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Abstract

In this paper, we describe the design, implemen-
tation, and performance characteristics of a com-
plete, industrial-strength XQuery engine, the BEA
streaming XQuery processor. The engine was de-
signed to provide very high performance for mes-
sage processing applications, i.e., for transform-
ing XML data streams, and it is a central com-
ponent of the 8.1 release of BEA’s WebLogic In-
tegration (WLI) product. This XQuery engine
is fully compliant with the August 2002 draft
of the W3C XML Query Language specification.
A goal of this paper is to describe how an ef-
ficient, fully compliant XQuery engine can be
built from a few relatively simple components and
well-understood technologies.

1 Introduction

After several years of development in the W3C, XQuery is
starting to gain significant traction as a language for query-
ing and transforming XML data. Though the W3C XQuery
specification has not yet attained Recommendation status,
and the definition of the language has not entirely stabi-
lized, it is already beginning to appear in a variety of prod-
ucts. Examples to date include XML database systems,
XML document repositories, and XML-based data inte-
gration offerings. In addition, of course, XPath—of which
XQuery is a superset—is used in various products includ-
ing Web browsers. In this paper, we focus on a new com-
mercial incarnation of the XQuery language in an XML-
centric enterprise application integration system. In par-
ticular, we provide a detailed overview of a new XQuery
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processing engine that was designed specifically to meet
the requirements of application integration.

The XQuery language, in the tradition of prior query
languages such as SQL and OQL, is a closed, declarative,
and strongly-typed language. In contrast to such traditional
query languages, XQuery was designed from the start for
use in querying both structured data (e.g., purchase orders)
as well as unstructured data (e.g., Web pages). XQuery is
a powerful query language: it has native support for han-
dling over forty built-in data types, powerful constructs for
bulk data processing (i.e., for expressing joins, aggrega-
tion, and so on), support for text manipulation, and a no-
tion of document ordering that provides a foundation for
a variety of interesting document-oriented queries [Cas02].
For added power as well as extensibility, support is pro-
vided for the definition and use of XQuery functions. The
language is compatible with other W3C standards (e.g.,
XML Namespaces and XML Schema). Finally, to make
the language user-friendly, particularly for prior XPath
users, many XQuery expressions provide implicit existen-
tial quantification, schema validation, and/or type-casting
in order to relieve programmers from always having to in-
voke these operations explicitly.

Because of the wide range of applications for which
XQuery is intended, and the powerful semantics and type
system of the language, something of a myth has emerged
that the complete XQuery language is going to be very
difficult to implement and that it may be almost impos-
sible to achieve performance and scalability when imple-
menting the language. Indeed, most existing XQuery im-
plementations have tackled only a subset of XQuery and
have made a number of simplifying assumptions. One of
the key goals of this paper is to show that this myth about
XQuery is indeed just a myth; i.e., that it is indeed quite
possible to implement the entire XQuery language specifi-
cation, types and all. To this end, this paper covers the de-
sign, implementation, and performance characteristics of
the BEA streaming XQuery engine which is now embed-
ded in BEA’s WebLogic Integration 8.1 product.1 The en-

1The BEA streaming XQuery engine was formerly known as the
XQRL (pronounced ”squirrel”) engine because it was developed by a



gine implements the entirety of the August 2002 specifi-
cation of XQuery. We also describe some of the unique
requirements that drove the design of the engine, particu-
larly in the area of streaming XML data handling, and we
discuss the ways in which the engine’s architecture was in-
fluenced by these requirements.

The remainder of this paper is organized as follows:
Section 2 lists requirements that drove the design of the
BEA streaming XQuery engine. Section 3 gives an
overview of BEA’s WLI 8.1 product, of which the engine
is a central component. Section 4 gives an overview of
the architecture of the engine. Section 5 defines the inter-
nal representation of XML data as token streams. Section 6
describes the implementation of the XQuery type system in
the engine. Section 7 contains details of the compiler and
optimizer. Section 8 presents the runtime system. Section 9
shows the Java interface of the engine. Section 10 presents
the results of performance experiments. Section 11 dis-
cusses related work. Finally, Section 12 contains conclu-
sions and avenues for future work.

2 Requirements

BEA is a very standards-focused company. As a result,
from the outset, the BEA streaming XQuery engine had
a major requirement to be fully standards-compliant and
to implement the entire XQuery recommendation. Perfor-
mance was also a major requirement for the engine; in
particular, the engine was designed to provide very high
performance for message processing applications (i.e., for
streaming XML data). Among the major needs for mes-
sage processing XQuery applications are: (i) an efficient
internal representation of XML data, (ii) the use of stream-
ing execution (i.e., pipelining) to the extent possible, and
(iii) the efficient implementation of XQuery transforma-
tions that involve the use of many node constructors.

While completeness and high performance were the top
two major design goals for the BEA streaming XQuery en-
gine, there were a number of additional requirements that
influenced the design and implementation as well:

• Limited resources: An initial version of the engine had
to be developed by a team of six engineers in about six
months. This productivity was only possible by using
Java (vs. C or C++) as a programming language for
the implementation.

• Integration into BEA products: The engine was de-
signed to be an embedded component of other BEA
products (in particular WLI 8.1). Again, this man-
dated the use of Java, and it also required the develop-
ment of a powerful Java-to-XQuery interface (referred
to as the XDBC interface in Section 9).

• Usability with other components: The engine was de-
signed to be usable with third-party parsers, schema
validators, persistent XML stores, etc.

start-up called XQRL, Inc.

• The engine must operate properly in a clustered envi-
ronment and on multi-processor machines.

• Since the XQuery specification is not yet stable (and
was definitely unstable during the time when the BEA
streaming XQuery engine was developed), it must be
affordable to adapt the engine down the road to incor-
porate changes in the XQuery language specification.

3 XQuery in WebLogic Integration 8.1

As mentioned in the Introduction, the application that drove
the design of the BEA streaming XQuery engine is BEA
WebLogic Integration (WLI) 8.1, BEA’s enterprise appli-
cation integration product. WLI is the portion of the BEA
Platform Suite that provides tools that enable companies
to rapidly develop and deploy integration-based applica-
tions that communicate with business partners, automate
enterprise business processes, orchestrate existing Web ser-
vices and packaged and/or legacy applications, and re-
ceive, transform, and send bits of data from/to applica-
tions throughout an enterprise. WLI 8.1 is a major new
release of WLI that focuses heavily on Web services and
on XML based data handling and manipulation [CBTN02].
As such, the XQuery language plays a central role in WLI
8.1. XQuery is used for specifying data transformations
on messages and workflow variables, i.e., for transforming
data such as purchase orders as it flows through the system.
XQuery is also used to specify the data-driven process flow
logic (i.e., the looping and branching) of WLI workflows.

One of the main features required of an applica-
tion integration platform is strong support for data
transformations—both at design-time and at runtime. This
is the most important role of the XQuery engine in WLI
8.1. BEA is making a significant bet on XQuery being the
right technology for this task. To provide a good design-
time experience, WLI provides a built-in tool that enables
integration developers to create XQuery-based data trans-
formations without coding (i.e., without having to remem-
ber the syntax of XQuery). Figure 1 shows a “map view”
screen shot taken from the beta version of WLI 8.1. In the
example shown, the tool is being used to create an XML-to-
XML transformation that converts an XML purchase order
in one format to an XML purchase order in a different for-
mat; the source and target formats are specified as XML
schemas that are shown as source and target trees in the
user interface. At the time of the screen shot, the workflow
developer was putting the finishing touches on the handling
of addresses, which are complex structures in the input for-
mat but simple atomic values in the output format. Based
on this “map view”, WLI 8.1 automatically generates the
corresponding XQuery query. This query can then be hand-
edited if desired. (The WLI 8.1 data transformation editor
supports limited two-way editing of XQuery queries.)

While XML-to-XML transformations are the most com-
mon form of data transformations expected, WLI 8.1
actually supports a much broader range of transforma-
tions using the data mapping tool and the BEA streaming



Figure 1: Graphical View of an XML Data Transformation

XQuery engine. In addition to single-document-in, single-
document-out use cases, the mapper supports the graphi-
cal construction of queries that accept multiple input ar-
guments (e.g., a purchase order and a customer profile).
It also supports the design of transformations that begin
and/or end with Java objects or binary data formats rather
than just documents that are instances of XML schemas. In
such cases, the mapper still shows the transformation’s in-
put and/or output types as trees, so the design model is con-
sistent across a wide range of potential data types. In the
case of Java objects, WLI 8.1 infers a default XML schema
corresponding to the Java class of interest. In the case of
binary data, WLI 8.1 relies on the use of another WLI com-
ponent, called FormatBuilder, which allows developers to
separately specify, test, and persist a set of parsing rules to
convert a given binary record format into a structurally iso-
morphic XML schema. In such cases, where a data trans-
formation’s input or output format is non-XML, a transfor-
mation step into or out of XML occurs prior to the central
XQuery-based transformation. In all cases, for efficiency,
the actual internal data representation is the TokenStream
format described in section 5.

The other major use of XQuery in BEA WLI involves
workflow process logic. Specifically, a typical WLI 8.1
workflow can include a number of XQuery expressions that
serve to define the flow logic for the workflow. These ex-
pressions can be used in conditional nodes (decision nodes
in the workflow) that control which branch of the flow
should be processed next. They can also be used in iteration

loops (loop nodes in the workflow) that drive the workflow
to do something once for each piece of something else, e.g.,
once for each line item in a purchase order. These uses of
XQuery are also tool-based, in terms of how they are spec-
ified by a developer. In this case, there is a special editor
that helps the developer to edit XPath expressions in the
conditions of branches of a workflow.

4 XQuery Engine Overview

An overview of the BEA streaming XQuery engine is given
in Figure 2. Java applications submit XQuery queries and
consume query results through an interface referred to as
XDBC; the name XDBC is derived from JDBC. The query
is then parsed and optimized by the query compiler. The
compiler generates a query plan, which is a tree of oper-
ators that consume data from one another in a cascading
fashion. The plan is interpreted by the runtime system,
which consists of implementations of all the functions and
operators of the XQuery library [F02] and of the XQuery
core (e.g., sorts and joins). Furthermore, the runtime sys-
tem contains an XML parser and an XML schema valida-
tor which are required when external XML data must be
processed as part of a query. In WLI 8.1, incoming XML
messages are parsed and schema-validated once and then
stored in a special format so that they can be used in many
XQuery queries without paying the high cost for parsing
and schema validation for each query invocation. These
messages are bound as free variables to queries and variable



bindings are also carried out by the means of the XDBC in-
terface.

Figure 2: Overview of the BEA Streaming XQuery Engine

All XML data is represented as a stream of tokens that
are roughly equivalent to SAX events in their semantics
(i.e., a depth-first unfolding of an XML tree). This token
stream minimizes the memory requirements of the engine.
In addition, the token stream allows the lazy evaluation of
queries. At runtime, each runtime operator consumes its
input a token at a time and input data that is not required is
simply discarded. The token stream matches the XQuery
data model [M02]. Furthermore, the BEA engine provides
tools that applications developers can use in order to seri-
alize the token stream or construct a DOM representation
from a stream of tokens (not shown in Figure 2).

The query engine is implemented entirely as a library, so
it is embeddable in any application that might need to ma-
nipulate XML data. Input and output to the query engine
is only supported using XML token streams, or by using a
parser that translates some other form of XML into its to-
ken stream format. A toolkit of utility classes is provided to
allow the instantiation of parsers, serializers, and adaptors
that can efficiently couple the XQuery engine with most
XML processing applications. The token stream itself is
defined as a Java interface in order to allow for different
implementations; the default implementation uses simple
Java objects.

4.1 Compile-Time Issues

Because XQuery is a strongly typed language with a fairly
complex type system, one of the important subtasks of the
compiler is to verify the type consistency of the query with
respect to its input sources and derive the type of the query
result by deriving the partial types of each subexpression
using type inference rules. Type information is also very
important during the compiler’s query optimization phase,
as we will see later. The fact that the type system of
XQuery consists of a mixture of named and structural typ-
ing makes this task interesting. Structural typing is limited

to the types of input parameters and return values of func-
tions and operators in XQuery, as both simple and complex
XML types are named; however, during the type inference
and query optimization phases, complex type operations
must be performed to infer result types (type derivation and
construction) and to determine whether a particular type is
acceptable as input for a function or an operator (type sub-
sumption).

Structural typing is found in functional languages (e.g.,
ML and Haskell) and it is considered algorithmically chal-
lenging since, in the general case, accurate type inference
can be very costly (the type subsumption operation has ex-
ponential complexity). We have studied the patterns of uti-
lization of the different type-related algorithms in the spe-
cific context of XQuery, and by intelligently caching type
comparison results, we have been able to improve the per-
formance of the type system implementation by more than
two orders of magnitude with respect to the classical algo-
rithms. We will say more about this in Section 6.

4.2 Run-Time Issues

In the XQuery world, queries are compiled and executed
against execution contexts; these contain type definitions,
XML schemas, function libraries, and variable definitions.
In the BEA streaming XQuery engine, execution contexts
can be made persistent and can survive query execution,
though they are immutable objects from a logical point
of view. Moreover, contexts in the XQuery world can be
stacked, with a new context increasing or overriding the
content of the previous context(s). The XQueryLET op-
erator, for instance, defines a new context in a query, in-
troducing a new variable and overriding previous variable
declarations with the same name from outer contexts.

The main design goal of the runtime system is perfor-
mance. In order to achieve good performance the runtime
system works in a stream-based dataflow way and avoids
materialization of intermediate results whenever possible.
Furthermore, the runtime system provides generic imple-
mentations of all functions and operators, but at the same
time, it is possible to exploit all the knowledge available at
compile-time (in particular, typing information).

5 XML Token Stream
In this section, we will briefly describe the structure of
the XML token stream which is used in order to represent
XML data. Since it is straightforward, we describe it by the
means of a small example. Consider the following element
declaration:

<judgement index="11">43.5</judgement>

The parser translates this element into the following to-
ken stream (serialized); although the notation used here
is textual, the actual tokens are of course binary and very
compact.

[ELEMENT [judgement@http://www.bea.com/example],
[anyType@http://www.w3.org/2001/XMLSchema]



]
[ATTRIBUTE [index],

[anySimpleType@http://www.w3.org/2001/XMLSchema]
]
[CharData 11]
[END ATTRIBUTE]
[TEXT 43.5 ]
[END ELEMENT]

This example shows that there is anELEMENTtoken
whose name is judgement and type xs:anyType. The
ELEMENTtoken is followed by anATTRIBUTE token
whose name is index and type is xs:anySimpleType. Then,
follows the value of the attribute (11) represented as a
CharData token. AnEND ATTRIBUTEtoken closes the
attribute declaration; note that the value of an attribute can
be a list of values. ATEXT token represents the content
of the element and finally anEND ELEMENTtoken closes
the element declaration.

The previous data can be validated against the following
XML Schema snippet [Sch01]:

<xsd:complextype name="vote">
<xsd:simpleContent>

<xsd:extension base="xsd:float">
<xsd:attribute name="index" type="xsd:int"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="judgement" type="vote"/>

The result of doing so is the following slightly different
token stream:

[ELEMENT [judgement@http://www.bea.com/example],
[vote@http://www.bea.com/example]

]
[ATTRIBUTE [index],

[int@http://www.w3.org/2001/XMLSchema]
]
[int 11]
[END ATTRIBUTE]
[TEXT 43.5 ]
[float 43.5]
[END ELEMENT]

The type of theELEMENTtoken is now ”vote” and that
of theATTRIBUTE is ”xs:int”. The value of the attribute
is a binary int and the elementTEXTvalue is enriched with
the binary float representation. Note that the XQuery stan-
dard mandates that the original lexical representation of el-
ements is preserved, so both the “untyped” and “typed” val-
ues are kept in the token stream.

Although the XML token stream is mainly designed for
the processor’s internal data representation, it turns out to
be a very convenient XML format for application inter-
change. The token stream allows XML fragments to be
managed easily, and it is easy to serialize it, both for the
network and on disk. In fact, WLI uses a serialized to-
ken stream format whenever it needs to persist the values
of XML workflow variables; since it uses XQuery as its
principal means for XML processing, its intermediate re-
sults are best kept in a format directly amenable to efficient
XQuery processing.

6 Type System
XQuery has a rich (and complicated) type system [Sem02]
which is compatible with XML Schema [Sch01]. In ad-
dition to types found in conventional programming lan-
guages, such as integer, string, etc., and user-defined struc-
tures, XQuery’s type system allows new types to be created
using sequences (e.g., integer followed by string), alterna-
tion (e.g., integer or string), shuffle-product (e.g., integer
and string in either order), and occurrences of those (zero
or one, zero or more, and one or more). Types are used by
XQuery to determine whether XML data is in the required
form, hence type. To determine this, the questions that an
XQuery processor needs to be able to answer are:

1. Are two types equal?

2. Is one type a subtype of another?

3. Do two types intersect?

An XQuery type (e.g., (xs:integer |
xs:string)* ) can be represented as a regular ex-
pression. Regular expressions and XQuery types are
naturally represented using trees. Using trees to represent
types allows them to be constructed easily (by a compiler
parsing an XQuery, for example). While representing
types as trees seems natural, trees don’t allow the questions
mentioned above to be answered easily. One reason why
not is because many different trees can represent the same
(non-trivial) type.

Regular expressions, and XQuery types, can also be
represented using an extension of finite state automata
(FSA), where an XQuery type corresponds to a language
accepted by such an FSA. Simple XQuery types such as
xs:integer and xs:string are symbols comprising the alpha-
bet of the language. Unlike traditional FSAs, the transi-
tions in our FSAs can be labeled with FSAs themselves,
thereby providing a recursive composition of FSAs (for re-
cursive types). As a result, recursive variants of all algo-
rithms to operate on FSAs are required in the BEA stream-
ing XQuery engine.

It can be shown that with an appropriate FSA repre-
sentation (minimized deterministic FSA, mDFA) it is pos-
sible to answer the above mentioned questions using al-
gebraic operations on FSAs (union, intersection, comple-
ment). Unfortunately space restrictions do not allow us to
go into the details of such operations. A forthcoming pub-
lication will describe them in detail. In this section, we will
only try to give a feeling for what the type system does and
the challenges that we encountered while implementing it.

To answer the question ”Are two types equal?,” we ex-
ploit the following observation: type T is equal to type U
only if T is a subtype of U and U is also a subtype of T. So
“type equlity” is easily mapped to “subtyping”.

To deal with subtyping, we exploit the following obser-
vation: type T is a subtype of type U only if the intersec-
tion of T and the complement of U is empty. Since the
FSA intersection operation is extremely expensive, we use



DeMorgan’s laws in order to compute intersection: type
T intersects type U if the complement of the union of the
complements of U and T is empty.

Due to recursions, FSA algebra operations are very ex-
pensive. It can be shown that the computational complex-
ity grows exponentially with the complexity of the FSA.
To alleviate this problem, the engine aggressively caches
all the results of the type system. Therefore, if the same
two types are compared several times during the compila-
tion of a query, expensive FSA computation is carried out
only once. Caching is effective because the total number of
types involved in a query is limited.

7 Query Compilation and Optimization

The first step in query processing is query compilation.
Given the complexity of this component, our main goal
while designing the compiler was to make iteffectivebut
also extensible, flexible and simple. As described below,
we consistently used the principles of avoiding hard-coded
information and algorithms and using the declarative ap-
proach whenever possible in order to keep our compiler
simple and extensible.

The XQuery compiler is composed of three managers:
the Expression Manager, the Context Manager, and the
Operation Manager. Furthermore, there are three func-
tional components: theQuery Parser, theQuery Optimizer,
and theCode Generator.

7.1 Expression Manager

TheExpression Managerholds the internal representation
for all kinds of XQuery expressions (e.g. constants, vari-
ables, first order expressions, instance of, conditionals). Its
expressions are equivalent in functionality with the alge-
braic query representation used by most relational query
engines. Our internal representation for expressions bor-
rows ideas from functional programming compilation, re-
lational query compilation, and object-oriented query com-
pilation, all adapted to XQuery, of course.

The simplest XQuery expressions are constants and
variables. We support four types of variables: let, for, count
and external variables. All the first order expressions (e.g.
boolean operators, comparisons, arithmetics, union, inter-
section, and user defined functions) share a single internal
representation. This is different from the traditional rela-
tional query internal representation but it is essential for
keeping the code simple and extensible. Each kind of sec-
ond order expression (e.g.FLWRexpressions, sortby and
quantifiers) has a separate internal representation.

XQuery is formally defined in terms of a small core
set of algebra operators into which the full language is
mapped [Sem02]. Our internal representation is redundant,
in the sense that we have models for both core and non-core
expressions. For example, we have both a representation
for FORandLET expressions, as well as for the complex
FLWRexpressions. However, we do not have an internal
representation for path expressions, as they are normalized

immediately during parsing. Another characteristic worth
mentioning is that we do not make the distinction between a
logical algebra and a physical algebra like in traditional re-
lational query processing. This distinction makes no sense
for many kinds of XQuery expressions like conditionals,
instance of, typeswitch, etc, and for most first order expres-
sions. For the operations for which multiple possible phys-
ical implementations are available (e.g. node constructors
and joins) the choice made by the optimizer is expressed by
expression annotations.

Finally, the Expression Manager implements various
functionalities required for query optimization like vari-
able and substitution management, type derivation, seman-
tic properties derivation, copying, subexpression cut and
paste, etc.

7.2 Operation Manager

The second manager is theOperation Manager, which
holds all the information about the first order functions and
operators available to the query engine. This information
includes the operator names and signatures, semantic prop-
erties (see below), pointers to the class implementing each
operator and to the Java code for type derivation of poly-
morphic operators. The semantic information includes: the
property of preserving or introducing document order in the
result, the property of preserving or creating duplicate-free
results, the commutativity with theunordered operator,
the property of the operator to create new nodes in the re-
sult, whether the operator is a map function, and, finally,
whether the operator is a real function or not (i.e. returns
the same result given the same input)2, etc. This seman-
tic information is exploited during the optimization phase
for equivalent expression rewriting. All this information
is loaded while bootstrapping the XQuery engine out of a
declarative description.

7.3 Context Manager

The third manager used during the compilation is theCon-
text Manager. Each phase in query processing (parsing,
type checking, optimization, execution) is done in a cer-
tain context; such contexts hold a variety of environmental
properties. Examples are: the current managers that per-
form various tasks during compilation and execution (e.g.
the Type Manager, the Schema Managerand theNodeI-
dentifier Manager), the in-scope variables, the schema val-
idation context, the in-scope definitions (e.g. namespace,
functions, types, schemas, collations) and the current de-
fault specifications (e.g. element name namespace, func-
tion namespace, strip whitespace parameter, collations).
The same context is passed through all query processing
phases; expressions and iterators only exist in a certain con-
text.

The context is composed of a hierarchy of local con-
texts. Searching for information translates into searching

2Some XQuery operators like getCurrentDate() or
document() do not have this property.



from the local context recursively up to the parent until the
information is found or the root is reached. The root of the
hierarchy is the base context that holds all of the XQuery
engine default parameters. This base context is also boot-
strapped out of a declarative specification.

7.4 Parser

In addition to these three managers, as mentioned above,
the XQuery compiler has three functional components: the
Parser, theOptimizerand theCode Generator. The parser
translates an XQuery string into the corresponding expres-
sion in our internal representation. During parsing, the cur-
rent parsing context can be augmented with certain infor-
mation like new namespace definitions, new function defi-
nitions, etc. Some normalization is performed during pars-
ing; in particular, path expressions are eliminated at this
time.

The main source of complexity in the XQuery parser
comes from the necessity of keeping the language free of
reserved words. Because of this requirement, the parser
must keep multiple lexical states and perform complex state
transitions during parsing. In this environment, a big chal-
lenge (that we are still facing) is to provide users with
high quality debugging and error information. We used the
ANTLR parser generator, which proved to be satisfactory
for our needs.

7.5 Optimizer

The next important phase in query compilation isQuery
Optimization. The optimizer’s task is the translation of the
expression generated by the parser into an equivalent ex-
pression that is cheaper to evaluate.

First, we have to address the expression equivalence
problem. Two expressions areequivalentif they have the
same type and, for every possible input, and in the same
context, they either produce the same value as an output or
they both produce the same error. This definition is ideal-
istic; unfortunately while building a real query optimizer
we realized that we have to relax it in important ways. For
example, our optimizer will translate an expressionE1 into
an expressionE2 even if the two expressionE1 and E2

do not have the same inferred type3. Moreover, preserv-
ing errors is too restrictive. Most XQuery operations can
result in errors which are not predictable at compile time.
As a result, almost any operation reordering could change
the potential result in the event of an error. Our rewriting
methodology guarantees that nonew errorsare being intro-
duced as a result of query rewriting, but it is possible that
the original expression returns an error whereas the rewrit-
ten expression does not. A prominent example in which
this can happen is a query with a Boolean AND expression
if one of the subexpressions returns false and the other one
returns an error.

3The two expression could still produce the same output even if the
inferred type is not the same.

The heart of the query optimizer is a library of rewriting
rules. Each rewriting rule takes an expression and returns
an equivalent expression (if the rule is applicable) or null
(if the rule is not applicable). The optimizer itself is built
by the successive application of such rewriting rules using
heuristics. How the rewriting rules are composed in an op-
timizer strategy is also specified declaratively.

Rewriting rules can be either (a) normalization rules,
whose purpose is to put the expression into a ”normal”
form without reducing the cost, and (b) cost-reduction
rewriting rules that are supposed to translate an expres-
sion into another, less expensive expression. Examples of
normalization rules are: putting predicates into a conjunc-
tive normal form, dispatching general comparisons to the
type-specific operators, dispatching arithmetics to the type-
specific operations, inlining non-recursive XQuery func-
tions, transforming typeswitch expressions into a cascade
of conditionals, and unnesting FLWR expressions found in
FORandRETURNclauses.

The cost-reduction rewriting rules can be classified into
six categories:

1. Removeunnecessary operationswhenever possible.
A prominent example for such unnecessary operations
are sort and duplicate elimination operations which
are defined implicitly in a query due to the semantics
of XPath expressions. Further examples are redundant
self operators, concatenate operators with a single in-
put,FORexpressions with a trivialRETURN, FORex-
pressions that iterate over a single item, computation
of the effective boolean value, and casts for function
parameter and results; these casts are also defined im-
plicit in the XQuery semantics.

2. Rewrite withconstantand common subexpressions.
For example, subexpressions that are executed as part
of a loop (i.e., in aFOR, sort or quantifier) but that
do not depend on the loop variable are factored out of
the loop. Subexpressions that appear multiple times
in a query are also factored out and aLET variable
is introduced. Subexpressions that can be computed
statically and whose results are small, are computed
statically and replaced with their value.

3. Enablestreamingwhenever possible. An important
example is rewriting expressions that use backward
navigation into expressions that use only forward nav-
igation whenever possible.

4. Exploitschema information. The most important rule
in this class translates the expensivedescendant()
operator into a sequence ofchildren() operators
based on schema information, or introducingtopN
operators based on cardinality information obtained
from schemas.

5. Carry outoperation reordering, if this is beneficial.
Notably, theFORvariables in aFLWRare reordered if



an unordered directive is present and there are no de-
pendent joins. Similarly theFORvariables of a quanti-
fier can be freely reordered in the absence of any inter-
dependency.

6. Transform the nested loop (non-dependent) joins and
outerjoins intohash-based oneswhenever possible.
Given our absence of data statistics this decision is
based on heuristics.

Our current optimizer does not use a cost model; it only
uses heuristics. There are several reasons for this. First, it
is very difficult to get and maintain statistics in the Inter-
net world. Obtaining statistics is particularly difficult for
streaming XML data and message processing, for which
the BEA engine was designed. Without good statistics,
cost-based optimization is essentially meaningless. Sec-
ond, even in the presence of good statistics, defining an
effective cost model for an XQuery engine is very difficult
and probably as much work as developing the initial engine
itself. Third, it seems that optimizations that require cost-
ing are less important in XQuery than, say, in SQL. For
instance,FORexpressions (the dual to relational joins) can
only be reordered in XQuery under certain circumstances.
Obviously cost based optimization is very important for
XQuery in many application scenarios, but we think that
an XQuery optimizerneedsgood heuristics to compensate
for the problems described above, and cost-based optimiza-
tion simply has not been important for our particular target
application.

During query rewriting we make extensive use of both
the semantic information associated with the operators that
we described above and the types inferred for expressions.
Almost none of the cost-reduction rewriting rules could be
applied in the absence of this information.

Another important task of the query optimizer is to de-
tect (and minimize) the need for data materialization. We
designed our entire XQuery engine with the main goal to
stream data in and out of the query engine, therefore mini-
mizing the data footprint and eliminating blocking points in
the execution. Nevertheless, some queries require data ma-
terialization and/or blocking. In addition to the traditional
causes like sort, duplicate elimination and aggregates, the
value of a variable must be materialized in three cases:
when the variable is used multiple times in the query, when
the variable is used inside a loop (FOR, sort or quantifiers),
or when the variable is an input of a recursive function. An-
other cause for materialization is backward navigation that
cannot be transformed into forward navigation. Finally, the
execution of operators likedescendant() requires ma-
terialization under certain circumstances (see Section 8).

A noticeable absence in the BEA engine is the choice of
physical operators for joins and selections. In the current
version, a simple scan for selections is supported. For joins,
nested-loops and hashing are supported. Again, these deci-
sions have been made with regard to the particular applica-
tion domain (processing of XML message in the range of a
few kilobytes up to about a megabyte) for which the BEA

streaming XQuery engine was designed. For other appli-
cations (in particular, large-scale XML databases), more
methods can be supported and the optimizer must be ex-
tended accordingly.

7.6 Code Generation

The expression produced by the query optimizer is the in-
put to the next phase:Code Generation. The goal of this
phase is to translate an expression into an executable plan.
An executable plan is represented as a tree of Token Iter-
ators. There is almost a one-to-one mapping between ex-
pressions and Token Iterators so that this task is quite sim-
ple: the Token Iterator tree is built while traversing the ex-
pression tree bottom up. Only recursive functions require
special attention. Naively generating code for them results
in infinite Token Iterator trees. In order to avoid this sit-
uation, we delay code generation for recursive functions
until they are actually executed; the Token Iterator tree cor-
responding to a new iteration is unfolded at runtime at the
beginning of an iteration. While the recursion could require
some extra materialization, it is itself not blocking the op-
erator pipeline.

8 Runtime System

The task of theRuntime Systemis to interpret a query exe-
cution plan, modeled as a tree of Token Iterators. The run-
time system is composed of a library of iterators contain-
ing implementations for all functions and operators of the
XQuery standard [F02] and for all functions of the XQuery
core (e.g., map) [Sem02].

8.1 Iterator Model

Like most SQL engines, the BEA streaming XQuery en-
gine is based on an iterator model [Gra93]. The reasons
for this choice are the same as in the relational world: (a)
modularity, (b) low main memory requirements, and (c)
avoidance of (CPU and I/O) costs to materialize interme-
diate results. Furthermore, the iterator model allows lazy
evaluation of expressions which is particularly important
for XQuery. Sometimes, only a small fraction of the result
of a sub-expression must be computed; a frequent example
is existential quantification.

In the iterator model of the BEA engine, every function
and operator is implemented as an iterator that consumes
zero, one or multiple token streams produced by its input
iterators and returns a single stream of tokens. As in the tra-
ditional iterator model, all iterators operate in three phases:

• open: prepare to produce results.

• next: produce the next token of the result stream; re-
turn “null” in order to indicate the end of the stream.

• close: release allocated resources and do clean-up
work.



In addition, iterators provide apeekNext()method and a
skipNextmethod. ThepeekNextfunction returns the next
token without consuming it. This function is convenient for
the implementation of certain XQuery functions that need
to look ahead in their inputs. TheskipNextfunction carries
out a fast forward to the next item in a sequence. This func-
tion is conveniant in functions that only look at the “tip of
the iceberg” (e.g., count or nodetests). BothpeekNext()and
skipNextcan be implemented in a generic way for all iter-
ators so that this additional method does not increase the
complexity of the code base. ForskipNext, however, it is
beneficial for performance reasons to provide specific im-
plementation for certain functions; for example, askipNext
can be carried out particularly fast if the data is material-
ized.

Another specific feature of the BEA iterator model is its
error handling mechanism. Every call of thenext()method
of an iterator can result in a failure. Based on the seman-
tics of XQuery, some failures can be ignored whereas other
failures must be propagated to the application and termi-
nate the execution of the query. In order to implement error
handling, we made use of Java’s exception handling mech-
anism. Furthermore, we were able to implement error han-
dling in a generic way so that the specific XQuery error
handling rules did not have to be implemented for each it-
erator individually.

8.2 Example Iterators

As mentioned at the beginning of this section, every
function and operator of the XQuery library [F02] and
core [Sem02] are implemented as iterators. For expensive
functions (e.g., node constructors and joins), several differ-
ent implementations exist so that the best implementation
can be chosen depending on the characteristics of a query.
In all, the runtime system contains the implementation of
350 iterators. In order to get an impression of the kind of
iterators found in the system, some examples are listed in
the following:

Constant

One of the simplest iterators is the Constant iterator that is
used to evaluate constant expressions. This iterator is used
for XQuery literals such as “5” or “Feb-18-2003”. For lit-
erals, the Constant iterator produces a stream with a single
token. The Constant iterator is also used for other constant
expressions such as “<foo>boo</foo> ”. In this exam-
ple, the result of the element constructor is materialized at
compile-time and the Constant iterator is used to return the
materialized result at execution time.

Casts

The semantics of XQuery involve a great deal of implicit
casts. These casts can be very expensive. Some of these
casts require transformations, e.g., from strings to numeric
values. Some casts involve the extraction of typed val-
ues from an element or attribute. Finally, some casts call

a function calledatomization[Que02] which takes a se-
quence as input and returns a simple value.

As mentioned in Section 7, the compiler tries to deter-
mine the types of expressions statically as precisely as pos-
sible so that casts can be avoided or the most specific cast
iterator can be used. To this end, the cast iterators in the
runtime system are organized in a hierarchy: the most gen-
eral cast iterator is expensive and used when no static type
can be inferred (i.e., the static type is “any”); more spe-
cific and cheaper casts are used if more information can be
deduced statically (e.g., an expression has a simple type).

Materialization

Although the BEA streaming XQuery engine tries to
stream data whenever possible, there are situations in
which the materialization of intermediate results is neces-
sary. One important situation in which materialization is
necessary is a query that uses the results of a common sub-
expression several times and (re-) computation of this sub-
expression is expensive. Such queries are implemented us-
ing an iterator factory. This factory takes the token stream
produced by the common sub-expression as input and al-
lows the dynamic generation of iterators that consume this
input. The factory consumes tokens from its input stream
on demand, driven by the fastest consumer. The factory
buffers the input stream and releases the buffered tokens
when the last (slowest) consumer is done.

Node Id Generation

The XQuery data model assigns a unique id to each node of
an XML document [M02]. Based on this id, node compar-
isons, duplicate elimination, and sorting in document order
among other functions are defined. In the BEA XQuery en-
gine, ids of nodes of incoming XML messages are gener-
ated on the fly (i.e., non-blocking) using specialized Gener-
ateId iterators. Id generation is an expensive operation and
the memory requirements of ids can become prohibitive.
Therefore, different types of ids and GenerateId iterators
are used, depending on the requirements of a query. Most
queries can be processed using simple, light-weight ids that
are based on a pre-order numbering of nodes only; with
such ids, duplicate elimination and sorting in document or-
der can be implemented. Some queries, however, cannot
be processed using such light-weight ids; such queries, for
instance, involve backward traversals (e.g., the XPath par-
ent axes) or special node comparisons. To evaluate such
queries and only such queries, heavy ids that are based on
pre-order and post-order numbering and materialization of
parent/child relationships are generated. Furthermore, for
certain queries, it is only necessary to generate ids for root
nodes (or for nodes up to a certain level); again a special
version of the GenerateId iterator is used in order to im-
prove the performance of such queries. The decision of
which version of ids and GenerateId iterator to use is made
at compile time, depending on the characteristics of the
query. In fact, it is possible that no ids are necessary to



evaluate a query; in this case, the compiler does not gener-
ate a GenerateId iterator.

XPath Steps

Projections are implemented in XQuery as XPath steps,
typically using the child (“/”) and descendant-or-self (“//”)
axes. In order to exploit optimizations based on type in-
ference at compile-time, the runtime system provides dif-
ferent iterators for these axes. For example, there is a spe-
cial version of child that stops early if it is known from the
schema that only one child matches or if it is known that no
more sub-elements are relevant as soon as a sub-element of
a particular type has been found. Furthermore, the runtime
system implements a special algorithm in order to execute
descendant-or-self. This algorithm starts optimistically and
assumes that the schema has no recursion. In this case, the
algorithm is fully stream-based and no intermediate results
need to be materialized. In bad cases, the algorithm adapts
and materializes data and behaves just like a traditional al-
gorithm in order to compute descendants recursively.

9 XDBC Interface

The Java binding for our XQuery engine is called XDBC.
It is designed to look and behave much like JDBC. The
two APIs have similar features, such as the ability to pre-
compile statements for repeated execution, facilities for
binding per-execution variables in a statement, and the abil-
ity to maintain separate execution contexts. Because of
these similarities, and because JDBC is a widely known
and understood interface, we used the same basic set of
classes and, where appropriate, the same method names for
XDBC. There is currently an initiative to standardize a Java
interface for XML data called JXQI. Once a standard inter-
face has materialized, we plan to make the XDBC interface
upwardly compatible with it.

9.1 Connections and Statements

The entry point into XDBC, as with JDBC, is a Connec-
tion. A Connection is obtained via a static method,get-
Connection(), on the DriverManager class. A Connection
maintains an execution context internally, keeping track of
declared namespaces, types, and XQuery functions, among
other things. In the current implementation, XDBC and
the XQuery engine run within the same JVM. Therefore,
despite the name “Connection”, there is no networking in-
volved, nor is there more than one type of driver to manage.
Future revisions will likely introduce the concept of remote
XDBC services.

From a Connection, applications can create two types
of XQuery statement objects: a Statement and a Prepared-
Statement. Again, as with JDBC, a PreparedStatement dif-
fers from a simple Statement chiefly in the ability to pre-
compile an XQuery statement and then execute it multi-
ple times, optionally assigning different values to unbound
variables (i.e., parameters) in the XQuery statement for
each execution.

9.2 Parameterized Queries

With a PreparedStatement object, the appliation first asso-
ciates any required variable bindings via varioussetType()
methods. There are differentsetType()methods for various
XQuery primitive types, such assetString(), setInteger(),
setURI(), setDate(), and so on. Of particular importance is
setComplex(), which allows binding a variable to an itera-
tor which is potentially the result of a separate query exe-
cution. This way, chaining of XQuery queries is supported.
It is possible to specify the type of the token stream that is
returned by the iterator given to thesetComplex()method.

The ability to bind and re-bind external variables to
an XQuery statement is a BEA-specific extension to the
XQuery language. We extended the variable rules for
XQuery so that it is no longer required that all variables
mentioned within a statement must be assigned values be-
fore use. Such statements will still compile in the BEA im-
plementation. Attempting to execute a statement without
binding all unbound external variables will result in an ex-
ception, however. PreparedStatement has methods for de-
termining the set of unbound variables discovered by query
compilation.

9.3 Execution of Queries

Once all external variables have been bound, the Prepared-
Statement is executed viaexecuteQuery(). This method
returns a Token Iterator representing the token stream re-
sulting from the statement’s execution. We provide util-
ity classes for doing basic manipulations on Token Itera-
tors, such as serializing them as UNICODE or in a binary
format. PreparedStatement also offers other features for
specialized purposes, such as acloneStatement()method
for creating a duplicate PreparedStatement that can be re-
bound and re-executed; e.g., in a different thread.

10 Performance Experiments and Results
This section presents the results of performance experi-
ments that assess the running time of the BEA stream-
ing XQuery engine for XML transformations based on
use cases of BEA customers and for the XMark bench-
mark [SWK+02]. All experiments were carried out on a
PC with a 1.8 GHz Pentium 4 processor and 1 GB of main
memory. The Java Virtual Machine was from Sun using
JDK 1.4.101. For all experiments reported here, nested-
loops were used in order to implement nestedFORexpres-
sions (i.e., joins and group by) because hash-based algo-
rithms were not beneficial in these particular experiments.

10.1 XML Transformations

The first experiment studies the performance of the BEA
streaming XQuery engine for typical use cases of cus-
tomers of the WebLogic Integration product; i.e., transfor-
mations for which the engine was designed to work well.
As an alternative, XSLT stylesheets [XSL02] were used to
implement these use cases; since XSLT is already a stable
W3C recommendation, XSLT is today commonly used in



description XQuery XSLT speedup

Straight element mapping 0.7 5.4 7.66
Element mapping to different names 0.6 5.1 8.04
Element combination 0.6 5.1 8.74
Element explosion 0.7 6.3 9.09
Element to attribute mapping 0.8 4.1 5.27
Attribute to element mapping 0.8 4.4 5.82
Attr. to attr. mapping - straight copy 1.1 4.7 4.48
Attr. to attr. mapping - name mapping 1.1 4.7 4.33
Repeating group to repeating group 0.8 4.4 5.74
Static fields and rep. grp. to rep. grp. 0.7 5.0 6.69
Re-grouping by key fields 1.6 7.0 4.28
Decreasing loop nesting 1.1 6.7 5.90
Incr. loop nesting 0.9 4.5 4.96
Incr. loop nesting using an input key 1.9 8.2 4.20
Conditional repeating group transf. 1.2 6.1 5.24
String functions 3.7 6.9 1.88
Aggregation of data 1.7 4.8 2.90
Aggregation of data 0.8 4.8 6.16
Parameterized queries 0.8 4.9 6.37
Parameterized transformations 0.7 4.2 6.13
Union: docs of the same schema 0.9 5.4 5.73
Union: docs of different schemas 1.7 5.7 3.31
Joining multiple docs 2.1 7.2 3.46
Joining with substitution 1.9 5.9 3.10
Repeated key value lookup 1.0 5.3 5.22

Query 120 KB 3.8 MB

Q1 7.8 107.8
Q2 6.9 124.2
Q3 10.1 309.0
Q4 9.8 259.3
Q5 5.0 249.6
Q6 8.8 285.1
Q7 66.3 11,279.5
Q8 32.9 21,971.6
Q9 38.0 24,867.0
Q10 20.1 4,741.0
Q11 26.7 15,621.9
Q12 16.5 6,452.9
Q13 4.6 88.0
Q14 25.2 982.1
Q15 4.7 62.8
Q16 5.5 119.3
Q17 6.1 141.1
Q18 7.2 162.3
Q19 10.1 413.4
Q20 10.1 365.9

Table 1: Time [ms]: Xalan (XSLT) vs. BEA Engine (XQuery) Table 2: Time [ms]: XMark Benchmark

practice in order to implement these kinds of transforma-
tions. The use cases test different kinds of XML trans-
formations on different kinds of XML messages.4 The
XSLT stylesheets were executed using Xalan-J version
2.4.1 [XJ02]. The XQuery queries were (of course) exe-
cuted using the BEA streaming XQuery engine. In both
cases the best possible formulation was chosen if a trans-
formation could be expressed in different ways. Further-
more, we only measured the running times of the trans-
formations after the XML input had been parsed; this net
cost of XML transformations is the most relevant metric
for BEA’s WebLogic Integration product because an XML
message is typically parsed once and then transformed and
processed several times.

Table 1 shows the results. In all cases, executing the
XQuery expression on the BEA engine is much faster than
executing an equivalent XSLT stylesheet using Xalan. In
the best case, the speed-up was a factor of 9. There was
no particular pattern or transformation type for which the
speed-up was especially high and there were several rea-
sons for this speedup. We believe that these were the two
most important reasons: (a) XQuery is easier to optimize
than XSLT; (b) token streams (as in the BEA engine) can be
processed more efficiently than the document table model
which is used in Xalan. (Note: The document table model
replaced DOM as a representation in this Xalan version for
the purpose of better performance.)

4We plan to publish queries and data on a Web page.

10.2 XMark Benchmark

Table 2 shows the running times of the BEA engine for
the XMark benchmark [SWK+02]. The XMark benchmark
was designed to test the performance of XML database sys-
tems using rather traditional database workloads (e.g., se-
lections on large collections of data), rather than transfor-
mations. This benchmark includes a suite of 20 benchmark
queries that test a large variety of features of the XQuery
language. Furthermore, the XMark benchmark specifies
how the XML data must be generated and it provides a
scaling factor in order to produce databases of different
sizes. Table 2 shows the running times of the 20 queries
on databases of size 120 KB and 3.8 MB. Again, only the
running times of the BEA engine on parsed XML input is
reported. As a baseline, parsing the 120 KB XML database
cost 73 milliseconds and parsing the 3.8 MB XML database
cost 1580 milliseconds using the Xerces parser [XJ00].

The purpose of these experiments was to stress test the
BEA engine. Neither the workload nor the size of the
databases were representative of the use cases for which the
implementation of the BEA engine was tuned. Neverthe-
less, all queries could be executed in less than 70 millisec-
onds for the 120 KB XML database. In other words, exe-
cuting the XMark queries was always cheaper than parsing
the document. These results confirm that the BEA engine
is very capable of processing XML messages of sizes up to
a couple 100 KB, regardless of which type of queries need
to be processed.

For the 3.8 MB XML database, the running times were
in the range of 100 milliseconds up to 90 seconds (Q9).
The BEA engine was robust in all cases, but the running



times can be improved. 3.8 MB is much larger than what
the implementation of the engine was tuned for. The engine
is extensible in order to scale for such scenarios, but doing
so has not been a product requirement so far.

11 Related Efforts
Although the XQuery language specification has not yet
reached Recommendation status, there are significant ef-
forts both in industry and academia to implement XQuery
and to use it for different application scenarios. Virtu-
ally, all major database vendors are currently working on
extending their database products and/or establishing new
products based on XQuery. In order to extend relational
databases, the SQL/X standard is emerging [EM02]. Fur-
thermore, vendors of native XML database systems (e.g.,
Software AG) are naturally using XQuery as a query in-
terface for their product. In addition, there are a num-
ber of start-ups and open-source initiatives that are work-
ing on XQuery implementations. A list of public XQuery
implementations and links to Web demos can be found
on the home page of the W3C XQuery Working Group:
www.w3c.org/XML/Query .

In the research community, various related aspects of
XQuery have been addressed recently. To name just a few
of the very latest results: [LMP02] describes a stream-
based implementation of a subset of XQuery using trans-
ducers; [DFZF03] shows how information filters defined as
XPath expressions (also a subset of XQuery) can be imple-
mented using FSAs. Finally, [GS03] and [PC03] are two
very recent papers on implementing XQuery for streaming
XML data. (At the time this paper was completed, copies
of this work were not yet available.)

12 Conclusion
This paper has described the design, implementation, and
performance characteristics of the BEA streaming XQuery
engine. Unlike most other XQuery implementations, this
engine is fully compliant with the August 2002 XQuery
specification of the W3C. It is a central component of the
BEA WebLogic Integration (WLI) 8.1 product. As such,
it was tuned to provide high performance for XML mes-
sage processing. Experiments using customer use cases
have confirmed that it indeed has very good performance
for such applications; in fact, much better performance
than Xalan, a popular XSLT processor, that has been un-
der development for several years and has been tuned for
the same sorts of applications.
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