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Abstract

We introduce and study a new class of queries that
we refer to as OPAC (optimization under parametric
aggregation constraints) queries. Such queries aim
to identify sets of database tuples that constitute so-
lutions of a large class of optimization problems in-
volving the database tuples. The constraints and the
objective function are specified in terms of aggregate
functions of relational attributes, and the parameter
values identify the constants used in the aggregation
constraints.

We develop algorithms that preprocess relations and
construct indices to efficiently provide answers to
OPAC queries. The answers returned by our indices
are approximate, not exact, and provide guarantees
for their accuracy. Moreover, the indices can be
tuned easily to meet desired accuracy levels, provid-
ing a graceful tradeoff between answer accuracy and
index space. We present the results of a thorough
experimental evaluation analyzing the impact of sev-
eral parameters on the accuracy and performance of
our techniques. Our results indicate that our method-
ology is effective and can be deployed easily, utiliz-
ing index structures such as R-trees.

1 Introduction
In today’s rapidly changing business landscape, corporations
increasingly rely on databases to help organize, manage and
monitor every aspect of their business. Databases are de-
ployed at the core of important business operations, including
Customer Relationship Management, Supply Chain Manage-
ment, and Decision Support Systems. The increasing com-
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plexity of the ways in which businesses use databases cre-
ates an ongoing demand for sophisticated query capabilities.
Novel types of queries seek to enhance the way information
is utilized, while ensuring that they can be easily realized in a
relational database environment without the need for signifi-
cant modifications to the underlying relational engine. Indeed,
over the years, several proposals enhancing the query capa-
bilities of relational systems have been made. Recent exam-
ples include preference queries, which incorporate qualitative
and quantitative user preferences [1, 3, 13, 8, 17] and top-

�
queries [10, 9, 2].

In this paper, we initiate the study of a new class of queries
that we refer to as OPAC (optimization under parametric ag-
gregation constraints) queries. Such queries aim to identify
sets of database tuples that constitute solutions of a large class
of optimization problems involving the database tuples. To il-
lustrate this important class of queries, consider the following
simple example.

Example 1 Consider a large distributor of cables, who main-
tains a database relation � keeping track of the products in
stock. Cable manufacturers ship their products in units, each
having a specific weight and length. Assume that relation� has attributes uid (a unit identifier), manufacturer,
weight, length and price, associated with each cable
unit. A sample relation � is depicted in Figure 1.

Commonly, “queries” select cable units by imposing con-
straints on the total length and total weight of the units they
are interested in, while optimizing on total price. Thus, the
desired result is a set of tuples collectively meeting the im-
posed aggregate constraints and satisfying the objective func-
tion. Note that this is considerably different from selecting
cable units (tuples) based on their individual attribute values.

For example, one query could request the set of cable units
having the smallest total price, with total length no less than�������
	

and total weight no less than � ����

	
. A straight-

forward solution to this query involves computing the total
weight and length of each possible subset of cable units in� , identifying those that respect the constraints on length and
weight, and returning the one with the lowest price. Clearly,
such a brute force evaluation strategy is not desirable. In the
example of Figure 1, the answer set for this query would be



1     Optical Co.       30        40       50
2     Optical Co.       20        50       50
3     Optics Inc.       30        70       80
4     Opticom Co.       20        20       10
5     Optics Inc.       20        20       20

Uid      Manufacturer      Weight      Length      Price

Figure 1: Sample Relation ������������������
����������� �
, with a total price of 80.

A different query could seek to maximize the total price for
a number of cable units requested, of total length no more
than

� � �!��	
and of total weight no more than � � �"
�	

. In
this case, the answer set for this query would be

��������#������$���%�
or

� �����
&���������� �
each with a total price of 100.

Finally, observe that
���

and � �
are parameters of these

two OPAC queries, and different users may be interested in
these queries, but with different values specified for each of
these parameters.

Instances of OPAC queries are ubiquitous in a variety of
scenarios, including simple supplier-buyer scenarios (as illus-
trated by our example), that use relational data stores. They
easily generalize to more complex scenarios involving Busi-
ness to Business interactions in an electronic marketplace.
Any interaction with a database, requesting a set of tuples as
an answer, specifying constraints over aggregates of attributes
values, seeking to optimize aggregate functions on some mea-
sure attribute in the result set, is an instance of an OPAC query.

OPAC queries have a very natural mathematical interpre-
tation. In particular, they represent instances of optimization
problems with multiple constraints [7], involving the tuples
and attributes of a database relation. Although such prob-
lems have been extensively studied in the combinatorial opti-
mization literature, there has been no work (to the best of our
knowledge) exploring the possibility of using database tech-
nology to efficiently identify the set of tuples that constitute
solutions to OPAC queries, when the relevant data resides in
a database relation.

In this paper, we begin a formal study of the efficient exe-
cution of OPAC queries over relational databases. Our work
is the first to address this important problem from a database
perspective, and we make the following contributions:

' We introduce the class of OPAC queries as an important
novel query type in a relational setting.

' We develop and analyze efficient algorithms that prepro-
cess relations, and construct effective indices (R-trees),
in order to facilitate the execution of OPAC queries. The
answers returned by our indices are not exact, but ap-
proximate; however, we give quality guarantees, pro-
viding the flexibility to trade answer accuracy for index
space.

' We present the results of a thorough experimental eval-
uation, demonstrating that our technique is effective, ac-
curate and efficiently provides answers to OPAC queries.

This paper is organized as follows. In section 2, we present
definitions and background material necessary for the rest of

the paper. Section 3 formally defines the problems we ad-
dress in this paper. In section 4, we present our techniques for
preprocessing relations to efficiently answer OPAC queries.
In section 5, we experimentally evaluate our techniques vary-
ing important parameters of interest. Section 6 reviews related
work and finally section 7 summarizes the paper and discusses
avenues for further research.

2 Definitions
Let �)(+* # �-,.,.,/� *10 ��2�3

be a relation, with attributes* # �.,.,-,�� *10 ��2 . Without loss of generality assume that
all attributes have the same domain. Denote by 4 a subset of
the tuples of � and by 46587 �.9;:<�=:?>

, and 46@ , the (multiset
of) values of attribute *;A �-9;:B��:C>

and
2

in 4 , respectively.
Let D A �.9E:F�G:H>

and I denote aggregate functions (e.g.,
sum, max). We consider atomic aggregation constraints of
the form D A ($4 5 7 3KJGL A , where

J
is an arithmetic comparison

operator (e.g.,
:��%M

), and
L A is a constant [16], and complex

aggregation constraints that are boolean combinations of
atomic aggregation constraints; we refer to them collectively
as aggregation constraints, denoted by N .

Definition 1 (General OPAC Query Problem) Given a re-
lation �O(P* # �.,-,.,/� * 0 ��2�3

, a general OPAC query Q specifies
(i) a parametric aggregation constraint NSRT , (ii) an aggregate
function I , with optimization objective U (min or max), and
(iii) a vector of constants VL . It returns a subset 4 of tuples
from � as its result, such that (i) N RTXW R� (�4�58Y �.,-,.,/� 4�58Z 3\[
TRUE, and (ii) ]64_^a`F� , ( N RT-W R� ($4_^58Y �.,-,.,�� 4_^58Z 3b[

TRUE)c ( Id(�4_^@ 3S:Ke Ib($4�@ 3 ).
Intuitively, the result of a general OPAC query Q is a sub-

set 4 of tuples of � that satisfy the parametric aggregation
constraint N RT (with the parameters Vf instantiated to the vector
of constants VL ), such that its aggregate objective function is
optimal (i.e., maximal under

:1e
) among all subsets of � that

satisfy the (instantiated) parametric aggregation constraint.
It is evident that the result of a general OPAC query in-

volves the solution of an optimization problem involving a
(potentially) complex aggregation constraint on relation � .
Depending on the specifics of the aggregate functions DgA � I ,
the nature of the aggregation constraint, and the optimiza-
tion objective, different instances of the OPAC query problem
arise. For suitable choices of these it might be feasible to ef-
ficiently obtain a solution. In the general case, however, the
problem is computationally infeasible (NP-hard).

In this paper, we consider the important instance of the
problem when the aggregate functions D A � I return the sum of
the values in their input multisets, the aggregation constraints
are conjunctions of atomic aggregation constraints of the formD.A�($4�587 3O:hL A , and the objective function seeks to maximizeIb($4�@ 3 .

This formulation of an OPAC query gives rise to a
well-known optimization problem, namely the multi-attribute
knapsack problem [7, 18]. Given this relationship between the
specific form of the OPAC query on which we focus our pre-
sentation and the multi-attribute knapsack problem, we will
refer to values of the function Id(�4 @ 3 as the profit for the set of
tuples 4 . It is well-known that solving the knapsack problem,
even in the simple instance involving a constraint on only one
attribute (e.g., ikj 7+lgm�n Ypo A :�L.#

and maximize iqj.r l�m�s o
t )



is NP-complete. However, this problem is solvable in pseudo-
polynomial time with dynamic programming [6]. The multi-
attribute knapsack problem has been extensively studied in the
literature (e.g., see [7, 18] and references therein) and many
approaches have been proposed for its solution. For example,
the pseudo-polynomial algorithm solving the knapsack prob-
lem in the single attribute case can serve as a basis for a solu-
tion of the multi-attribute problem as well. In particular, one
could generate all solutions for one attribute, and pick the so-
lution 4 that maximizes Ib($46@ 3

among all solutions that sat-
isfy the constraints on all attributes. The form of the solution
that is reported could vary; for example, the solution could be
the set of tuple identifiers from � . Several other approaches
for the solution of the multi-attribute knapsack problem are
available in the literature (e.g., [4, 18] and references therein).

It is evident that every OPAC query Q determines an in-
stance of a multi-attribute knapsack problem on relation � .
Since the relation � can be very large, in the general case,
solving the multi-attribute knapsack problem from scratch ev-
ery time an OPAC query is posed is not at all pragmatic. Such
an approach would be far from being interactive and, more
importantly, it would be entirely DBMS agnostic, missing the
opportunity to utilize the underlying DBMS infrastructure for
query answering. We wish to alleviate these shortcomings and
provide efficient answers to OPAC queries utilizing DBMS
concepts and techniques.

We conclude this section by briefly introducing the fol-
lowing concepts, from the optimization literature, that will
be useful in what follows. In optimization problems involv-
ing multiple objective functions, the concept of the Pareto (or,
dominating) set has been proposed as the right solution frame-
work for optimization problems in general, and multi-attribute
knapsack problems in particular. In this setting, the Pareto set
is the set of optimal solutions that are mutually incomparable,
because improving one objective would lead to a decrease in
another.

In our setting, we consider a single optimization objective,
but we allow the user to dynamically specify the aggregation
constraint parameters. Thus, we can adapt the Pareto frame-
work to the OPAC query problem.

Definition 2 (Pareto Set) The Pareto set u for an OPAC
query defined on a relation � is the set of pairs

� (vVL.� 4 3�� of
all

>
-dimensional vectors VL � ( L # �-,.,.,���L 0 3 and associated

solutions 4 , such that (a) there exists a solution 4w`�� withD.A�($4�587 3 � L A �-9C:x�y:z>
, and (b) there is no other pair(vVL ^ � 4_^ 3 , such that D.A�($48{5 7 3 � L {A , L {A :|L A �-9E:}�G:H>

, and
Ib($4 {@ 3S~ Ib($4 @ 3 .

This is an appealing concept since the Pareto set will con-
tain all the “interesting” solutions. What makes such solutions
interesting is that they are optimal both in terms of the param-
eters realizing them and the profit obtained. For any element(vVL�� 4 3 of the Pareto set, there is no other solution with higher
profit achieved by parameters at most as large in all dimen-
sions as VL . Identifying such a set would be very informative
as it contains valuable information about maximal profits.

Example 2 Given the relation 4 in Table 1, the Pareto points
are the round points in Figure 2. For example, (���� � �g� 3 is a
Pareto point with profit �
� 	 , realized by the entire set of tuples.
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Figure 2: The Pareto set (round points), and an � -Pareto set
(rectangular points) for the relation 4 .

The vector ( 9-���-9 
 3 with profit
9 � 	 is also a Pareto point, the

corresponding set of tuples being
�X� # ��� & �

, because no vector( L # ��L � 3 with
L # :h9.�

and
L � :h9 


has profit more than
9 � 	 .

The notion of Pareto sets are defined for arbitrary classes
of constraint problems and functions, not only for the multi-
attribute knapsack. The constraint problems can be discrete
and, in most such cases, the Pareto set can have exponentially
many elements. This happens because linear programs can be
posed in the Pareto framework, and the convex hull of the so-
lution space for linear programs can have exponentially many
(in the number of objects/variables) vertices.

Relation S a1 a2 Profit
t1 9 11 100
t2 11 9 100
t3 4 4 20

Table 1: Relation S

The size of the Pareto set for an instance of the multi-
attribute knapsack problem can be exponential in the number
of tuples, even if the number of attributes is a small constant.
Consider, for example, the case where there is only one at-
tribute, * #

and a profit attribute
2

, and tuple
�

in relation �
has the form ($� A � � A 3 . In this case, any subset of the tuples in� defines a unique cost and profit vector and no other set can
achieve at least as small a cost and a higher profit. Therefore,
all the subsets of tuples define dominating points.

To circumvent this problem, the concept of approximating
the Pareto set has been introduced [14]. The � -Pareto set, is a
set of “almost” optimal solutions defined as: for every optimal
solution

L
, the � -Pareto set contains a solution that optimizes

each of the optimization criteria within a fraction of � . They
also show that the � -Pareto set for a multi-objective knapsack
problem can be computed efficiently and it is polynomial in
size [14]. It is therefore a very powerful way to argue about
approximate solutions to multi-objective optimization prob-
lems.

Given a relation � , functions D A and I , and � ~ 	
, the � -

Pareto set, u1� is a set of solutions that almost dominate any
other solution.



Definition 3 ( � -Pareto set) The � -Pareto set for an OPAC
query is a set of pairs

� (vVLg� 4 3�� of
>

-dimensional vectorsVL � ( L.#��-,.,-,�L 0 3 and solutions 4 , such that, (a) there exists
a solution 4\`B� with D A ($4 5 7 3S:qL A �-9;:B��:C>

, and (b) there
is no other pair (/VL ^ � 4_^ 3 , such that D.A�($4 {587 3�:�L {A �.9O:���:�>

,L {A : ( 9�� � 3vL A �.9K:q�8:q>
and Ib(P� {� 3�~ ( 9S� � 3 Ib(P� � 3 .

Example 3 If we have � ��	 , � 
 , the set of the rectangu-
lar points in Figure 2 is an � -Pareto set. For example, point( 9-���-9 
 3 is in the � -Pareto set because there is no vector with
coordinates less than

9
, � 
=� ( 9.���.9 
 3 that has profit more than9 � 	�� 9�, � 
 .

The concept of an � -Pareto is very useful. Assuming that
the size of this set is manageable, one could materialize it and
seek to utilize it for query answering. Following the treatment
of [14] for � -Pareto sets, we can show the following:

Theorem 1 The size of the � -Pareto set for an OPAC query in-
stance defined on a relation � is polynomial in � ��� (the size of� ) and

#
� , but may be exponential in the number of attributes.

Proof: (Sketch) Assume that the
>

attributes of � are integers.
Since D A and I are polynomial functions (and more specifi-
cally sums), the domain of each of these functions cannot be
more that ��� �8� for some constant � ~�9

. We can cover the
space of � 9
� ��� �8� � with a set of geometrically increasing inter-
vals with step

9�� � . To cover each domain we need �G(��p( � �8�� 3/3
intervals (for some polynomial � ). Taking the Cartesian prod-
uct we get a total of ��(��p( � �8�� 3 0 3 hyper-rectangles. Clearly,
taking one solution from the interior of each hyper-rectangle
(if such a solution exists) results in an � -Pareto set.

3 Problem Statement
We will provide the description of a technique suitable for ef-
ficiently answering OPAC queries over a database. Our tech-
nique will be approximate but will provide guarantees for its
accuracy, and expose useful tradeoffs.

Assume for a moment that we had complete knowledge of
the collection of OPAC queries one would be interested in.
In that case, a straightforward approach could precompute the
answer of each query, assuming space was not an issue. In that
scenario, any query Q could be answered efficiently by using
the vector of constants VL provided by Q to retrieve the cor-
responding solution. Clearly, such a strategy is not feasible
because exact knowledge of queries is not commonly avail-
able and the space overhead associated with such an approach
could be prohibitive.

Our solution is to preprocess relation � , constructing in-
dex structures enabling efficient answers to arbitrary OPAC
queries. For a query Q , we wish to provide either the exact
answer, or an answer that is guaranteed accurate, for suitably
defined notions of accuracy. Moreover, our construction will
expose a tradeoff between accuracy and space, providing the
flexibility to fine tune the accuracy of our answers. We quan-
tify the accuracy of answers to an OPAC query as follows:

Definition 4 ( � � ��{ -Accurate Answers) Let Q be an OPAC
query specifying a vector of constants VL � ( L # �.,.,-,���L 0 3 , hav-
ing an answer 4 with profit

2
. For any � � � { ~ 	

, an � � � { -
Accurate answer to Q , is a vector VL { � ( L { # �-,.,.,/��L {0 3 and an

answer set 4 { , such that ] �v�-9a:�� :�>
,
L {A : ( 9K� � 3vL A and2 { ( 91� � { 3¡~H2

, where
2 { is the profit of an OPAC query

specifying vector VL { of constants.

Assume that Q is a query specifying a vector VL of constants
and that the answer to Q is a set 4¢`C� with maximum profit2

. An � � � { -accurate answer to Q is an answer set 4 { that is
either the exact answer set 4 or it is an answer set correspond-
ing to a query Q { . Query Q { specifies a vector of constants
having values in each dimension less than or equal to

98� � of
the corresponding values specified by Q . Moreover, the profit
of Q { is strictly higher than a fraction of

9£� � { of
2

. In the
definition, without loss of generality, we assume the same �
fraction is used for all constant values. Different values for �
can be used for each of the values, if this is desirable, � being
defined as a vector in this case. In fact, we do specify a dif-
ferent approximation factor, ��^ , for the profit, to differentiate
between the aggregate functions D and I .

We will preprocess relation � , constructing an index pro-
viding � � � { -accurate answers to OPAC queries. Our prepro-
cessing will consist of solving the multi-attribute knapsack
problem exactly, for a select subset of the candidate query
space of all possible OPAC queries. We will then utilize these
solutions towards providing � � � { -accurate answers to any can-
didate OPAC query on � . This gives rise to the main problem
we address in the paper:

Problem 1 (Efficient OPAC Query Answering) Given a
relation � , an OPAC query without the vector of constants ¤
and � � � { , preprocess � constructing an index being able to
efficiently provide � � � { -accurate answers to any OPAC query
on � that provides the parameters (values) to the constant
vector ¤ .

Example 4 Consider the example of Figure 2 again. Assume� � �v^ �"	 , � 
 . Assume that we are given the query ( 9 	 �.9-¥
3 ,
that is, find a set of objects that satisfy these conditions and
maximize the Profit. The set

�X� # �
is an � � �v^ -accurate answer,

because it satisfies the constraints, and there is no other set
that has higher profit even if we relax the constraints by � .

If the query was ( 9 	 �.9 	 3 , the set
�%� # �

is again an � � � ^ -
accurate answer. Although the set does not satisfy the query
constraints, it satisfies the relaxed constraints ( ( � �.9�9-3":9
, � 
_� ( 9 	 �.9 	 3 ), and has the highest profit among all solutions
that satisfy these constraints.

4 Efficient Answers to OPAC Queries
We will now present our solutions and main technical results
for providing efficient answers to OPAC queries. We will de-
scribe our approach in the following steps:' We will first present a technique to preprocess a rela-

tion � , evaluating solutions to a multi-attribute knapsack
problem on � , for only a select number of vectors of
constants.' Following this preprocessing, we will then show how to
utilize known indices (R-trees), to provide efficient � � � { -
accurate answers to OPAC queries on � .' Finally, we will discuss issues related to the correctness
and completeness of our strategy.



4.1 Preprocessing �
For a relation �O(P* # �.,-,., *10 ��2�3

, assume that the range of thei function applied on elements of each attribute *�A has range� 	 ,.,.,§¦ � . 1.
Any candidate query Q specifies an

>
-dimensional vector

of constants VLC¨ � 	 ,.,-,�¦ � 0 . We will preprocess the space� 	 ,.,.,§¦ � 0 of all vectors of constants that can be specified by
a possible query, creating a number of partitions that aim to
cover the space of all possible queries. The partitions will be
constructed in a way such that, for all possible queries inside a
partition, one can reason collectively about the properties and
values of function I . Moreover, it will allow us to derive an� � � { -accurate answer for any query falling inside a partition.

We start by examining the relationship between the vec-
tors of constants and the values of function I . We first define
the following property between

>
-dimensional vectors of con-

stants:

Definition 5 Let VL � ( L.#��.,-,.,���L 0 3%� VL { � ( L { # �-,.,.,���L {0 3 be two>
-dimensional vectors of constants. We say that VL is domi-

nated by VL { , ( VLK© VL { ) if
L A :CL {A �-9;:q�8:q>

.

We then make the following observation:

Observation 1 Let Q � Qª{ be two queries on � , specifying
vectors of constants VL�� VL { , having result sets 4 � 4 { respec-
tively. If VL«© VL { then Id(+� � 3 � ikj-r l�m�s o�t : Ib(P� {� 3 �
i j.r lgm {s o
t .

Thus, if a vector of constants VL is dominated by a vector VL { , the
profit one can achieve for VL is less than or equal to the profit
one can achieve using the vector VL { . A consequence of ob-
servation 1 is the following: Consider a sequence of queries,
with vectors of constants, VL # © VL � ,.,.,�© VL�e . Observing the
evolution of the values of I in each answer obtained starting
from VL¬e moving towards VL # , function I is monotonically non
increasing. Our technique will trace the evolution of functionI along such sequences of dominated vectors. In order to be
able to provide � � � { -accurate answers, one has to identify vec-
tors of constants that cause the value of function I to change
by an � { fraction. At the same time, the coordinates of such
vectors have to be related by � as required by � � � { -accurate
answers.

Let � 	 ,.,.,$¦ � 0 be the domain of all possible vectors of con-
stants and consider one of these vectors, VLG¨ � 	 ,.,.,§¦ � 0 . Let4 R� be the solution to the query with vector of constants VL
and Id(�4 R� 3 be the associated profit. We will aim to identify
the vector of constants VL { by manipulating the coordinates
of vector VL by fractions of

91� � , such that (a) VL { © VL , (b)( 9p� � { 3 Ib($4 R� {
3�~ Id(�4 R� 3 , where 4 R� { the solution to the OPAC

query with vector of constants VL { and (c) vector VL { is minimal.
Consider the hyper rectangle defined by vectors VL { and VL . By
definition, any query with vector of constants inside the hyper
rectangle has

L { as an � � � { -answer.
Algorithm ­�® > ®.¯�� � ® 2 ��¯ ���°���$±�>³² is shown in Figure 3.

Given the domain of possible vectors of constants � 	 ,.,-,�¦ � 0 ,

1Without loss of generality, assume all attributes have the same domain.

it starts exploring the space by considering the vector cor-
responding to the upper right corner of the space. This is
a vector VL that dominates all other vectors and consequently
according to observation 1, corresponds to an OPAC query
having the maximum profit. This vector is inserted to a
queue and the algorithm iterates while the queue is not empty.
For each vector VL in the queue, the algorithm aims to con-
struct an � � � { -accurate answer for it (and subsequently for
each vector dominated by VL ). The algorithm invokes func-
tion

� ±�L � � ®.4 ±.´$������±�>³² with parameter VL (line (3) in Algo-
rithm ­�® > ®-¯�� � ® 2 ��¯ ���µ����±�>³² ). This function returns a hyper
rectangle ¯ corresponding to a region of space of � 	 ,.,-,�¦ � 0 ,
a solution 4 , a vector V¶ and a profit � . The semantics as-
sociated with this result is that 4 is the solution to a query
specifying vector of constants V¶ having profit � and forms
an � � ��{ -accurate answer for each vector of constants inside¯ . The hyper rectangle is inserted in a multidimensional data
structure, such as an R-tree, along with the associated profit,
vector V¶ and solution 4 . Along with the leaf index entry for¯ , the profit � and vector V¶ are stored as well as a pointer,
pointing to the solution (set of tuple identifiers) 4 on disk.
Consequently, the index acts as a secondary structure point-
ing to � � ��{ -accurate answers on disk. Finally, (in line 6) func-
tion ­ª® > ®.¯�� � ® 2 ��¯ ���°���$±�>³² generates a set of

>
vectors of con-

stants. This set is constructed in a way such that that no vec-
tor in · ® L dominates another; namely ] VL { � VL { { ¨ ·�® L�� VL {�¸©VL { { . This set of vectors is constructed by calling function¶ ¯�®-� � ®.¹�¯ ±�>�� , which accepts as parameters the coordinates
of the newly formed hyper rectangle ¯ and the queue ¤ . Given
a hyper-rectangle ¯ with lower left corner VL { � ( L { # �-,.,.,/��L {0 3 ,
and upper right corner VL � ( L #���,-,.,XL 0 3 , ¶ ¯�®-� � ®.¹�¯ ±�>�� creates
a set of

>
vectors that together dominate the entire space dom-

inated by VL , excluding the space spanned by ¯ . This is the set
of vectors VL A � ( L.#��-,.,-,v��L A$º #-��L ^A ��L AP» # �.,-,.,/��L 0 3 , 9y:h��:¼>

.
Each one of these vectors is inserted in the queue Q , unless it
is already in the queue.

Function
� ±�L � � ®-4 ±.´$�½����±�> accepts as a parameter a vectorVL and identifies a hyper rectangle ¯¡¾|� 	 ,.,-,�¦ � 0 . Let ¯ cor-

respond to a hyper rectangle defined by vectors ( VL { � VL�3 (whereVL { the lower left and VL the upper right corners); VL is the vector
provided to

� ±�L � � ®-4 ±.´$�½���$±�> at input and VL { a vector corre-
sponding to a query having a profit no less than an

96� � { frac-
tion of the profit of the query specifying vector of constantsVL . Given a specific VL , the search for a VL { with the aforemen-
tioned properties is performed in function

� ±�L � � ®-4 ±.´$�½����±�> .
Initially (line (1)) function ¿ ��´µ����À«> �.� ² � L � (employing any
pseudo polynomial algorithm for solving the multi attribute
Knapsack problem) is called to determine a solution 4 (set of
tuples) and the profit � to the query with vector of constants VL .
Then, the vector VL { is formed by decreasing each coordinate ofVL by an

9³� � fraction and function ¿ ��´µ���$Ày> �-� ² � L � is called
again, this time with vector VL { , to determine the solution 4 {
with profit � { , to a query with constant vector VL { . Two cases
of interest arise:

' If the profit � { of the query with vector VL { is larger than an9 � ��{ fraction of the profit of the query with vector VL , then
algorithm

� ±�L � � ®-4 ±.´$�½����±�>³² attempts to minimize vec-
tor VL { by successively reducing its coordinates by a

9Á� �



Algorithm GeneratePartitions( ÂXÃµÂ { Ã/Ä )

Initialize:
Q: Queue of multidimensional constraint vectorsÅ

: R-treeÆ Ã$Ç.Ã�Ç { : constraint vectors
each coordinate of Æ is initially set to be
equal to Ä and, and Æ is added to Q

(1) while Q not empty
(2) ÈÇ = headof(Q)
(3) É$Ê¬Ã ÈË ÃµÌ�Ã/Í³Î = LocateSolution( ÈÇ )
(4) if there is no rectangle Ê%{ in the R-tree

Å
that contains rectangle Ê and Ê not NULL

(5) Insert É$Ê¬ÃÏÌ�Ã ÈË Ã/Í³Î to the R-tree
Å

by storing É$Ê�ÃPÌ�Ã ÈË Î in a leaf index entry
and maintaining a pointer to the set of
tuple identifiers in the solution Í on disk

(6) CreateFront(Q,r)
(7) endif
(8) end-while

Algorithm LocateSolution( ÈÇ )
Input: constant vector ÈÇ�ÐÑÉPÇ Ò/ÃXÓ�Ó�Ó�ÇXÔ�Î
Output: É$Ê�Ã ÈË ÃµÌ�Ó Í³Î
(1) (p,S) = MultiKnapsack( ÈÇ )
(2) if (S is NULL) return (NULL, NULL, 0, NULL)
(3) for i = 1 to n
(4) ÇX{Õ�Ð×Ö 7Ò$Ø�Ù
(5) ÉÚÌ½{ÛÃ/Í³{$Î = MultiKnapsack( ÈÇ { )
(6) if ( Í³{ is NULL) return (NULL, NULL, 0, NULL)
(7) if ( É�ÜÁÝbÂ { Î�Ì {³Þ Ì )
(8) while (Ì {àß áÒ$Ø�Ù { )

(9) ÈÇXâ³Ð ÈÇ { ; Ì½â³ÐaÌ { ; Í�â³ÐãÍ {
(10) for i = 1 to n

(11) Ç {Õ Ð Ö { 7Ò$Ø�Ù {
(12) (Ì { Ã/Í { ) = MultiKnapsack( ÈÇ { )
(13) end-while
(14) return (FormRect( ÈÇ%â , ÈÇ ), ÈÇXâ , Ì½âvÃ/Í�â )
(15) else
(16) return (FormRect( ÈÇ { Ã�ÈÇ ), ÈÇ , Ì�ÃÛÍ )

Figure 3: Algorithm ­�® > ®.¯�� � ® 2 ��¯ ���°���$±�>³²

fraction, updating the solution 4 { and profit � { attainable
(lines (5)-(12)). If it succeeds, the algorithm forms a hy-
per rectangle using the minimal vector VL { and VL , returning
it along with vector VL { , the profit � { and solution 4 { (line
(14)) of VL { .' If, on the other hand, the profit of the query with vectorVL { is smaller than an

9K� �¬{ fraction of the profit of the
query with vector VL , then algorithm

� ±�L � � ®-4 ±.´$�½���$±�>³²
does not attempt to reduce vector VL { further; it forms a
hyper rectangle consisting of the ( VL { � VL�3 returning it along
with the associated profit � , vector VL and solution 4 of VL
(line (16)).

Function ¿ ��´°���$À«> �.� ² � L � with parameter VL is guaranteed
to return a non empty solution, if a solution that satisfies the
constraints exists. The Function will return a null solution
if there is no subset of relation � satisfying the constraints
imposed by vector VL . To formalize this notion we define the
feasible region of relation � :

Definition 6 (Feasible Region) Let �)(+* # �.,-,., *;0 ��2ª3
be a

relation with tuples (P* # �.,.,-, *10 3 . Assume that the i func-
tion applied on elements of each attribute *�A and

2
has range� 	 ,.,.,§¦ � as well. The feasible region of � is the set of all vec-

tors VL dominated by vector ( ¦b�.,.,-,���¦G3
, that dominate at least

one tuple of � .

Algorithm ­�® > ®-¯�� � ® 2 ��¯ ���µ����±�>³² progressively reduces the
values in each dimension of vectors from the queue and even-
tually vectors generated by

¶ ¯�®-� � ®.¹�¯ ±�>�� will be outside the
feasible region. As soon as a vector falls outside the feasi-
ble region of � , function ¿ ��´µ����À«> �.� ² � L � returns null and
progressively the number of elements in the queue decreases.

The following example illustrates the operation of the al-
gorithm:

Example 5 Consider the relation in Figure 4. There are only
two tuples,

�%#
and

���
, and the range of the ä function on both

attributes is � 	 �-9 
 � . Assume that � � ��^ �<	 , � 
 .
The algorithm starts at ( 9 
 �-9 
 3 and finds that the solution

at vector ( 9 
 �-9 
 3 is
�%� # ��� � �

with Profit � 	
	 . The next vec-
tor that is investigated by

� ±�L � � ®.4 ±.´$������±�> is
##�å ��� ( 9 
 �-9 
 3 �( 9 � �-9 � 3 The best solution at ( 9 � �.9 � 3 is either
�X�-#X�

, or
�X���g�

,
both with Profit

9 	
	
. Since

9 	�	 � 9
, � 
aæ � 	�	 , the algorithm
does not extend this rectangle further. It adds the rectangle� 9 � �Ï( 9 
 �-9 
 3X� ( 9 � �.9 � 3 � in the R-tree, and associates with
this rectangle the solution at the top corner, namely

�X�.# �Û���.�
,

with Profit � 	
	 .¶ ¯�®-� � ®.¹�¯ ±�>�� then adds the following 2 points in the
queue: ( 9 
 �.9 � 3 and ( 9 � �.9 
 3 . At this point, the top of the
queue is ( 9 
 �.9 � 3 . � ±�L � � ®-4 ±.´$�½����±�> finds that a solution for
this point is either

�X� # �
or

�%� � �
, both with Profit

9 	
	
. The

algorithm finds the bottom corner, which is
##�å ��� ( 9 
 �.9 � 3 �

( 9 � �-9 	 3 (rounding up the numbers to simplify the example)
which still has a solution with profit 100, so it extends this
to

##�å ��� ( 9 � �.9 	 3 � ( 9 	 ��¥
3 which still has the same solution
(
�X�X#%�

), and then to ( ¥���ç�3 , which does not have any feasible
solution. So at this point it backs up, and adds the rectan-
gle ��� � �µ( 9 
 �.9 � 3X� ( 9 	 ��¥
3 � with solution

�X�%#X�
and Profit

9 	
	
to the R-tree.

¶ ¯�®-� � ®.¹�¯ ±�>�� then adds the points ( 9 
 ��¥�3 and
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CONTENTS OF QUEUE:

  5   10   100	 (t2)
 10    5   100	 (t1)
 15  15   200	 (t1, t2)
  

 c1   c2     P    Solution

   t1   10    5    100
   t2    5    10   100

 c1   c2    Profit

DATABASE

RESULT FOR c1 & c2 <=15

EXAMPLE LEAF ENTRY

R1 Profit=200   Sol. .
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0
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15
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... until queue is empty

Figure 4: The operation of algorithm ­�® > ®.¯�� � ® 2 ��¯ ���°����±�>³²
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Figure 5: Example partitioning of the space of two uniformly
distributed attributes into a set of rectangles for a dataset with
Gaussian profit distribution.

( 9 	 �-9 � 3 to the queue. Similarly, considering vector ( 9 � �-9 
 3
leads to the insertion of rectangle � �

in the R-tree, and vec-
tor ( 9 
 ��¥
3 leads to the insertion of rectangle �;� . The next
vector at the top of the queue is ( 9 	 �.9 � 3 , which is con-
tained in rectangle � �

. So no new rectangle is created, but
the vectors ( 9 	 �-9 	 3 and ( ¥��.9 � 3 are inserted in the queue by¶ ¯�®-� � ®.¹�¯ ±�>�� . The operation of the algorithm for this exam-
ple is given in Figure 4.

Figure 5 presents an example of the partitioning generated
by algorithm ­ª® > ®.¯�� � ® 2 ��¯ ���°���$±�>³² .
4.2 Query Answering
The outcome of algorithm ­�® > ®-¯�� � ® 2 ��¯ ���µ����±�>³² , is a multi-
dimensional index (e.g., an R-tree), providing access to a col-
lection of hyper rectangles. For a query Q specifying a vector
of constants VL , we obtain an � � � { -accurate answer as follows:
We use VL and search the multidimensional index seeking hy-
per rectangles containing VL and let * >³²

be the set of hyper
rectangles identified. Each of these hyper rectangles obtained
from the leaves of the index, has a profit and a vector associ-
ated with it and points to a set of tuple identifiers on disk. Any

of these solutions is an � � � { answer and returning the vector,
profit, and set of tuple identifiers associated with any hyper
rectangle in * >³²

, suffices. In the case * >³²
is empty, then

there is no feasible answer to Q in relation � and thus there is
no possible � � �¬{ -accurate answer.

Example 6 Consider again the example of Figure 4. As-
sume we are given query ( 9 � �-9 � 3 . This query vector falls in
rectangle � 9 � �µ( 9 
 �-9 
 3%� ( 9 � �.9 � 3 � . We answer this query
with the solution

�X�%#������.�
, which is associated with � 9

, and
which has Profit � 	�	 . This is a � � ��^ -accurate answer: From
the definition of the � � ��^ -accurate answer, we have to return
a solution which satisfies constraints

L ^A æ ( 9�� � 3/L A � and
profit

2 ^�( 9£� � { 3K~!2K,
For the constraint vector ( 9 � �.9 � 3 , the

best solution is either
�X� # �

or
�%� � �

, with profit
9 	
	

. Since9 
 : ( 9Á� � 3%9 � � 9
, � 
K� 9 � , the solution
�X� # �Û� � �

satisfies the
relaxed constraints, and, since � 	�	ª� 9�, � 
 ~H9 	
	

, the profit
constraint is satisfied as well. Intuitively, what happens is
that, we do not give an exact answer, but we give an answer
that is at least as good (and may in fact be much better) if we
are willing to relax the constraints by a factor of � .

Let’s assume a query ( 9 � � � 3 . This vector falls in rectangle��� . The solution we return is the one associated with rectan-
gle ¯�� :

�%� # �
, with Profit

9 	�	
. In this case,

L ^A æ 9�, � 
 L A , and2 ^ � 2
, so this is a � � �v^ -accurate answer as well.

4.3 Correctness and Completeness
Algorithm ­�® > ®.¯�� � ® 2 ��¯ ���°����±�>³² guarantees that every feasi-
ble member of the space of all possible constant vectors will
be contained in at least one hyper rectangle. The algorithm
will cover the space of candidate query vectors using hyper
rectangles. In particular:

Theorem 2 Let VL be the constant vector associated with an
OPAC query Q . Assume there exists a subset of tuples that sat-
isfy the constraints VL . Then algorithm ­�® > ®-¯�� � ® 2 ��¯ ���µ����±�>³² ,
creates at least one hyper rectangle containing vector VL .
Proof: Algorithm ­�® > ®-¯�� � ® 2 ��¯ ���µ����±�>³² covers the entire
feasible space: The first vector dominates the entire space.



Each iteration of the algorithm takes a vector from the queue,
uses this vector to form the upper right corner of a new hyper
rectangle, and adds a new set of vectors in the queue that to-
gether dominate the space that the original vector dominated
with the exception of the space of the hyper-rectangle. Since
the algorithm terminates when no vectors are in the queue,
it follows that the entire feasible space is covered by hyper-
rectangles.

The following result demonstrates that the answer to any
OPAC query, Q , specifying a vector of constants VL , obtained
from the index, is an � � � { -accurate answer.

Theorem 3 Let Q be a query specifying vector VL as a con-
stant vector. Let ¯ be a hyper rectangle containing VL , gener-
ated by algorithm ­�® > ®.¯�� � ® 2 ��¯ ���°����±�>³² . The answer to Q
returned from the index, consisting of a vector, a set of tuples,
and a profit is an � � � { -accurate answer.

Proof: Let � � be the profit of the lower left corner vectorVL%� , and � # be the profit of the upper right corner vector VL�#
of multidimensional rectangle ¯ . Assume a vector VL located
inside ¯ .

If � � ( 9K� ��{ 3GM � # , then the lower left corner is an � � �¬{ -
accurate answer: since VL � is dominated by VL # , the optimal
profit for VL is at most � # , and therefore at most an

9.� � { fraction
higher than � � . In this case algorithm ­ª® > ®.¯�� � ® 2 ��¯ ���°���$±�>³²
stores in the index entry, along with ¯ , a vector with coordi-
nates equal to VL � and a profit � � and thus the answer returned
is an � � ��{ -accurate answer.

If on the other hand � � ( 91� � { 3 æ � # , then the profit of
the lower left corner may be more than a fraction of

9K� �X{
smaller than the profit of the query. However, by the con-
struction of the algorithm ­�® > ®.¯�� � ® 2 ��¯ ���°���$±�>³² this can only
happen if all the values of the vector VL are within an

91� �
fraction of the values of the upper right vector VL # . In this case,VL # provides an � � � { -accurate answer since it gives a much bet-
ter profit with just an � relaxation of the constraints. Algo-
rithm ­�® > ®-¯�� � ® 2 ��¯ ���µ����±�>³² will associate the vector VL�# and
its profit with the index entry, along with ¯ .

Restricting our attention to monotone classes of aggrega-
tion functions, we can improve the computational aspects re-
lated to the construction of an � -Pareto set. The following
theorem shows that the total number of hyper-rectangles rep-
resented in our index is polynomial.

Theorem 4 The number of vectors that create new multidi-
mensional rectangles at any step of the execution of algorithm
GeneratePartitions, is polynomial to

#
� .

Proof: Assume that the range of the ä function applied on
the * A attribute values of a non-empty subset of the tuples is� 9�,.,.,§¦ � for each

�
. Here we assume that the attributes have

non zero values; to deal with zero values we have to add the
interval from zero to the smallest non zero value as one addi-
tional interval in the partition.

Then we can partition the range in �G(qè é�ê�ëè é�ê-ì
# » ��í 3 � �G(Xè é�ê�ë� 3

intervals (for
	�æ � æ 9.3

, geometrically increasing with step9�� � . Taking the Cartesian product of the
>

attributes, we cre-
ate �G(v( è é�ê�ë� 3 0 3=> dimensional points. Note that, by the con-
struction of the algorithm, every vector inserted in the queue

corresponds to one of these points. It follows that the number
of hyper rectangles in the index is polynomial to

9-î � and to
the size of the range of the ä function applied on the attribute
values, and is exponential to the number of the attributes.

In section 5 we will experimentally evaluate the effects
data distribution has on the execution time of algorithm­ª® > ®.¯�� � ® 2 ��¯ ���°���$±�>³² .
5 Experimental Evaluation
In this section we present the results of a comprehensive set of
experiments, aiming to experimentally investigate the proper-
ties of algorithm ­�® > ®.¯�� � ® 2 ��¯ ���°���$±�>³² . We seek to quantify
the tradeoffs in terms of construction time and accuracy of our
proposed techniques.

In our experiments we evaluate the impact of the pa-
rameters � and � { on the execution time of algorithm­ª® > ®.¯�� � ® 2 ��¯ ���°���$±�>³² . We present scalability experiments,
varying the number of tuples of the underlying relation, the
sizes of the attribute domains and the number of attributes (di-
mensionality of the problem). We experimentally evaluate the
accuracy of our approach. Finally we experimentally evalu-
ate the efficiency of the technique, measuring the size of the
index, and the query response time. All experiments were per-
formed on an Athlon 1.3Ghz with 1Gb of memory and 60GB
disk space.

5.1 Description of datasets
Our experimental test bed includes datasets with three distinct
distributions in the profit attribute, namely Uniform, Gaussian
and Zipfian. The rest of the attributes ( * # ,.,-,�� *10 ) on which
constraints are posed are independently and normally dis-
tributed. We vary the number of these attributes from two (2D
data sets) to three (3D data sets), effectively constructing three
and four dimensional data spaces. For each profit attribute
distributionwe tested, we also produced data sets, introducing
correlations between the attributes * #8,-,., * 0 . For correlated
attributes the correlation coefficient ranged between 0.7-0.8.
Therefore, we had at our disposal a large collection of diverse
datasets, that helped us understand and quantify the effect of
the various parameters on the performance of our techniques.

5.2 Index construction time
With this set of experiments, we evaluate the impact of the
parameters � and � { , the dataset distribution, attribute corre-
lation, and dataset size on the total index construction time.
This time consists of two distinct components:

' MultiKnapsack Execution Time. This is the total time
required by all invocations to the MultiKnapsack func-
tion in algorithm ­�® > ®.¯�� � ® 2 ��¯ ���°����±�>³² . This time de-
pends on the distributional characteristics of the data sets
and their dimensionality.

' Partition Generation Time. It includes the time re-
quired to cover the domain space with hyper-rectangles
of solutions. This step is directly affected by the param-
eters � and � { , as well as the dimensionality of the under-
lying data space.

Figures 6 and 7 report the total index construction time for
the 2D datasets (two attributes * #-� * �

and a profit attribute



2
), using correlated and uncorrelated * # ,-,., *10 attributes for

Zipfian distributions. The values of the attributes in all the
experiments are between 1 and 30. The MultiKnapsack exe-
cution time is depicted by transparent bars that start from zero
and span downwards, while the colored bars represent the par-
tition generation time and are shown above the zero level. The
total time, representing the total index construction time is the
sum of the two parts in each bar. It is evident that the majority
of time is spent in the execution of the MultiKnapsack func-
tion. In the presence of correlations between the attributes the
running time does not exhibit a substantial increase. We note
that the execution time of function MultiKnapsack as well as
its performance trends for various data sets, are pertinent to
the specific method we used to solve this optimization prob-
lem. Any of the known and efficient techniques in the litera-
ture [7] can be used to implement this function.

We note from figures 6 and 7 that the construction time
is polynomial to

9.î � and to
9-î ��^ . We also note that the con-

struction time is similar in the case of correlated and uncor-
related attributes. Due to space limitations, in the remainder
of this section, we present our results only for datasets with
independently and uniformly distributed values in attributes* #Á,.,-, * 0 , varying the distributions in the profit attribute

2
.

and assuming � � �v^ .
Figures 8 and 9 report the results of the experiments vary-

ing � for 2D and 3D data sets (2 or 3 attributes and a profit
attribute) respectively. The execution of function MultiKnap-
sack generally dominates the total construction time. How-
ever, when the value of � becomes very small the time required
to generate the partitions becomes significant. The previous
experiments evaluated the impact of distributional character-
istics of the data sets in the overall index construction time.
In Figures 10 - 13, we report on experiments that investigate
the impact of quantitative data set characteristics on the over-
all index construction time. In particular, we examine how
the MultiKnapsack execution time and the partition genera-
tion time are impacted by: (a) the cardinality of the underly-
ing relations (Figures 10 and 11), (b) the attribute domain size
(Figures 12, 13), and (c) the number of attributes of the rela-
tion. For this reason, we keep the parameters � and � { equal to
0.1 and vary the above parameters observing their impact.

We make the following experimental observations:
1. The MultiKnapsack execution time is independent of � .

This happens because in the implementation we ran the
dynamic programming once, at the beginning of the in-
dex construction algorithm, and used the partial results
during the index construction (Figures 8, 9).

2. The Partition Generation time is proportional to�G(/( #� 3 0�»
# 3

where
>

is the number of attributes, as was
expected from the analysis (Figures 8, 9).

3. The MultiKnapsack execution time is linear to the size
of the dataset (number of tuples, Figures 10 and 11) and
the size of the domain (Figures 12, 13). This is also
expected, since the dynamic programming algorithm we
are using is linear to both of these variables.

4. The Partition generation time is constant to the size of
the dataset (Figures 10 and 11).

5. The Partition generation time increases with an increase
of the domain size. Larger attribute domains increase the
search space of the algorithm we adopted for the solu-
tion of the MultiKnapsack problem, therefore increasing

the overall time required for the solutions of the multiple
knapsack problem. Moreover, the space that algorithm­�® > ®.¯�� � ® 2 ��¯ ���°����±�>³² has to cover increases, impacting
the time required to generate the partitioning(Figures 12,
13).

These experiments quantify the time required by this pre-
processing step for index generation and construction. The
advantage is that any subsequent user query, requires a simple
probing into the multidimensional index (e.g., an R-tree) to
obtain a solution. Without the presence of such an index the
only alternative would have been the execution of the MultiK-
napsack algorithm for every new query, incurring a very large
overhead for any query.
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5.3 Evaluating the index accuracy and performance
Our index provides the guarantee of � � ��^ -accurate answers.
In this section we demonstrate this fact empirically, and we
investigate the effects of the accuracy guarantees on the index
size.

We issue 25000 queries uniformly at random on the space
of all possible queries and we report the average error of the
profit returned by our index over the actual query profit (calcu-
lated by the MultiKnapsack algorithm). We define the average
accuracy of a set of random queries as:

ïKð%ñ�ï Ç�ÇXò�Ê�ó�ÇXô1Ð Üõ ö�õ
÷ ø³÷ù
ú�û Ò É�Ü�ü

õ ý Ê�þ�ÿ������ Ô�� á	� � Ö �8ü ý Ê�þ�ÿ���� Õ Ô�
���
 õý Ê�þ ÿ������ Ô�� á	� � Ö � Î
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Figure 9: Scalability: Changing � . 3D datasets.

The expectation is that * f�� * LXLX� ¯�� L��E~}9-î ( 9£� �¬{ 3 in ac-
cordance to the accuracy guarantees provided by our construc-
tion.

Figures 14 to 17 present the * f�� * LXLX� ¯�� L�� of the index
for various values of � { and for different dataset (Figures 14
and 15) and domain (Figures 16 and 17) sizes. The lower
manifold in each of these figures gives the size of the index
built in each of the cases. The results are consistent with our
theoretical analysis and the average reported error is below the
error expected by the �¬{ value specified at index construction
time. It is interesting to observe that in all cases, for each �X{
value the ratio of the profit of the answer returned by our index
to that of the actual query profit, is well above the worst case
bound of

9-î ( 9�� � { 3 , consistently across all profit distributions
tested and data sets of increasing number of attributes. This
empirically signifies, that the profit of the answer returned by
our index, is close to the actual query profit.

With respect to the index size, we can make the following
observations:

1. The size of the index is polynomial to
9.î � . This is clearly

expected from the analysis, a smaller � requires more
rectangles to cover the feasible space.

2. The index size depends on the domain size. The main
reason is that we need more rectangles to cover the space.
Also, the size of the � -Pareto set may increase in a larger
domain. (Figures 16 and 17).

3. The size of the index does not generally depend on the
number of tuples in the relation, as long as the domain
size is constant (Figures 14 and 15).
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Figure 10: Scalability experiments: Changing the number of
tuples. 2 constraints, uncorrelated attributes. The top bar is
the time for the Partition generation, and the bottom bar the
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Figure 11: Scalability experiments: Changing the number of
tuples. 3 constraints, uncorrelated attributes. The top bar is
the time for the Partition generation, and the bottom bar the
time for the MultiKnapsack procedure.

Finally, Figures 18, 19 give the average query response
time for 25000 uniform random queries. We vary the dataset
distributions, number of attributes, � values, and domain sizes.
The experimental results show that the query response time
depends mainly on the index size, and the main variables that
affect that, namely the domain size and the number of at-
tributes. Nevertheless, the query response time is small, and
the reason is that the indices we build do not contain many
overlapping hyper rectangles. Thus, the average number of
rectangles intersected by a query in our experiments was less
than two.

6 Related Work
We are not aware of work directly related to the work pre-
sented herein on OPAC Queries. Such queries are introduced
as a novel query type seeking to provide greater query flexibil-
ity on top of relational data sources. Recently proposed, but
not directly related, query types include preference queries
[1, 12, 3, 13, 8, 17] and top-k queries [10, 9, 2].

The notion of Pareto optimality is discussed in the context
of preference queries in database systems in [11]. A special-
ized form of Pareto optimality is introduced in which a user
seeks the tuple with the highest values in a collection of select
attributes, among all possible tuples in the database. Thus, in
this specialized form, an answer is Pareto optimal, if it returns
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Figure 12: Scalability experiments: Changing the size of the
attribute domain. 2 constraints, uncorrelated attributes. The
top bar is the time for the Partition generation, and the bottom
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Figure 13: Scalability experiments: Changing the size of the
attribute domain. 3 constraints, uncorrelated attributes. The
top bar is the time for the Partition generation, and the bottom
bar the time for the MultiKnapsack procedure.

the tuple that dominates all other tuples in the database, in a
set of specified attributes.

There is a rich theory and literature related to solutions of
optimization problems in the presence of constraints [7, 5].
[14] investigated the notion of � -Pareto, under arbitrary con-
straint problem classes, including the multi-attribute Knap-
sack. They characterized the conditions under which the � -
Pareto set is polynomial in the number of variables/objects.
In particular, they showed that for linear constraints the size
of the Pareto set is polynomial in the number of variables, al-
beit exponential in the number of constraints. They gave an
algorithm to construct a polynomial size � -Pareto set. How-
ever, due to its generality this technique can be very expensive
regardless of the characteristics of the underlying data distri-
butions. Subsequently, this concept was applied to query op-
timization [15].

7 Conclusions
We introduced a new class of queries, Optimization under
Parametric Aggregation Constraint (OPAC) queries. Such
queries aim to identify sets of database tuples constituting so-
lutions to a large class of optimization problems involving the
database tuples. We introduced algorithms that preprocess re-
lations and construct indexes to efficiently provide answers to
such queries. We analytically quantified the accuracy guar-
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antees of our construction and presented a thorough evalua-
tion highlighting the impact of various parameters on the per-
formance of our schemes. Although we considered the case
where the vector of constants of an OPAC query was fully
specified our framework can handle various special cases as
well. For example, the special case of an one dimensional
vector of constants can easily be realized in our framework
using B-trees. More generally, even when only some of the
dimensions in the vector of constants are specified our frame-
work can proceed by manipulating the hyper plane defined by
this vector; we omit details due to lack of space.

This work raises new questions and opens avenues for ad-
ditional work in this area. Considering this type of queries,
in conjunction with other relational operators and addressing
efficient processing and optimization issues is an intriguing
research direction.
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