQL Server and DB2 (also on
the mainframe).

4. Business Scenario: Zero-Delay Data
Warehouse with GONG
Given the following scenario:

Big bank Europe has branches situated in
multiple countries around Europe. Currently
they wish to make use of GONG to synchronize
data between some of their banks located in
three different countries using rules from the
Basel 2 standard. The banks concerned are
located in Hungary, Italy and Germany
respectively. They wish to use a data warehouse
based in Austria, due to its geographically
central location, as their central repository.

Using GONG they create an in-out table located
at their central repository in Austria. Into this
table they then define rules, again based on the
Basel 2 standard, to govern data propagation to

the other branches. The Italian branches are for
now only interested in customers’ credit history
and current open loans. The German branches;
however, would also like to stay informed of
their clients account balance and previous
transactions. Using a publisher-subscriber
pattern GONG directs the data to those parties
concerned. In a nutshell each system can choose
the information it wishes to publish and/or
subscribe to. For each set of data they can also
configure when this set is to be moved. The data
can be configured to be propagated eagerly

(real-time), at certain times (batch), or as it is
needed (lazy).

5. Conclusion

The real time enterprise can take advantage of
GONG’s database replication for superior
management of their data warehouse enabling
zero-delay business in order to assist in the daily
running and decision making process of the
enterprise. Network problems: outages, data
errors etc. are made transparent with GONG as
GONG bases its communication upon CORSO
middleware. Another advantage gained by using
GONG is that network traffic is reduced as only

the changes are propagated. A further advantage
of using this solution is that no expensive
additional hardware is needed. There are also
many different out-of-the-box solutions
provided which have been proven to work easily
and flawlessly and all with the minimum of
programming effort. Overall GONG enables a
zero-delay data warehouse which assists in
providing confidence in the data available to
every branch of the enterprise.

References
[Ange2003] Bernhard Angerer, Space-Based
Programming, 03/19/2003, http://www.onjava.
com/pub/a/onjava/2003/03/19/java_spaces.htm
[Bind2003] Thomas Binder, GONG User
Manual, 2003/06/24, TECCO Software
Entwicklung AG

[BuEK1993] Omran Bukhres, Ahmed K.
Elmagarmid, Eva Kühn, Implementations of the
Flex Transaction Model, In: Data Engineering
Bulletin, Special Issue on Workflow
Applications, June 1993.

[FrHA1999] Eric Freeman, Susanne Hupfer,
Ken Arnold, Java Spaces – Principles, Patterns,
and Practice, Addison Wesley 1999.

[Kuhn1994] Eva Kühn, Fault-Tolerance for
Communicating Multidatabase Transactions, In:
Proceedings of the 27th Hawaii International
Conference on System Sciences (HICSS),
ACM, IEEE, January 4-7, Wailea, Maui,
Hawaii, 1994.

[KuNo1998] Eva Kühn, Georg Nozicka, Post-
Client/Server Coordination Tools, In:
Coordination Technology for Collaborative
Applications, Wolfram Cohen, Gustaf Neumann
(eds.), Springer Series Lecture Notes in
Computer Science, 1998.

[Kuhn2001] Eva Kühn, Virtual Shared Memory
for Distributed Architecture, Nova Science
Publishers, 2001.

