
AniPQO: Almost Non-intrusive Parametric Query

Optimization for Nonlinear Cost Functions

Arvind Hulgeri ∗ S. Sudarshan

Indian Institute of Technology, Bombay
{aru, sudarsha}@cse.iitb.ac.in

Abstract

The cost of a query plan depends on many pa-
rameters, such as predicate selectivities and
available memory, whose values may not be
known at optimization time. Parametric
query optimization (PQO) optimizes a query
into a number of candidate plans, each opti-
mal for some region of the parameter space.
We propose a heuristic solution for the PQO
problem for the case when the cost functions
may be nonlinear in the given parameters.
This solution is minimally intrusive in the
sense that an existing query optimizer can be
used with minor modifications. We have im-
plemented the heuristic and the results of the
tests on the TPCD benchmark indicate that
the heuristic is very effective. The minimal
intrusiveness, generality in terms of cost func-
tions and number of parameters and good per-
formance (up to 4 parameters) indicate that
our solution is of significant practical impor-
tance.

1 Introduction

The cost of a query plan depends on various database
and system parameters. The database parameters in-
clude selectivity of the predicates and sizes of the rela-
tions. The system parameters include available mem-
ory, disk bandwidth and latency. The exact values of
these parameters may not be known at compile time.
For example, in the case of embedded SQL queries
containing parameters (unbound variables), and pre-
pared statements in JDBC/ODBC, the values of the

∗ Work supported by an Infosys Fellowship

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003

parameters are known only at query execution time.
Similarly, the memory available for query execution is
not known until the query execution time.

Optimizing a query afresh each time it is executed
can add substantially to the cost of evaluation. On
the other hand, optimizing a query into a single plan
at compilation time may result in a substantially sub-
optimal plan if the actual parameter values are differ-
ent from those assumed at optimization time [GW89].
To overcome this problem, parametric query optimiza-
tion (PQO) optimizes a query into a number of candi-
date plans, each optimal for some region of the param-
eter space [CG94, INSS92, GK94, Gan98]. At query
execution time, when the actual parameter values are
known, an appropriate plan can be chosen from the
set of candidates, which can be much faster than re-
optimizing the query.

Earlier work on PQO by [GK94, Gan98] handled
only linear cost functions and some restricted forms of
non-linear cost functions. Real world cost functions
are often nonlinear and may be discontinuous. Earlier
proposals that handle the general case of non-linear
cost functions (e.g. [CG94, INSS92]) have severe draw-
backs, as outlined in Section 7.

In earlier work [HS02] we proposed an intrusive so-
lution for the case of piece-wise linear cost functions,
but that algorithm requires substantial changes to the
query optimizer, which may not be feasible in a prac-
tical setting.

In this paper, we propose a heuristic solution, which
we call AniPQO (Almost Non-Intrusive Parametric
Query Optimization), for the PQO problem for the
general case when the cost functions may be nonlinear
in the given parameters. AniPQO has the following
desirable properties:

• AniPQO works with arbitrary nonlinear and dis-
continuous cost functions. An experimental eval-
uation suggests that it works well for standard
cost models for relational operators, which involve
non-linearity and discontinuity.

• AniPQO conceptually works for an arbitrary
number of parameters. Although the optimiza-

tion cost (and in fact even the number of paramet-
rically optimal plans) can increase exponentially
with the number of parameters, our experimen-
tal evaluation suggests that the algorithm is quite
practical for up to 4 parameters.

• AniPQO is minimally-intrusive in the sense that
it does not need to modify the conventional query
optimizer, and can merely use it as a subroutine
(invoking it with different parameter values). We
also show how a tighter integration can lead to
faster optimization.

• AniPQO uses an AND-OR DAG representation of
plan alternatives, which gives two benefits: (a) it
reduces the run-time overhead of plan choice, and
(b) it increases the quality of the heuristic solu-
tion; being a heuristic, AniPQO may miss some
optimal plans, but the DAG representation allows
plan hybrids to be considered at run time, result-
ing in a better plan, without any extra effort. (See
Section 5 for details.)

To the best of our knowledge, AniPQO is the first
practical non-intrusive algorithm for the general case
of PQO with nonlinear cost functions.

We have implemented the AniPQO algorithm and
present a performance study. The study shows that
the set of plans found by AniPQO is a “good” subset
of the optimal plans i.e. for each point in the param-
eter space of interest either the optimal plan is in the
set of plans found or the minimum cost plan amongst
the plans found is only slightly costlier that the ac-
tual optimal plan; the maximum performance degra-
dation observed is very small (3.5%). The time taken
for optimization is within a reasonable factor of the
time taken by ordinary query optimization when the
number of parameters is small (up to 4 parameters);
although more expensive than single query optimiza-
tion, the extra effort for PQO can be amortized over a
large number of calls with different parameter values.

The rest of the paper is organized as follows. Sec-
tion 2 formally defines the parametric query optimiza-
tion problem and provides background material on
polytopes. Section 3 describes AniPQO, while Sec-
tion 4 describes the representation and manipulation
of the parameter space decomposition. Section 5 de-
scribes the DAG representation of the plans. Section 6
presents the results of the experimental evaluation of
AniPQO. Related work is described in Section 7, while
Section 8 concludes the paper.

2 Background

In this section we formally define the parametric query
optimization problem and provide some background
material on polytopes.

2.1 Problem Definition

The parametric query optimization (PQO) problem is
defined as follows [Gan98]: Let s1, s2, . . . , sn denote n
parameters, where each si quantifies some cost param-
eter. Let the cost of a plan p be a function of these n
parameters and let it be denoted by Cp(s1, s2, . . . , sn).
For every legal value of the parameters, there is some
plan that is optimal for that value. Given a query and
n parameters, the maximum parametric set of plans
(MPSP) is the set of plans, each member of which is
optimal for some point in the n-dimensional parameter
space. The MPSP may be defined as:

MPSP = {p | p is optimal for some point in the
parameter space}

For every legal value of the parameters there is a
plan in the MPSP that is optimal for that value and
vice-versa. The region of optimality for a plan p is
denoted by r(p) and is the set defined as

r(p) = {(s1, s2, . . . , sn) | p is optimal at
(s1, s2, . . . , sn)}

A parametric optimal set of plans (POSP) is a min-
imal subset of MPSP that includes at least one opti-
mal plan for each point in the parameter space. The
parametric query optimization (PQO) problem is to
find a POSP ; a mechanism to find the optimal plan
at a given point in the parameter space at run-time is
also required. For simplicity in notation, we assume
that there is only one POSP ; however our algorithm
does not depend on this assumption.

The parameter space decomposition induced by a set
of plans is defined as the partitioning of the parameter
space into the regions of optimality of the plans in the
set.

2.2 Polytopes

In the proposed solution, we need to represent and
manipulate parameter space partitions. For paramet-
ric query optimization with linear cost functions, the
regions of optimality are convex and, if the parame-
ter space of interest is a convex polytope, the regions
of optimality are also convex polytopes. For nonlinear
cost functions, the regions of optimality are not convex
but we approximate them with convex polytopes.

We formally define polytopes below [Mul94].
A convex polytope in <d is a nonempty region that

can be obtained by intersecting a finite set of closed
halfspaces. Each halfspace is defined as the solution
set of a linear inequality of the form a1x1 + a2x2 +
· · · + adxd ≥ a0, where each aj is a constant, the xj ’s
denote the coordinates in <d, and a1, a2, . . . an are not
all zero. The boundary of this halfspace is the hyper-
plane defined by a1x1 + a2x2 + · · · + adxd = a0. We
denote the bounding hyperplane of a halfspace Mi by
∂Mi.

Let P = ∩iMi be any convex polytope in <d, where
each Mi is a halfspace. A halfspace Mi is called re-
dundant if it can be thrown away without affecting

h2

h3

h4

h6

h1

h5

h7

1−faces
(edges)

0−faces
(vertices)

�
�
�
�
�

�
�
�
�
�

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�
�
�
�
�

�
�
�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������
�������
�������
�������
�������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
��
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

a

b c

d

e

f

debcab efcd

a b c d e f

fa

abcdef 2−face
(polygon)

(a)

(b)

Figure 1: (a) a polytope and (b) its facial lattice

P . This means that the intersection of the remain-
ing halfspaces is also P . Otherwise, the halfspace is
called non-redundant. The hyperplanes bounding the
non-redundant halfspaces are said to be the bounding
hyperplanes of P . A facet of P is defined to be the in-
tersection of P with one of its bounding hyperplanes.
Each facet of P is a (d − 1)-dimensional convex poly-
tope. In general, an i-face of P is the (non-empty) in-
tersection of P with d− i of its bounding hyperplanes;
a facet is a thus a (d − 1)-face. For example, in three
dimensions, a side (facet) of the polytope is a 2-face,
an edge of the polytope is a 1-face, and a vertex is a
0-face.

Figure 1(a) shows a polygon abcdef in <2 (a poly-
tope in <2 is a polygon.) It is defined by the halfspaces
h1, h2, . . . , h7. On which side of the bounding hyper-
plane the corresponding halfspace lies is shown by an
arrow. Note that the halfspace h7 is redundant. (Part
(b) of Figure 1 is discussed later.)

3 An overview of AniPQO

In this section we give an overview of AniPQO.
In general we are not interested in the whole param-

eter space <n (where n is the number of parameters)
as only a part of it would constitute legal combinations
of the parameter values. We assume that the parame-
ter space of interest is a closed convex polytope, which
we call the parameter space polytope.

Conventional query optimizers return an optimal
plan along with its cost (at a given point in the pa-
rameter space). For parametric query optimization,
we also need to find the cost of a given plan at a given
point in the parameter space. Generally, a query opti-
mizer does not support this but one can easily extend
the statistics/cost-estimation component of the opti-
mizer to do it.
Parametric query optimization involves two steps:

Algorithm: AniPQO

Input: n (the number of parameters),

parameter space polytope /* A polytope in <n */

Output: AniPOSP ⊆ POSP

DecompositionVertices =

vertices of parameter space polytope

CSOP = ∅ /* Current set of optimal plans */

VerticesOptimized = ∅

While DecompositionVertices − VerticesOptimized 6= ∅

v = a vertex from

DecompositionVertices − VerticesOptimized

p = ConventionalOptimizer(v)

/* p is one of the optimal plans at v */

VerticesOptimized = VerticesOptimized ∪ {v}

If p 6∈ CSOP

CSOP = CSOP ∪ {p}

DecompositionVertices = vertices of parameter

space decomposition induced by CSOP

/* Can be done using algorithm

UpdateDecompostionVertices

from Figure 4 in Section 4.3 */

return CSOP

Figure 2: Algorithm to find POSP

• Finding the POSP (or as a heuristic, a subset
thereof).

• Picking an appropriate plan from this set at run
time, when the parameter values are known.

The pseudo code for the AniPQO heuristic for find-
ing POSP is shown in Figure 2. The procedure con-
tains an abstraction for the procedure for finding the
vertices of the parameter space decomposition induced
by a plan set. It starts with an empty set of plans,
CSOP and the parameter space decomposition is the
parameter space polytope itself. At each step, a non-
optimized vertex of the decomposition is optimized. If
the plan returned is not in CSOP , it is inserted in
CSOP and the parameter space polytope is decom-
posed afresh based on the new CSOP . The procedure
is repeated till all the vertices of the decomposition are
optimized.

At an abstract level this algorithm is the same as
those from [Gan01, HS02]1. For the case with linear
cost functions, the algorithm is exact and finds the
complete POSP [Gan01, HS02].

However we propose to use it as a heuristic when
cost functions are nonlinear, and hence it may not find
all the plans in POSP . AniPQO differs from the ear-
lier algorithms in the details of how it performs the
parameter space decomposition, taking non-linearity

1Algorithms from [Gan01, HS02] mainly differ in that the
former operates in <n and the latter operates in <n+1, where
n is the number of dimensions; the abstraction we present here
works in <n and, hence, is closer to the algorithm from [Gan01].

bcd f

abe f

bde f

A

ea

d

bc

cd

de

ae

ab

c

D

E

C

B

(b)

A

C

ea

d

bc

cd

de

ae

ab

c

F

abf

def

bcf
cdf

aef

B

E

D

(d)

ea

d

bc

cd

de

ae

ab

c

E

C

f

f

f

abf
aef

def

cdf

bcf

A

D

B

(c)

A

C

E

ea

d

bc

cd

de

ae

ab
abe

c

bcd D

bde
B

(a)

Figure 3: Carving out the region for a new plan in CSOP

of cost functions into account; the details are described
in Section 4. We use the term AniPOSP to refer to the
set of plans returned by AniPQO.

Example 3.1 Consider an example presented in Fig-
ure 3. The cost functions are nonlinear and the pa-
rameter space polytope is a 2-dimensional rectangle.
Let CSOP be {A, B, C, D, E}. Figure 3(a) shows
the decomposition of the parameter space induced by
CSOP . Each vertex of the decomposition is tagged by
the set of plans from CSOP that are optimal (within
CSOP) at the vertex; the regions of optimality of the
plans in the set surround the vertex.

We optimize the vertex with tag bde and let this
return a new plan F . We add this plan to CSOP and
the resultant parameter space decomposition is shown
in Figure 3(d). We get the new decomposition from
the old one by carving out the region of optimality
for the new plan F . Figures 3(b), (c) and (d) show
the steps in this operation; the steps are explained in
detail later. �

Optimality threshold (t): If the cost of a plan at
a point is within a small percent of the optimal plan
at the point then we may treat the plan to be optimal
at the point.

We propose the following modification to the al-
gorithm to bring down the number of calls to the
optimizer: Consider an intermediate parameter de-
composition induced by CSOP . We optimize an un-
optimized vertex v and find a new plan p 6∈ CSOP .
If the cost of some plan p′ ∈ CSOP is within a small
percent t of the cost of p at v then we may discard p
and treat p′ as optimal at v. We mark v as optimized;
CSOP and the intermediate parameter decomposition
continue to be the same.

In the case of linear cost functions, the above pro-
cedure guarantees that at any point in the parame-
ter space polytope the best plan in the approximate
POSP is within t% of the optimal plan; see [HS03]
for details.

For the case with nonlinear cost functions the pro-
cedure can not guarantee such a bound and can only
be used as a heuristic. We adopt it with the following
modification: Instead of discarding the new plan p, we

do not use it for the further decomposition of the pa-
rameter space polytope, but include it in AniPOSP.
This will help boost the quality of results.

At runtime, when the parameter values are known,
the optimal plan has to be chosen. One approach is to
index the parameter space decomposition and to use
the index to find the appropriate plan from POSP ; we
propose a method for approximate indexing in [HS03].
A simpler approach is to find the optimal plan by eval-
uating the cost of each plan in POSP . We have im-
plemented an optimization of this approach, using an
AND-OR DAG framework, which also helps improve
the quality of plans, when a heuristic algorithm to find
POSP returns only a subset of POSP . Section 5 pro-
vides details of this optimization.

4 Representation and manipulation of
the decomposition

Figure 3 illustrates the operation of carving out the
region of optimality for a new plan added to CSOP ;
the regions of optimality are nonlinear and defining
and manipulating them exactly even for a 2 parameter
case is not easy. We approximate them with convex
polytopes which can be represented and manipulated
efficiently.

4.1 Facial lattice of a polytope

In this section we describe a method (from [Mul94])
to represent convex polytopes in high-dimension.

A polytope P can be represented by its facial lattice.
The facial lattice of P contains a node for each face of
P . Two nodes are joined by an adjacency edge iff the
corresponding faces are adjacent and their dimensions
differ by one. Figure 1(b) shows the face lattice for
the polygon in Figure 1(a).

Let d be the dimension of polytope P . For j ≤ d,
we define the j-skeleton of P to be the collection of
its i-faces, for all i ≤ j, together with the adjacencies
among them. Thus, the j-skeleton can be thought of
as a sublattice of the facial lattice of P . An important
special case is the 1-skeleton of P . It is also called
the edge skeleton. If we remove the node abcdef – the
2-face – and the edges incident on it from Figure 1(b),
we get the edge skeleton of the polytope in Figure 1(a).

4.2 Facial lattice and edge skeleton of the de-
composition

We define the facial lattice of the parameter space
decomposition as the combined facial lattice of the
polytopes defining the decomposition. We club all the
polytope lattices by merging duplicate (shared) faces,
to get the combined facial lattice.

The algorithm for finding POSP from the previ-
ous section needs only the set of decomposition ver-
tices, and not the complete decomposition. When a
new plan is added to CSOP we need to update the
set of decomposition vertices; to do this, we need to
know only the edge skeleton of the decomposition, as
explained in the next section.

For each decomposition vertex, we store the set of
plans from CSOP that are optimal (within CSOP) at
the vertex. This information is enough to find the edge
skeleton of the decomposition and hence to update the
set of decomposition vertices when a new plan is added
to CSOP , as explained below.

Before we formalize the condition for an edge to
exist between two vertices of the decomposition, we
informally explain it using the example in Figure 3.

Example 4.1 The edges defining the decomposition
in Figure 3 are of two types: those on the bound-
ary of the rectangle and those inside it. Each edge
in the former set (e.g. ab-bc) is on the boundary of
the region of optimality of a single plan and hence its
endpoints share one common label. Each edge in the
latter set (e.g. abe-bde) is on the common boundary
of the regions of optimality of two plans and hence its
endpoints share two common labels.

Consider vertices with labels ab and bc; the line seg-
ment between them lies on the boundary of the rectan-
gle and they have one common label and hence there is
an edge between them in the edge skeleton. Consider
vertices with labels ab and c; they do not share com-
mon label and hence there is no edge between them in
the edge skeleton.

Consider vertices with labels abe and bde; the line
segment between them lies inside the rectangle and
they have two common labels and hence there is an
edge between them in the edge skeleton. Consider ver-
tices with labels abe and bcd, the line segment between
them lies inside the rectangle and they have only one
label in common and hence there is no edge between
them in the edge skeleton. �

We now formally define the vertices and the edges
of the decomposition. Let P be a set of plans and VP

be the vertices of the parameter space decomposition
induced by P .

For each v ∈ VP , we define:

Set of optimal plans, OP
v : as the set of plans opti-

mal (within P) at v; formally,
OP

v = {p|p ∈ P ∧ ∀p′ ∈ P ,
cost of p at v ≤ cost of p′ at v}

For each S ⊆ VP we define:

Set of optimal plans, OP
S : the set of plans optimal

(within P) at each vertex in S; formally,
OP

S = ∩v∈SO
P
v

Face dimension, FS: the minimum i s.t. S is con-
tained in an i-face of the parameter space poly-
tope.

Assumption: If a set, P , where n < |P |, of plans
is equi-cost at a point in a n dimensional face of the
parameter space polytope then no P ′ ⊆ P , where n <
|P ′|, is equi-cost at any other point in the parameter
space polytope.

Such a strong assumption is made for the sake of
ease of description2 and it may not hold true in prac-
tice. In the implementation of the algorithm we as-
sume that if more than n cost functions meet at a
point in a n dimensional face of the parameter space
polytope then the point is a vertex of the parameter
space decomposition; if there are multiple such points,
we pick any one of them.

Lemma 4.1 v ∈ VP ⇔ F{v} < |OP
{v}| �

Lemma 4.2 The edge skeleton of the decomposition
of the parameter space polytope induced by P contains
edge (u, v), where u, v ∈ VP , iff F{u,v} ≤ |OP

{u,v}|. �

Theorem 4.3 The edge skeleton of the parameter
space decomposition induced by P can be constructed
given the set of decomposition vertices VP , with each
vertex v annotated by OP

v . �

For a given set of decomposition vertices, the edge
skeleton can be easily computed by testing each pair of
vertices with a time complexity of O(|VP |

2|P |). But we
need to maintain the edge skeleton incrementally; each
time a plan is added to the CSOP , we need to update
the edge skeleton and this is done incrementally as
described in Section 4.3.

Figure 3(a) shows the decomposition of parameter
space rectangle induced by plan set {A, B, C, D, E}
for non-linear cost functions and Figure 7(a) shows the
edge skeleton of the decomposition; for a 2-dimensional
parameter space the facial lattice of the decomposition
is the same as its edge skeleton. Each vertex of the
decomposition is tagged by the set of plans that are
optimal (within CSOP) at the vertex.

4.3 Updating the decomposition vertex set

Figure 4 gives pseudo code for an algorithm
UpdateDecompostionVertices which updates the set
of decomposition vertices when a new plan is detected.
This is an exact algorithm for the linear case, but may

2We can relax the assumption if the cost functions intersect
transversally; see [HS03] for details.

Algorithm: UpdateDecompostionVertices

Input: CSOP (the current set of optimal plans),

V (the current set of decomposition vertices),

p (a new plan)

Output: V (the updated set of decomposition vertices)

/* Update the set of decomposition vertices V

when a new plan p is added to CSOP */

For each edge (u, v) in edge skeleton s.t.

p is optimal (w.r.t. CSOP ∪ {p}) at v and

p is not optimal (w.r.t. CSOP ∪ {p}) at u

P = OCSOP
{u,v} ∪ {p} /* OCSOP

{u,v} is the set of plans

in CSOP that are optimal (within CSOP)

at both u and v */

R = hyper-rectangle with u and v

as diagonal vertices

w = FindEquiCostPoint(R, P) /* Find vertex w in R

s.t. at w plans in P are equi-cost; this may fail;

See Figure 5 in Section 4.4. */

If previous step fails

R = parameter space hyper-rectangle

w = FindEquiCostPoint(R, P)

/* This step too may fail; */

If vertex w is found, insert w in V

Remove from V the vertices at which only p is optimal

and no plan from CSOP is optimal

Figure 4: Algorithm to update decomposition vertices

miss some vertices in the non-linear case. As a re-
sult, AniPQO may miss some plans that it would have
found if all the decomposition vertices had been de-
tected. However, experiments in Section 6 suggest that
this does not affect the quality of the solution much.

The algorithm finds the vertices of the existing de-
composition at which the new plan is optimal and finds
“conflicting” edges. A conflicting edge is defined as
an edge in the decomposition s.t. the new plan (to
be added to CSOP) is optimal at one end and sub-
optimal at the other end. Each conflicting edge gives
rise to a new decomposition vertex; before formalizing
this, we informally explain it using an example.

Example 4.2 Consider the example in Figure 3. We
optimize the vertex with label bcd and find a new plan
F . We wish to update the decomposition by carving
out the region of optimality for plan F . Along the
contour ab-abe, plans A and B are equi-cost; the set
of equi-cost plans along a contour is the intersection
of the labels of the endpoints. Plan F is optimal at
vertex abe and suboptimal at vertex ab; plans A and
B are optimal at vertex ab and suboptimal at vertex
abe. So plans A, B and F are optimal at a point on
the contour and we wish to locate the point. �

Now we formalize the claim that each conflicting
edge gives rise to a new decomposition vertex. Let

the set of plans found so far be CSOP ; the set of
decomposition vertices would be VCSOP . We optimize
one of the unoptimized vertices and let this return a
new plan p 6∈ CSOP . Let CSOP ′ = CSOP ∪ {p} be
the new set of optimal plans.

Consider a conflicting edge (u, v). Let at vertex v
plan p be optimal (w.r.t CSOP ′) and at vertex u plan
p be sub-optimal (w.r.t CSOP ′); thus vertex v would
lie in the region of optimality of plan p, and vertex u
would lie outside the region of optimality of plan p in
the decomposition induced by CSOP ′.

Using Lemma 4.2 we have,

F{u,v} ≤ |OCSOP
{u,v} | (1)

There is a contour3 between vertices u and v along
which the plans in OCSOP

{u,v} are equi-cost. Plan p is

optimal at v, and its cost is less than the cost of the
plans in OCSOP

{u,v} at v; plan p is not optimal at u, and

its cost is more than the cost of the plans in OCSOP
{u,v}

at u.
Thus, for the plans in OCSOP

{u,v} ∪ {p} ⊆ CSOP ′,

the equi-cost point lies on the equi-cost contour of the
plans in OCSOP

{u,v} between vertices u and v; let the point

be w. We have,

F{w} ≤ F{u,v}

OCSOP ′

{w} = OCSOP
{u,v} ∪ {p}

and, from Equation 1, we get,

F{w} < |OCSOP ′

{w} |

By Lemma 4.1, w is a vertex of the new parameter
space decomposition (induced by CSOP ′).

In the case of linear cost functions, the equi-cost
contour is a straight line and finding the new vertex
is straightforward. But in the case of nonlinear cost
functions the equi-cost contour may not be a straight
line; hence finding the new vertex is not easy. We as-
sume that the new vertex lies in the hyper-rectangle
with the line segment (u, v) as a diagonal and try to
find the vertex in this hyper-rectangle as described
in Section 4.4. If this fails, we search the smallest
hyper-rectangle which contains the parameter space
polytope4 but this may also fail.

If we fail to find the new vertex, the resulting de-
composition may not be well-defined (for an exam-
ple see Section 4.5). The AniPQO algorithm works
with such ill-defined decompositions but may not de-
tect some plans that it would have detected otherwise.

4.4 Finding an equi-cost point

Figure 5 gives pseudo code for a heuristic algorithm
FindEquiCostPoint to find an equi-cost point within

3A straight line segment in the linear case.
4In our implementation, the parameter space polytope itself

is a hyper-rectangle and we search it.

Algorithm: FindEquiCostPoint(R, P)

Input: R (a hyper-rectangle), P (a set of plans)

Output: point c ∈ R at which plans in P are equi-cost

/* Find a point in hyper-rectangle R

at which plans in P are equi-cost */

Let VR be the set of vertices of R

Let HR be the dimension of R

Label each vertex v ∈ VR by OP
v

/* OP
v is the set of plans from P that are

optimal (within P) at v */

Let UP
R = ∪v∈VR

OP
v

/* Each plan in UP
R is optimal (within P) at

at least one vertex of R. */

If UP
R 6= P

return NULL /* the desired point is not found in R */

Let c be the centre of R

If {all the plans in P are equi-cost (within a threshold)

at c} OR {R can not be partitioned further}

return c

Partition R into smaller 2HR rectangles and

apply the same procedure till we find the desired point

Figure 5: Algorithm to find approximate equi-cost

point for a set of plans

a given hyper-rectangle, for a given set of plans with
nonlinear cost functions. The algorithm tries to find a
point at which the given plans are approximately equi-
cost (i.e. their costs are within some threshold of each
other) and, if such a point is found, takes that point as
an approximation of the actual equi-cost point. The
algorithm uses a heuristic test, explained later in this
section, to determine if the equi-cost point is contained
in a given hyper-rectangle with each of its vertices
tagged with the plans optimal at it. We start with a
hyper-rectangle for which the test evaluates positive;
partition it and pick a partition on which the test eval-
uates positive. We keep doing this recursively till the
plans are approximately equi-cost at the centre of the
hyper-rectangle and take the centre as an approxima-
tion of the actual equi-cost point.

For n parameters, we need at least n + 1 plans to
define an equi-cost point. We heuristically claim that
iff the size of a plan set is more than the dimension
of a hyper-rectangle in the parameter space and each
plan in the set is optimal at at least one vertex of the
hyper-rectangle then the equi-cost point of the plans
in the set lies in the hyper-rectangle. Consider the
rectangle shown in Figure 6 with the regions of opti-
mality defined for three plans. Each plan is optimal at
at least one vertex of the rectangle and the equi-cost
point lies in the rectangle.

Consider a hyper-rectangle R and a set of plans P .
Let VR be the set of vertices of R and HR be the
dimension of R. We define UP

R ⊆ P as follows,

���

��

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

Plan B optimal

Plan A optimal

Plan C optimal
c c c

bba

Figure 6: Example of equi-cost point approximation

UP
R = ∪v∈VR

OP
v

Thus, each plan in UP
R is optimal (within P) at at

least one vertex of R.
We make following heuristic assumption.

Iff HR < |UP
R | then R contains a point at which the

plans in P are equi-cost5

The above assumption may fail in one of two ways:

• It fails if R contains a equi-cost point but |UP
R | ≤

HR. The square on the right in Figure 6 is an
example. The square contains a decomposition
vertex though UP

R = {b, c} and |UP
R | = HR = 2.

We miss the equi-cost point in this case and this
results in an incomplete edge skeleton (see Sec-
tion 4.5); but our experiments suggest that this
does not affect the quality of the solution much.

• It fails if R does not contain an equi-cost point
though HR < |UP

R |. The square on the left in Fig-
ure 6 is an example. The square does not contain
a decomposition vertex though UP

R = {a, b, c} and
2 = HR < |UP

R | = 3. In this case, we unnecessar-
ily explore the region which we need not.

If HR < |UP
R |, we evaluate the costs of the plans

in P at the centre point of R. If, either the plans are
equi-cost (within a threshold) or R can not be further
partitioned, we take the centre as an approximation
of the equi-cost point. Else, we partition R into 2HR

equal sized hyper-rectangles and recursively examine
them.

4.5 An example iteration of AniPQO

Let us consider the example from Figure 3 and step
through the algorithm.

Figure 7(a) shows the edge skeleton of the decom-
position in Figure 3(a). We optimize the vertex with
tag abe and generate a new plan F . We evaluate its
cost at all the vertices and, say, it is optimal at vertices
with tags abe, bde and bcd and suboptimal at the rest
of the vertices (Figure 7(b)). The conflicting edges are
(abe, ab), (abe, ae), (bcd, bc), (bcd, cd) and (bde, de).

Consider conflicting edges (abe, ab) and (abe, ae).
We create two rectangles, one with each edge as a
diagonal (Figure 7(c)) and assume that the equi-cost

5This may not be true even for the linear case except when
HR = 1 i.e. R is a line segment; it is true for HR = 1 with
continuous cost functions (by the intermediate value theorem).

abe f

bcd f

bde f

abe f

bcd f

bde f

e

d

bc

cd

de

ae

ab

c

A

C

D

abf

def

bcf

cdf

F

aef

a

B

E

e

d

bc

cd

de

ae

ab

c

B

E
A

C

D

abf

bcf

cdf

F

aef

a

fbcd

de

ea

d

bc

cd

ae

ab

c
C

B

A
E

D

(b)

de

ea

d

bc

cd

ae

ab
abe

bde

c

A

B

C

bcd D

E

de

ea

d

bc

cd

ae

ab

c
C

B

A
E

D

(c)

(e) (f) (g) (h)

cdf

de

ea

d

bc

cd

ae

ab

bde

c
C

f

abf

aef

D

A

E

B

(a) (d)

de

ea

d

bc

cd

ae

ab

bde

c
C

bcd

f

f

abf

aef

E

D

B

A

cdf

de

ea

d

bc

cd

ae

ab

bde

c

f

aefA

E

bcf

C

B

D

abf

abf
aef

bcf

Figure 7: An iteration of AniPQO algorithm

vertex corresponding to a conflicting edge lies in the
rectangle thus created. Each rectangle is labeled by
the set of plans that would be equi-cost at a point we
search for in the rectangle.

Assume that we find both the vertices and insert
them, with proper labels, into the set of decomposi-
tion vertices. The vertex with label abe ceases to be
a decomposition vertex and we remove it from the set
of decomposition vertices. The resulting intermediate
edge skeleton is shown in Figure 7(d).

Next, we consider two more conflicting edges
(bcd, bc) and (bcd, cd) and repeat the above mentioned
procedure. See Figures 7(e) and (f).

Now, we consider the remaining conflicting edge
(bde, de). As we can see from Figures 3(d) and 7(f),
the desired new vertex is not contained in the rectan-
gle formed by the edge – in fact, it is not a rectangle
but a straight-line (Figures 7(f)). So we search the
entire parameter space for the vertex; we may or may
not find the vertex.

If we find the new vertex, it is inserted in the set
of decomposition vertices with proper tagging and the
resulting edge skeleton is shown in Figure 7(g). Fig-
ure 7(g) is the edge skeleton of the nonlinear decom-
position in Figure 3(d).

If we fail to find the new vertex, we end up in a sit-
uation where we do not have all the decomposition
vertices and hence the edge skeleton is incomplete;
see Figure 7(h). Missing vertices in the decomposi-
tion lead to an incomplete edge skeleton. Whenever
a new plan is added, some conflicting edges may be
missed and hence so may some vertices in the new de-
composition; we may miss some plans because of this.
As explained earlier, our experiments show that the
quality of the solution is not greatly affected.

5 The DAG Representation of Plans

In this section we describe an AND-OR DAG repre-
sentation of a set of plans and how we use it to boost
the quality of the results and facilitate picking an opti-
mal plan at run time. This representation is used, for
example, in the Volcano optimizer generator [GM93],
and provides a very compact and efficient way of rep-
resenting alternative plans, without redundancy.

An AND–OR DAG is a directed acyclic graph
whose nodes can be divided into AND-nodes and OR-
nodes; the AND-nodes have only OR-nodes as children
and OR-nodes have only AND-nodes as children.

An AND-node in the AND-OR DAG corresponds
to an algebraic operation, such as a join operation (�)
or a select operation (σ). It represents the expression
defined by the operation and its inputs. The AND-
nodes are referred to as operation nodes. An OR-node
in the AND-OR DAG represents a set of logical ex-
pressions that generate the same result set; the set of
such expressions is defined by the children AND nodes
of the OR node, and their inputs. The OR-nodes are
referred to as equivalence nodes.

Properties of the results of an expression, such as
sort order, that do not form part of the logical data
model are called physical properties. It is straightfor-
ward to refine the above AND-OR DAG representation
to represent physical properties and obtain a physical
AND-OR DAG.

Let children(e) and children(o) be the set of chil-
dren of equivalence node e and operation node o resp.;
let po be the optimal plan with o as the root opera-
tion; let cost(e), cost(o) and cost(po) be the cost of the
optimal plan for equivalence node e, the cost of oper-
ation node o and the cost of the optimal plan rooted
at operation node o. Then the costs of the equivalence

nodes and the operation nodes are given by the follow-
ing recursive equations (relation scan and index scan
form the base case):
cost(po) = cost(o) +

∑
ei∈children(o) cost(ei) [AND]

cost(e) = minoi∈children(e) cost(poi
) [OR]

Storing AniPOSP in a DAG

AniPQO builds an AND-OR DAG of the plans in Ani-
POSP at compile time. Common/equivalent subex-
pressions (across plans) are represented by a single
equivalence node. At run time, we choose the best
plan (amongst the plans in the DAG) at the given
point in the parameter space. The cost of finding the
best plan in an AND-OR DAG is linear in the size of
the DAG. We can re-use parts of the optimizer code
to build and manipulate the DAG.

The DAG framework provides two benefits:

• Reduced effort in picking a plan at run-
time: In the DAG framework, if two plans share
a operator/subplan, we need to cost the opera-
tor/subplan only once. The benefit is clearly
illustrated by one of the queries we tested, where
the number of plans in POSP is 134 and the sum
of the number of operators across these plans is
1816, but the number of operators in the DAG
built using these plans is just 85.

• Choosing a plan not in AniPOSP: When we
merge a number of plans in a DAG, an equivalence
node may have more than one subplan under it,
each coming from a different original plan. When
we find an optimal plan for the equivalence node
for given parameter values, we evaluate the cost
of all the subplans of the equivalence node and
pick the one with the least cost.

This may result, for the given parameters, in find-
ing an optimal plan which is not amongst the
plans used to build the DAG. For example, con-
sider two plans p1 and p2 used to build a DAG.
Let e1 and e2 be the equivalence nodes present in
both the plans. In plan p1, let subplan sp1

e1
eval-

uate e1 and subplan sp1

e2
evaluate e2. In plan p2,

let subplan sp2

e1
evaluate e1 and subplan sp2

e2
eval-

uate e2. For the given parameter values, say, s
p1
e1

is cheaper than sp2

e1
and s

p2
e2 is cheaper than sp1

e2
;

then a hybrid of p1 and p2 (containing s
p1
e1 and

s
p2
e2) is better than either for the given parameter

values. In fact, some of the hybrid plans may ac-
tually be in POSP although absent in AniPOSP.

Let the DAG built from the plans in AniPOSP be
DAG-AniPQO and the set of plans in the DAG be
DAG-AniPOSP. The Venn diagram of the sets POSP ,
AniPOSP and DAG-AniPOSP is shown in Figure 8.

The experiments conducted confirm the importance
of generating hybrid plans. For example, for one of the

POSP

AniPOSP

DAG−AniPOSP

Figure 8: Venn diagram of the plan sets

queries we tested, |POSP | = 134, |AniPOSP| = 49
and |DAG-AniPOSP ∩ POSP | = 87. This helps
improve the quality of the solution.

Although DAG-AniPOSP may not contain some
plans in POSP , it may contain some plans that are
not in the POSP . Consider a point in the parameter
space s.t. the optimal plan (in POSP) at the point
is neither in AniPOSP nor in the other plans covered
by DAG-AniPOSP. At such a point, the best plan in
DAG-AniPOSP may not be in POSP but may be bet-
ter than any plan in AniPOSP. This could also help
improve the quality of the solution.

Note that there is no extra cost for considering hy-
brid plans. The algorithm for finding the best plan in
the DAG finds the cost of each node in the DAG only
once. All the operators in the DAG are from the indi-
vidual plans and we need to find their costs even if we
decide to find the costs of the plans individually. It is
also possible to use branch-and-bound pruning while
searching for the best plan in the DAG, as described
in [GM93].

6 Experimental Evaluation

We implemented our algorithm on top of a Vol-
cano based query optimizer developed earlier at IIT-
Bombay. The optimizer generates a bushy plan space
and uses standard techniques for estimating costs, us-
ing statistics about relations. The cost estimates con-
tain an I/O component and a CPU component and are
nonlinear in general. We have extended the algorithm
to return the cost of a given plan at a given point in
the parameter space. (The exact cost functions need
not be exposed to AniPQO.)

We tested our algorithm on five queries on a TPCD-
based benchmark with and without indices on the pri-
mary keys of the relations involved. We use the TPCD
database at scale factor 1; this corresponds to base
data size of 1 GB. The RiPj queries compute the join
of the first i of the relations partsupp, supplier,

nation and region; they also have parametrized se-
lections (attribute < parameter value), with selectiv-
ities varying from 0 to 1, on the first j of the at-
tributes ps partkey, s suppkey, n nationkey and
r regionkey. We tested queries R2P2, R3P2, R3P3

and R4P4. The PlasticQuery query (from [GPSH02])
computes the join of the above tables and the ta-
ble region, and has parametrized selections (as men-
tioned above) on p size and ps supplycost.

Plans DAG Size AniPQO
DAG-AniPOSP Max. degradation (%)

AniPOSP ∩ POSP AniPOSP w/o DAG with DAG
Query POSP t (%) t (%) POSP t (%) t (%) t (%)

1 10 1 10 1 10 1 10 1 10

2R2P 10 10 9 10 9 21 21 20 0.00 0.61 0.00 0.61
3R2P 15 14 6 15 8 30 30 23 0.27 2.86 0.00 2.86
3R3P 36 24 15 31 17 39 37 30 10.62 4.14 2.40 3.52
4R4P 134 49 29 87 53 85 61 51 12.12 8.28 2.59 3.69
PlasticQuery(5R2P) 30 13 8 20 16 41 35 33 1.98 7.88 0.13 1.90

Figure 9: Quality of the results for queries on the TPCD catalog with no indices on the relations

Plans DAG Size AniPQO
DAG-AniPOSP Max. degradation (%)

AniPOSP ∩ POSP AniPOSP w/o DAG with DAG
Query POSP t (%) t (%) POSP t (%) t (%) t (%)

1 10 1 10 1 10 1 10 1 10

2R2P 6 5 5 5 5 16 14 14 3.50 3.50 3.50 3.50
3R2P 9 6 5 6 5 24 18 16 3.50 3.50 3.50 3.50
3R3P 11 8 6 8 6 27 22 18 3.50 3.50 3.50 3.50
4R4P 29 20 12 25 15 51 44 36 0.11 3.48 0.11 3.48
PlasticQuery(5R2P) 11 5 5 7 6 29 26 24 0.03 0.68 0.02 0.68

Figure 10: Quality of the results for queries on the TPCD catalog with indices on the relations

For each query we generated a very close approx-
imation of the POSP by optimizing the query at a
large number of randomly selected points in the pa-
rameter space. We observed that the regions of opti-
mality are concentrated along the parameter axis (i.e.
with small parameter values) and close to the origin (as
noted in [Rao97]); hence the coordinates of the points
are generated with exponential distribution skewed to-
wards lower values. We sampled enough points so as
to be reasonably confident that all the plans in the
POSP are detected. (If the last new plan is found at
sample number x, we sampled at least 10x points, ex-
cept for query R4P4. For that query x was 551,963 with
no indices and 1,603,186 with indices; so we sampled
2x points.) The method is expensive and not practi-
cal but we expect it to generate the POSP with high
probability. We assume its result to be the POSP for
the rest of the performance study.

To judge the quality of the results generated by
AniPQO, we compared the plans in AniPOSP with
those in the POSP at a large number of randomly
chosen points (Except for query R4P4, the number of
samples is at least 5x, where x is as mentioned above.)
At each point, we found the cost of the optimal plan
and that of the best plan from AniPOSP and DAG-
AniPOSP, and calculated the percentage difference.
We find out the maximum degradation at any point in
the set of sampled points.

We experimented with two values of the optimality
threshold t (defined in Section 3) 1% and 10%.

The quality of the results is tabulated in Figure 9
for the case when the queries are optimized with no
indices on the relations involved. The numbers in the
columns with top heading “# Plans” show that the
DAG optimization significantly increases the coverage
of the plans in POSP , while increasing the optimal-

ity threshold from 1% to 10% decreases the coverage
slightly.

The numbers in the columns with top heading
“DAG Size” indicate that the size of the DAG is quite
small, implying that the cost of plan selection at run-
time would be correspondingly small.

The last set of columns with top heading “AniPQO
Max. degradation” indicate the maximum degrada-
tion in the quality of the output plan compared to the
optimal plan. The numbers indicate that the quality
of the output plans is good with plain AniPOSP, and
improves further with the DAG optimization. The
quality of plans is in general better with a smaller opti-
mality threshold (t value); but surprisingly, for queries
R3P3 and R4P4 without the DAG optimization, the
quality of results is better for t=10% than for t = 1%,
although the number of plans found is more for the op-
timality threshold of 1%. This may be attributed to
the fact that there are enough “good” plans and, with
the optimality threshold of 10%, the vertices that were
optimized happened to be such that the plans optimal
at the vertices do well globally.

Figure 10 shows results for the case with indices
on the primary keys of the relations involved. The
AniPQO algorithm continues to perform very well in
this case. However, in this case, except for query R4P4,
neither the DAG option nor the optimality threshold
has a significant effect on the quality of the result.

The table in Figure 11 reports the number of calls
made to the conventional optimizer, and the number
of plan-cost evaluation probes; a plan-cost evaluation
probe involves finding the cost of a given plan at a
given point in the parameter space.

The columns labeled “AniPQO” list the number of
optimizer calls made by AniPQO. The columns la-
beled “Linear case (approx.)” list the approximate

Without Indices With Indices
Optimizer calls # Optimizer calls

Linear case AniPQO Plan-cost Linear case AniPQO Plan-cost
(approx.) evaluation calls (approx.) evaluation calls

Query t (%) t (%) t (%) t (%) t (%) t (%)
1 10 1 10 1 10 1 10 1 10 1 10

2R2P 21 11 22 10 764 140 12 7 13 9 209 141
3R2P 23 6 22 6 688 49 12 7 14 9 215 141
3R3P 41 20 42 18 1339 532 31 13 31 13 1425 288
4R4P 101 46 95 41 4587 1708 61 33 62 31 4009 1227
PlasticQuery(5R2P) 20 10 18 8 897 140 7 7 6 6 34 18

Figure 11: Optimization overhead for queries on the TPCD catalog

number of optimizer calls required if we were to get
the same parameter space decomposition with linear
cost functions. This is derived from the number of de-
composition vertices and the number of plans found6.
The comparison indicates that the number of opti-
mizer calls made by AniPQO is comparable with that
made in the linear case. The table in Figure 11 also
lists the number of plan-cost evaluation calls made by
AniPQO. The cost of a plan-cost evaluation call is very
small compared to the cost of a call to the optimizer.

In addition to the above calls, AniPQO has to main-
tain the vertices and edges of the decomposition of the
parameter space. This cost can be exponential in the
number of parameters, but with a small number of
parameters (say up to 4) this is not a major cost.

We have implemented two versions of AniPQO: one
with a loose integration of AniPQO with the conven-
tional optimizer, where AniPQO makes separate invo-
cations for each parameter value, and the other with
a tight integration, where the optimizer equivalence
rules are applied only once, and the resultant DAG of
equivalent plans is used repeatedly, to find the optimal
plan with different parameter values.

For a representative query (R4P4 with no indices),
a single invocation of the underlying optimizer takes
about 16 ms. With the optimality threshold t = 1%,
the loosely integrated AniPQO takes about 1900 ms
(with 95 calls to the optimizer) and the tightly in-
tegrated AniPQO takes about 850 ms, a saving of a
factor of over two. With the optimality threshold t =
10%, the loosely integrated AniPQO takes about 910
ms (with 41 calls to the optimizer) and the tightly
integrated AniPQO takes only about 350ms.

Comparison of the results for the two optimality
thresholds (t) shows that AniPQO degrades gracefully;
changing t from 1% to 10% decreases the cost of opti-
mization significantly, while only marginally reducing
the quality of the plans.

Scaling with the number of parameters: Our
experiments indicate that the number of calls to the
conventional optimizer appears to grow exponentially

6The number is v+f ′ where v is the number of final decompo-
sition vertices and f ′ is the number of regions of the parameter
space which are adjacent to none of vertices of the parameter
space polytope. This is a lower bound for the linear case [HS02].
Since the decomposition may be incomplete in our case, this
number is approximate.

with the number of parameters, but remains practical
for up to 4 parameters. The exponential growth is not
unexpected, since even for the special case of linear
cost functions, the worst case number of calls to the
conventional optimizer has an exponential lower bound
if we seek the exact solution [Gan01, HS02].

7 Related work

[GW89] makes a case for parametric query optimiza-
tion, and proposes dynamic query plans that include
a choose-plan operator, which chooses a plan, at run-
time, from among multiple available plans depending
upon the values of certain run-time parameters.

[CG94] presents a technique wherein the cost of a
plan p is modeled as an interval [l, u], where l and u
are the highest and the lowest cost of the plan p over
the parameter space, and plans whose lower bound is
greater than the upper bound of some plan are pruned
out. The technique computes a superset of the para-
metric optimal set and [Gan98] shows that the ex-
pected number of plans generated by this algorithm
could be much larger than the expected size of the
parametric optimal set; and [Rao97] confirms this em-
pirically.

[INSS92] presents a randomized approach – based
on iterative improvement and simulated annealing
techniques – for parametric query optimization with
memory as a parameter. The technique proposed as-
sumes the parameter space to be discrete and runs
the randomized query optimizer for each point in the
parameter space. The technique is unsuitable for
continuous parameters, like selectivity.

[GK94] provides a solution for the parametric query
optimization with linear cost functions in one parame-
ter. [Gan98] extends the work of [GK94] and proposes
a solution for parametric query optimization with lin-
ear cost functions in two parameters.

In [HS02] we developed an efficient algorithm for
solving parametric query optimization problem with
arbitrary number of parameters and linear cost func-
tions. In [HS02] we also presented a solution to para-
metric query optimization problem when the cost func-
tions are piecewise linear. The solution is intrusive and
the conventional optimizer needs to be extended. The
memory cognizant optimization algorithm in [HSS00]

can be viewed as a special case of the algorithm for
piecewise linear cost functions in [HS02], although it
does an extra task of optimal memory allocation to
operators.

In a currently unpublished (independently done)
work [Gan01], Ganguly has also extended the algo-
rithm from [Gan98] so as to work for more than two
parameters. The algorithm for finding the POSP
from Section 3 is an abstraction of the algorithms
from [Gan01, HS02].

[GK94, Gan98, Gan01] extend the algorithm pro-
posed for linear cost functions so as to support a
special case of nonlinear cost functions – namely
affine extensible cost functions. An affine extensible
cost function, in its general form, can be defined as∑

S⊆Q aS

∏
i∈S pi, where Q = {1, 2, 3, . . . , n}, aS ’s are

constants, and pi’s are parameters variables. The so-
lution proposed embeds the affine extensible cost func-
tions into linear cost functions with a larger number
of parameters and then uses the techniques developed
for linear cost functions.

[Rao97] studies the distribution of the paramet-
ric optimal plans in the parameter space for the 2-
dimensional case and devises several sampling tech-
niques. [Bet97] reports experimental results of the
technique proposed in [Gan98] with linear cost func-
tions in one parameter for linear and star queries.
[Pra97] reports an experimental evaluation of the al-
gorithm for affine extensible cost functions proposed
in [Gan98].

[CHS99] proposes least expected cost query opti-
mization which takes distribution of the parameter val-
ues as its input and generates a plan that is expected
to perform well when each parameter takes a value
from its distribution at run-time.

The Plastic system, proposed in [GPSH02], amor-
tizes the cost of query optimization by reusing the
plans generated by the optimizer. It groups similar
queries into clusters and uses the optimizer generated
plan for the cluster representative to execute all fu-
ture queries assigned to the cluster. Query similarity
is evaluated by a classifier which is based on query
structure, the associated table schema and statistics.

8 Conclusion

In this paper we proposed a heuristic solution for para-
metric query optimization when the cost functions are
nonlinear. The algorithm works for arbitrary nonlin-
ear cost functions, and is minimally intrusive. Initial
experiments indicate that AniPQO finds a plan set
that is a good approximation of the POSP and the
quality of the plans generated is close to that of the
POSP . The algorithm conceptually works for an arbi-
trary number of parameters and although optimization
time increases sharply with the number of parameters,
our implementation indicates that AniPQO is quite
practical for up to 4 parameters.

Acknowledgments: Arvind Hulgeri’s work was sup-
ported by an Infosys Fellowship. We wish to thank
Bharat Adsul, Prasan Roy and Milind Sohoni for their
feedback. We are grateful to Prasan Roy for providing
the code for the Volcano-based conventional optimizer.

References

[Bet97] A. V. Betawadkar. Query optimiza-
tion with one parameter. Techni-
cal report, IIT, Kanpur, Feb 1997.
http://www.cse.iitk.ac.in/research/mtech1997.

[CG94] Richard L. Cole and Goetz Graefe. Optimization
of dynamic query evaluation plans. In SIGMOD,
1994.

[CHS99] F. Chu, J. Y. Halpern, and P. Seshadri. Least
expected cost query optimization: An exercise in
utility. In SIGMOD, 1999.

[Gan98] Sumit Ganguly. Design and analysis of parametric
query optimization algorithms. In VLDB, 1998.

[Gan01] Sumit Ganguly. A framework for parametric
query optimization (unpublished manuscript; per-
sonal communication). 2001.

[GK94] Sumit Ganguly and Ravi Krishnamurthy. Para-
metric query optimization for distributed databases
basd on load conditions. In COMAD, 1994.

[GM93] Goetz Graefe and William J. McKenna. The Vol-
cano optimizer generator: Extensibility and effi-
cient search. In ICDE, 1993.

[GPSH02] A. Ghosh, J. Parikh, V. Sengar, and J. Haritsa.
Plan selection based on query clustering. In VLDB,
2002.

[GW89] Goetz Graefe and Karen Ward. Dynamic query
evaluation plans. In SIGMOD, 1989.

[HS02] Arvind Hulgeri and S. Sudarshan. Parametric
query optimization for linear and piecewise linear
cost functions. In VLDB, 2002.

[HS03] Arvind Hulgeri and S. Sudarshan. AniPQO:
Almost non-intrusive parametric query optimiza-
tion for nonlinear cost functions. Technical re-
port, IIT, Bombay, June 2003. Available at
http://www.cse.iitb.ac.in/aru.

[HSS00] Arvind Hulgeri, S. Seshadri, and S. Sudarshan.
Memory cognizant query optimization. In COMAD,
2000.

[INSS92] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok
Shim, and Timos K. Sellis. Parametric query opti-
mization. In VLDB, 1992.

[Mul94] Ketan Mulmuley. Computational Geometry: An

Introduction through Randomized Algorithms. Pren-
tice Hall, 1994.

[Pra97] V. G. V. Prasad. Parametric query op-
timization: A geometric approach. Tech-
nical report, IIT, Kanpur, Feb 1997.
http://www.cse.iitk.ac.in/research/mtech1997.

[Rao97] S. V. U. M. Rao. Parametric query op-
timization: A non-geometric approach.
Technical report, IIT, Kanpur, Feb 1997.
http://www.cse.iitk.ac.in/research/mtech1997.

