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Abstract 

Workload information has proved to be a crucial 
component for database-administration tasks as 
well as for analysis of query logs to understand 
user behavior and system usage. These tasks 
require the ability to summarize large SQL 
workloads. In this paper, we identify primitives 
that are important to enable many important 
workload-summarization tasks.  These primitives 
also appear to be useful in a variety of practical 
scenarios besides workload summarization. 
Today’s SQL is inadequate to express these 
primitives conveniently. We discuss possible 
extensions to SQL and the relational engine to 
efficiently support such summarization 
primitives.  

1. Introduction 

The past few years have seen the emergence of a large 
class of tasks that benefit from analysis of SQL workload 
information.  Some examples of such tasks are database 
administration [3,27] and understanding user/application 
behavior [14,15]. The problem of collecting a SQL 
workload is itself rather easy as most commercial 
database vendors provide profiling tools that enable 
logging of SQL activity on the server over a 
representative period of time, ranging from minutes to 
days. However, little attention has been paid to 
understanding the requirements for analysis of the 
collected workload.   

In analyzing the workloads, one of the key 
requirements is identifying a small representative subset 
that captures the essence of the large workload that has 
been logged using automated tools. There are multiple 
reasons why picking such a small representative subset is 
necessary. First, the resources needed to accomplish tasks 
such as index tuning grows (often super-linearly) with 
increasing sizes of workloads. There is a significant 
benefit to be gained by “filtering’’ the workload before it 
is fed to these tasks, while not compromising its 
characteristics. A second motivation arises from the 
necessity of having to meaningfully summarize data for 
viewing by DBAs or analysts. It is important to be able to 
offer relatively small representative synopses of the 
workload, before “drilling down” to identify the queries 
of interest.  

The simplest way to obtain a representative subset is 
to pick a uniform random sample of the workload. While 
sampling is conceptually simple and, in fact, useful in 
many situations, a DBA may like to obtain a 
representative subset that has additional constraints, e.g., 
pick a representative workload with the 100 most 
expensive queries while ensuring that every table in the 
database occurs in at least 5 queries. Thus, the 
specification for picking a representative subset for a 
workload (henceforth called summary) depends on the 
task at hand and, more often than not, sampling in itself is 
not adequate. 

A natural approach is to express the specification for a 
summary workload as a SQL statement over the entire 
workload represented in a relational database. We 
discover that today’s SQL provides inadequate support for 
conveniently specifying such summary workloads. In 
trying to understand the precise implications for SQL to 
better support workload analysis, we identify two key 
primitives. As with traditional filtering, both these 
primitives take as input a set of statements and output a 
subset of those statements. The first primitive, that we call 
dominance, allows filtering based on a partial order 
among the statements in the workload. Thus, statements 
that are “dominated” by other statements in the workload 
(as determined by the partial order) are filtered out. For 
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example, when considering workload summarization for 
the index-selection task, whenever two queries Q1 and Q2 
are identical in all respects except, say, in their GROUP 
BY clause, and if Q1 contains a superset of the GROUP 
BY columns of Q2 (e.g., Q1 has GROUP BY A,B,C and 
Q2 has GROUP BY A,B), we could declare that Q1 
dominates Q2 , since the indexes chosen for Q1 are likely 
to be adequate for Q2 as well.  

The second primitive, which we call representation, is 
a form of combinatorial optimization. It allows 
specification of a subset of the workload such that a 
certain objective function (an aggregate expression over 
an attribute) is maximized or minimized, subject to a set 
of constraints. For example, in the index-selection task, 
we may wish to constrain the output to no more than 1000 
statements in the workload, while trying to maximize 
“coverage” (say total execution time of all statements in 
the output) of the workload.  It should also be noted that 
both the dominance and representation primitives need to 
be able to provide aggregate information as well. For 
example, we should able to know the count of the total 
number of statements a “dominating” statement in the 
workload (Q1 in the example above) has “dominated”.  

Of course, studying the implications of and 
mechanisms for supporting these primitives in SQL may 
not be worthwhile if these primitives are useful only for a 
specialized application such as workload analysis. 
However, the above primitives are useful in a variety of 
scenarios besides workload summarization. This broader 
applicability motivates us to investigate their inclusion in 
SQL. The dominance primitive is a generalization of the 
Skyline operator [5], and, we describe how, with suitable 
extensions, it can leverage algorithms that have been 
proposed [5,23,26] for implementing the Skyline operator. 
Implementing the representation primitive in SQL 
requires us to address trade-offs between functionality and 
complexity. While the representation primitive can 
potentially have wide usage, in its full generality it 
requires us to solve the Integer Programming (IP) 
problem that is known to be NP-hard [19]. While several 
algorithms are known for solving the IP problem e.g., 
[31], their integration into SQL directly can result in a 
very heavyweight operator whose usefulness on large data 
sets may be rather limited. Thus, we propose an 
alternative, simpler extension to SQL that allows efficient 
and scalable implementation strategies. While falling 
short of the optimization guarantees of the representation 
primitive, this simpler extension appears to be adequate 
for many common summarization tasks. 

As a proof-of-concept of the expressiveness and utility 
of these primitives, we evaluate them in the context of 
summarizing workloads for index selection. We compare 
our solution against a previously presented method for 
workload compression [11] that requires the definition of 
a distance function for index selection, which then uses a 
clustering-based method for compression.  

The rest of this paper is organized as follows. Section 
2 describes primitives that are useful for several 
summarization tasks.  Section 3 presents a language that 
exposes these primitives declaratively and shows how 
various workload-summarization tasks can be expressed 
in this language. In Section 4, we describe a few different 
scenarios (besides workload summarization) where these 
primitives also appear to be useful. In Section 5, we 
discuss possible extensions to SQL and the query engine 
to support these primitives. Section 6 presents a brief 
evaluation of these primitives relative to workload 
compression [11]. We discuss related work in Section 7 
and conclude in Section 8. 

2. Workload Summarization 

In this section, we describe several examples of workload 
summarization tasks, and then identify the logical 
operations that are common across these tasks. To make 
the examples that we present specific, we first present a 
workload schema that describes the attributes of each 
statement in the workload.  

2.1 Workload Schema 

Every workload-summarization task expects its workload 
input to conform to a specific schema for workloads. A 
workload schema defines the set of attributes of each 
statement in the workload that the task may reference. In 
this section, we present an example of such a workload 
schema. Our purpose here is to introduce attributes that 
can be referenced in the examples presented in the paper. 
In general, we expect different applications to use 
potentially different workload schemas. We note that as 
workload analysis matures, a core standardized schema 
can facilitate easy sharing of information across different 
applications.  

 
Attribute Type Meaning 

StmtType Atomic Statement type: (SELECT, 
UPDATE, INSERT, 
DELETE) 

SQLString Atomic SQL String of statement 
Timestamp Datetime Time when statement was 

executed 
User Atomic Name/Id of user issuing 

statement 
Application Atomic Name of application 

issuing statement 
Weight Atomic A number representing the 

importance of this 
statement in the workload 

FromTables Set Set of tables referenced in 
FROM clause 

WhereCols Set Set of columns referenced 
in WHERE clause 

JoinConds Set Set of join conditions in 



 

statement 
GroupByCols Set Set of columns in GROUP 

BY clause 
OrderByCols Sequence Set of columns in ORDER 

BY clause 
ProjCols Set Set of columns projected in 

query 
EstimatedCost Atomic Optimizer estimate of 

query cost from plan 
ExecutionCost Atomic Elapsed time executing 

statement 
CPUTime Atomic CPU time executing 

statement 
IOTime Atomic I/O time executing 

statement 
Memory Atomic Max memory consumed 

during statement execution 
IndexesUsed Set Set of indexes used in 

answering statement 
 

 
Our schema (shown in Table 1) contains attributes of 

the following types: (1) Atomic-valued (e.g., Execution 
cost of statement, Number of tables referenced) (2) Set-
valued (e.g., Set of tables referenced) (3) Sequence (e.g., 
Sequence of ORDER BY columns).  We note that today’s 
relational database systems do not support set and 
sequence data types. In Section 5, we discuss the 
implications of this non-support for workload 
summarization as a database application.  

We broadly categorize the attributes of a statement in 
the workload into three categories: (1) Syntactic and 
Structural. These include all attributes that describe the 
syntax or structure of the statement. (2) Plan Information 
(3) Execution Information. 

2.2 Examples of Workload Summarization 

In this section, we present examples of workload 
summarization that appear to be useful either for 
preparing input to automated tools or for consumption by 
DBAs or analysts.  
 
Example 1: Summarizing workloads for input to index 
selection tools. Workloads often consist of different 
templates (e.g., stored procedures, batches) that get 
invoked repeatedly with different parameters. Within each 
template, we may want to take advantage of certain 
relationships between statements to filter out some 
queries. For example, whenever two queries (say Qi and 
Qj) are identical in all respects except their GROUP BY 
and ORDER BY clauses, and if Qi.GroupByCols ⊂  
Qj.GroupByCols and Qi.OrderByCols is a prefix of 
Qj.OrderByCols, we could require that only Qj be 
included in the workload summary, since indexes that are 
beneficial for Qj are likely to be adequate for Qi as well. 
After this filtering step, we would like to obtain a 

“summary’’ while ensuring that each template receives 
adequate representation (e.g., proportional to the number 
of statements in each template).  Finally, we would like 
the workload summary to contain no more than 1000 
queries such that the sum of the Weight attribute is 
maximized, i.e., we capture as much of the total weight of 
the original workload as possible.  
 
Example 2: Finding queries that are potential resource 
bottlenecks. DBAs often need to find queries that are 
responsible for consuming the most resources (CPU, I/O, 
Memory). Suppose the total CPU time (resp. I/O time, 
Memory) consumed by all queries is CPUTotal (resp. 
IOTotal, MemoryTotal). One natural summarization task 
is to find the smallest subset of queries that covers at least 
50% of CPUTotal, IOTotal and MemoryTotal.  
 
Example 3: Identifying columns for potential 
building/updating of statistics. For this task, we want to 
detect queries with (a) a large discrepancy between the 
optimizer’s estimated time and the actual execution time, 
and (b) having large errors in cardinality estimation. We 
filter out statements that do not have at least 50% error in 
cardinality estimation or take less than one second to 
execute. We then partition statements based on the tables 
referenced (FromTables attribute) and join conditions 
(JoinConds attribute). Within each partition, we narrow 
down the columns that could benefit from the 
creation/update of statistics by eliminating statements 
which have a superset of the columns involved in some 
other statement. Finally, we want no more than 5 
statements per partition in the summary, and no more than 
a total of 100 statements, while maximizing the total 
value of CostRatio (defined as ExecutionCost / 
EstimatedCost ) over the statements in the summary.  

2.3 Key Primitives in Workload Summarization 

We now introduce the common primitives that are 
necessary to accomplish the kinds of workload 
summarization tasks described in Section 2.2.  

  
2.3.1 Filtering 

This primitive is simply the “traditional” filter, i.e., it 
eliminates any statement in the workload that does not 
satisfy a given Boolean expression. An atomic condition 
in the filter is any predicate on an attribute of the 
workload schema. For example, in Example 3 above, we 
filter out statements with low errors in cardinality 
estimation or with low execution times.  

2.3.2 Dominance 

The dominance primitive can be used to specify a 
partial order among statements in the workload. 
Moreover, this partial order is used also as a filtering and 
aggregation (described later) operator. In particular, for 
any pair of statements S1 and S2 in the workload, if per the 

Table 1. Example of schema for workload. 



 

partial order S1 is “dominated by” S2, then S1 must be 
eliminated (filtered) from the output of the dominance 
operator, with the exception of the case when S1 
dominates S2 and S2 dominates S1. In the latter case, S1 
and S2 are considered equivalent, and it is acceptable to 
include either one (but not both) in the output. Thus, the 
semantics of dominance is that it outputs a smallest subset 
such that every statement not included in the output is 
dominated by some statement in the output. The 
specification of the partial order, or equivalently the test 
for whether a statement is dominated by another 
statement, is expressed by a conjunction of conditions on 
the attributes of the statements. In general, we expect 
some of these conditions to be strict equality conditions, 
and the rest to be partial order conditions. We refer to the 
attributes mentioned in the strict equality conditions as the 
partitioning attributes associated with the dominance 
primitive. In Example 1, the strict equality conditions are 
that FromTables, JoinConds, and WhereCols of both 
statements are identical, and the partial order conditions 
are: (1) GroupByCols of the first statement is a subset of 
GroupByCols of the second statement; (2) OrderByCols 
of the first statement is a prefix of OrderByCols of the 
second statement. We observe that the strict equality 
conditions imply a partitioning of the statements. Note 
also, that if in Example 1, two statements in the workload 
have the same group by and order by columns, then either 
of them (but not both) may be included in the output.   

We illustrate the dominance relationship graphically 
in Figure 1. Each node in the graph denotes a statement 
and an edge from node X to node Y denotes that X 
dominates Y. In the figure below, the output set of 
statements is {A,B,C}. 

 

 
Dominance is important for certain workload 

summarization tasks. For example, an index that is 
appropriate for statement S2 may also be appropriate for 
S1, but not necessarily the other way around. In this paper 
we restrict the comparison operators of the inequality 
conditions to transitive operators, such as <, >, ≤, and ≥ 
for atomic-valued attributes, ⊂ , ⊆ , ⊃ , and ⊇  for set-
valued attributes, and prefix-of, subsequence-of, and 
supersequence-of for sequence-valued attributes. We also 

restrict an attribute of a statement to be compared with the 
same attribute of the other statement.  Since the 
dominance relationship imposes a partial order, it is 
transitive. As we discuss later (see Section 5), transitivity 
is useful in enabling an efficient implementation of 
dominance.  

As noted earlier, the dominance primitive also 
represents aggregation. With every statement S in the 
output of the dominance operator, aggregation 
information over the statements that were dominated by S 
could be included. Each such specified aggregate 
becomes a new attribute (which we refer to as a 
dominance-based aggregate attribute) of each statement 
output by the dominance primitive. A dominance-based 
aggregate attribute corresponding to an output statement S 
is the SUM or COUNT function (or, in principle, any 
other aggregate function) applied to any attribute, over all 
the statements that were eliminated by S, and including S 
itself. Note that a statement can be dominated by two 
different statements, neither of which dominates one 
other. In Figure 1 above, H is dominated by E and F, but 
neither E nor F dominates the other. In this case, we 
establish a convention that H’s value will contribute to the 
aggregate of either E or F but not both1.  

2.3.3 Representation 

The representation primitive allows specification of a 
subset of the workload such that a certain objective 
function (an aggregate expression over an attribute) is 
maximized (or minimized), subject to a set of constraints. 
Thus the representation primitive specifies an 
optimization problem. Representation consists of five 
parts, each of which we describe below: 
 
Partitioning Attributes 
     Representation can specify a partitioning of the input 
to be used, so that constraints can be specified at a per-
partition level. Partitioning is similar to a GROUP BY, in 
that each partition corresponds to all statements that have 
the same values for all the partitioning attributes. 
  
Optimization Criterion 

The optimization criterion can be specified in one of 
the following forms: (1) Minimize an aggregate over an 
attribute, e.g., the number of statements in the output, 
subject to the constraints; (2) Maximize an aggregate over 
an attribute, e.g., maximize sum of ExecutionCost subject 
to the constraints.   

 
Global Constraints 

Global constraints are constraints on an aggregate 
computed over the entire output set of statements. We 
permit any conditional expression involving aggregates 
                                                           
1 In general, we could allow H’s value to be distributed in some 
manner across all statements that dominate it (E and F), but we 
do not consider this possibility in this paper.  
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Figure 1. Graphical representation of 
dominance relationship. 



 

over any of the attributes of the input. Referring to 
Example 1, we see that the requirement that the chosen 
statements should cover at least 75% of the total 
ExecutionCost of statements in the input workload is a 
global constraint. 

  
Local Constraints 
Local constraints are identical to global constraints, 
except that the constraint applies to each individual 
partition. For example, we could specify that every 
partition should contain enough output statements to 
cover at least 75% of the total statements in that partition.   
 
Filter Constraints 

Filter constraints are constraints that apply to each 
individual statement chosen by the representation process. 
A statement not satisfying the filter constraint may not be 
a part of the output. Note that a filter constraint may 
involve aggregate expressions computed over partitions or 
the entire input workload. For example, we could have a 
filter constraint requiring that every statement chosen has 
an execution cost at least 30% higher than the average 
execution cost in its partition. 

3.  A Language for Workload Summarization 

We now briefly describe a language for declaratively 
specifying workload-summarization tasks such as the 
ones described earlier. This language, which we refer to 
as WAL (Workload Analysis Language), supports the 
primitives of filtering, partitioning, dominance and 
representation presented in Section 2. The purpose of 
introducing WAL is to highlight (a) the importance of 
exposing these primitives in a declarative manner, thereby 
making it possible to specify sophisticated summarization 
tasks easily, and (b) the expressiveness necessary for 
accomplishing these tasks. We present this language as 
though it were an extension of SQL and, in Section 5, we 
discuss the implications actually extending SQL in this 
fashion.  

We describe the syntax for specifying a query in WAL 
in Section 3.1 and provide several example queries in 
WAL in Section 3.2. We note that the focus of this section 
is not on the specific syntax we propose, but rather on the 
tasks that are enabled by it.  

3.1 WAL Syntax 

The overall structure of a query in WAL is shown 
below. 

SELECT <select clause> 
FROM  <from clause>  
WHERE  <filter condition> 
DOMINATE <dominate-clause > 
REPRESENT <representation-clause> 
 

We now discuss each of the clauses in more detail. We do 
not go into details on clauses that are already part of the 
SQL language.  
 
SELECT clause 

The SELECT clause is similar to that of any SQL 
query. It permits the specification of a subset of the 
attributes in the workload schema, together with other 
aggregates.  In addition, we allow defining dominance-
based aggregate attributes (see Section 2.3.2). Note that 
dominance-based aggregates are similar to aggregates 
computed for each group specified by the GROUP BY 
clause of a traditional SQL query. The difference is that, 
for each output statement S, the aggregate is computed 
over the set of all statements dominated by S.  These 
aggregates are defined by prefixing DOM to the 
traditional keywords for computing aggregates. For 
example, DOMSUM(ExecutionCost) returns, for each 
statement S output by the dominance primitive, the sum 
of the ExecutionCost of all statements dominated by S, 
and including S itself. Thus, for each aggregate function 
(e.g., SUM, COUNT) in SQL, there is a corresponding 
dominance-based aggregate function. We note that the 
scope of such an attribute is the block defined by the 
SELECT clause. Thus e.g., this attribute can be 
referenced in the REPRESENT clause in a constraint.  
 
FROM clause 

The FROM clause simply specifies a single table or 
view. In the context of workload summarization, it is 
implicit that this table or view conforms to the workload 
schema. Note that the view may itself be an arbitrary SQL 
query whose result conforms to the workload schema. For 
example, traditional SQL operators such as UNION, 
DIFFERENCE etc., could be used to combine two or 
more workloads in meaningful ways.  
  
WHERE clause 

As in SQL, the WHERE clause is permitted to be an 
arbitrary boolean condition applicable to each tuple of the 
table or view specified in the FROM clause.   
 
DOMINATE clause 

The syntax of the DOMINATE clause is: 
  DOMINATE WITH (PARTITIONING BY <attr-list>) 

 (SLAVE.Attr Op MASTER.Attr) * 
Thus, the strict equality dominance conditions are 

specified by the shorthand PARTITIONING BY (<attr-
list>). This is followed by the conditions that define the 
partial order.  All conditions are implicitly ANDed. 
Logically, each condition for the partial order is specified 
by a comparison operator (e.g., ≤) and an attribute over 
which the comparison condition is applied. Note that 
SLAVE.Attr Op MASTER.Attr is a syntactic redundancy 
to make the query examples in this paper more readable. 
In this paper MASTER and SLAVE can be viewed as 
keywords. For reasons mentioned earlier (see Section 



 

2.3.2) Op is restricted to any comparison operator that is 
transitive. 

We observe that the SKYLINE OF clause proposed in 
[5] is a special case of the DOMINATE clause. The 
SKYLINE OF clause specifies a set of attributes A1, … 
Ak and a direction (MIN/MAX) with each attribute. Thus, 
for example, SKYLINE of A min, B max maps to 
SLAVE.A > MASTER.A and SLAVE.B < MASTER.B in 
our definition of dominance. Our definition of dominance 
generalizes SKYLINE by allowing creation of 
dominance-based aggregate attributes (see Section 2.3.2 
and SELECT clause above), which may be referenced in 
other parts of the WAL query (e.g., in the representation 
clause).  

 
REPRESENT Clause 

This clause allows specification of the representation 
primitive. In particular, it allows specifying: (1) the 
partitioning attributes, (2) the objective function to 
maximize or minimize, and (3) the constraints the output 
must satisfy. We now present the syntax of the 
representation clause and then describe it in more detail. 
 
REPRESENT WITH (PARTITIONING BY <attr-list>) 
 [MAXIMIZING | MINIMIZING] <aggr-expr>  

(GLOBAL CONSTRAINT <global-constraint>)* 
(FILTER CONSTRAINT <filter-constraint>)*  
(LOCAL CONSTRAINT <local-constraint>)*  

 
The optional PARTITIONING BY specifies a set of 

attributes on which to partition the statements in the 
workload.  Note that LOCAL CONSTRAINTs are meant 
to be used only if PARTITIONING BY is specified.  

<aggr-expr> is an aggregate expression of the form 
Aggregate(Attribute) that is to be maximized (or 
minimized) subject to specified constraints, and we refer 
to it as the optimization criterion. Aggregate can be the 
SUM or COUNT aggregate function.  

<filter-constraint> is a condition of the form (Attr Op 
Expression). <global-constraint> and <local-constraint> 
are both conditions of the form (Aggregate(Attr) Op 
Expression). In all these constraints, Expression can 
involve constants, aggregates on an attribute computed 
over the entire set of statements input to the representation 
primitive (obtained by prefixing the aggregate by the 
keyword GLOBAL), or aggregates computed over the set 
of tuples within a partition (obtained by prefixing the 
aggregate with the keyword LOCAL). Note that LOCAL 
can only be used in a filter or local constraint, and not in a 
global constraint.  

3.2 Examples of Summarization Tasks in WAL 

We now present several examples of workload-
summarization tasks expressed as queries in WAL.  These 
examples highlight the expressiveness and usefulness of 
our primitives exposed in a declarative interface. We 

begin by giving corresponding WAL queries for 
Examples 1-3 presented in Section 2.2, and then give a 
couple more examples. In all the examples below, we 
assume that WorkloadTable is the name of the table 
containing the workload statements according to the 
schema described in Table 1 (see Section 2.1).  
 
Example 1. Preparing workload for input to index 
selection tool (see Section 2.2 for detailed description).  
SELECT *, DOMSUM(Weight) AS Dom_Weight 
FROM WorkloadTable 
DOMINATE WITH PARTITIONING BY  

FromTables, JoinConds, WhereCols 
 SLAVE.GroupByCols SUBSET MASTER.GroupByCols 
 SLAVE.OrderByCols PREFIX MASTER.OrderByCols 
REPRESENT WITH PARTITIONING BY  

FromTables, JoinConds, WhereCols 
MAXIMIZING Sum(DOM_Weight) 

GLOBAL CONSTRAINT Count(*) ≤ 200 
LOCAL CONSTRAINT Count(*) ≥ 
int(200*LOCAL.Count(*)/GLOBAL.Count(*)) 

 
Example 2. Finding queries that are potential 
performance bottlenecks (see Section 2.2 for detailed 
description).  
SELECT * FROM WorkloadTable 
REPRESENT WITH 
MINIMIZING COUNT(*) 
GLOBAL CONSTRAINT SUM(CPUTime) >  

0.50 * GLOBAL.SUM(CPUTime) 
GLOBAL CONSTRAINT SUM(IOTime) >  

0.50 * GLOBAL.SUM(IOTime) 
GLOBAL CONSTRAINT SUM(Memory) >  

0.50 * GLOBAL.SUM(Memory) 
 
Example 3. Identifying columns for potential 
building/updating of statistics (see Section 2.2 for 
detailed description).  
SELECT * FROM WorkloadTable 
WHERE ABS(CardEst – CardActual)/CardActual > 0.5 
 AND (ExecutionCost > 1.0) 
DOMINATE WITH PARTITIONING BY 
   FromTables, JoinConds    
  SLAVE.SelectCols SUBSET MASTER.SelectCols  
  SLAVE.WhereCols SUBSET MASTER.WhereCols  
REPRESENT WITH PARTITIONING BY  

FromTables, JoinConds 
MAXIMIZING SUM(CostRatio) 
GLOBAL CONSTRAINT Count(*) ≤ 100 
LOCAL CONSTRAINT Count(*) ≤  5 
 
Example 4. Obtaining summary of workload for use in 
building samples of database for approximate 
processing of aggregation queries. We refer the reader 
to [9,10,18] for more details on the role of workload 
information in approximate query processing.  In this 
example, among all queries in each partition specified in 



 

the representation clause, we are requesting at most 10 
queries. We also require that the total number of queries 
does not exceed 500, while maximizing the total weight 
of all queries that are selected.  
SELECT * FROM WorkloadTable 
REPRESENT WITH PARTITIONING BY 
   FromTables, JoinConds, GroupByCols, WhereCols  
MAXIMIZING  SUM(Weight) 

GLOBAL CONSTRAINT Count(*) ≤ 500 
LOCAL CONSTRAINT Count(*) ≤ 10 

 
Example 5. Finding queries in each application with 
low relative index usage. Find a subset of at most 100  
queries in the workload maximizing total execution cost 
such that, for each application, we pick a subset of queries 
that has lower-than-average index usage despite having a 
higher-than-average number of tables referenced, 
compared to other queries from that application.   
 SELECT * FROM WorkloadTable 
REPRESENT WITH PARTITIONING BY Application 
MAXIMIZING Sum(ExecutionCost) 
GLOBAL CONSTRAINT COUNT(*) <= 1000 
LOCAL CONSTRAINT AVG(NumIndexesUsed) <  

 0.75 * LOCAL.AVG(NumIndexesUsed)  
LOCAL CONSTRAINT AVG(NumTables) >   

1.25 * LOCAL.AVG (NumTables)  

3.3 Discussion on Complexity 

We briefly discuss the algorithmic complexity of each 
of the primitives discussed in Section 2.2 and supported in 
WAL. We assume that the table (or view) specified in the 
FROM clause has n statements. The filtering primitive 
can be performed in linear time, and the partitioning 
operation (required both for dominance and representation 
primitives) can also be performed in linear time using a 
hash-based scheme (or O(n log n) time using a sort-based 
scheme). The dominance operation can be performed in 
worst-case O(n2) time by testing the dominance 
conditions for each pair of statements.  

The complexity of the representation primitive 
depends on the specific formulation. In its full generality, 
the problem of finding a subset of statements that 
maximizes (or minimizes) an aggregate subject to a set of 
linear constraints is equivalent to the 0-1 Integer 
Programming problem, which is known to be NP-Hard 
[19]. Even simplifications of the general problem are 
known to be hard. For example, the problem of 
minimizing Count(*) subject to a bounded number of 
global constraints of the form  SUM(Attri) ≥ ki, where 
each of the attributes is confined to being arbitrary, non-
negative real numbers, can be shown to be NP-hard by a 
simple reduction to the Partition problem (see [19] for a 
description of the Partition problem). Likewise, the 
problem of maximizing SUM(Attr0) subject to c global 
constraints: SUM(Attr1) ≤ k1, …. SUM(Attrc) ≤ kc is the 

well-known multi-dimensional knapsack problem which 
is also NP-Hard [7]. 

Given the complexity of the representation operation, 
a natural question is how this operation can be supported 
in practice. We note that the general problem (0-1 Integer 
Programming problem) has been well-studied and several 
standard software packages exist for solving it (e.g., [31]). 
Such solutions could be invoked outside the database 
server directly by the workload-summarization 
application. Unfortunately, even the best-known solutions 
do not scale well for large inputs (e.g., millions of 
statements in the workload). Our observation is that a 
large class of workload-summarization tasks does not 
need to solve the most general optimization problem. In 
Section 5, we discuss incorporating support for less 
general forms of representation inside a SQL query 
engine that can provide optimal answers efficiently for 
some simple, common cases and approximate or heuristic 
answers for more complex cases.  

4.  Applicability of Primitives to Other 
Scenarios 

Although the dominance and representation primitives 
presented in this paper are motivated by the need for 
effective workload summarization, the applicability of 
these operations is not limited to workload 
summarization. In this section we present a few other 
domains where these operations could be useful in 
complementing existing analysis techniques in the 
respective domains.  
 
Scenario 1: Customer Relationship Management (CRM) 

Consider a company that wants to mail product 
catalogs to its customers. The company has a fixed budget 
for mailing costs. The concept of dominance can help in 
this scenario as follows: To avoid sending multiple 
catalogs to a single address, the company considers all 
customers with the same address as equivalent, and will 
pick exactly one customer at that address, for example, 
the person in the household with the highest income. To 
maximize the expected benefit from the mailing, the 
company may like to select a subset of customers with 
largest total “importance” (e.g., measured by money spent 
on their products in the past).   Representation is useful 
for specifying such a subset while not exceeding the 
mailing-cost budget (a global constraint), and ensuring 
that exactly one customer is picked from each address (a 
local constraint).  
 
 
 
Scenario 2: Personalization 

Consider personalization of web pages based on user 
profiles. When a user requests a web page, only a fixed 
number of targeted ads (say K) can typically be displayed 
on that page. The concept of partitioning and local 



 

constraints can be useful to specify that that at most two 
ads from each category (such as food, jewelry, books etc.) 
should be chosen. Dominance can be useful in specifying 
whether, within a category (based on user’s profile), the 
expensive items or the inexpensive items should 
dominate. Representation is necessary since the company 
running the web site wishes to pick a subset of ads such 
that a certain objective function (e.g., likelihood of click-
throughs) is maximized, while not exceeding the global 
constraint of K ads.  

 
Scenario 3: Web-Community Management 

Consider a web community scenario where an 
incoming question needs to be answered by locating a 
certain set of “experts” on the subject. The goal is to 
provide a timely response from as highly rated an expert 
as possible. For cost effectiveness, we do not want to 
request more than N experts for any given question. 
Dominance can be useful to partition experts according to 
different time zones in order to improve chances of a 
quick response.  Within each zone, we can define a person 
with higher expertise rating and average response time as 
“dominating” any other expert with lower rating and 
higher average response time. Representation can be 
useful for specifying that we find the subset of at most N 
experts while maximizing the sum of the expertise rating, 
subject to having at least one expert from each partition.  

5. Dominance and Representation in SQL 
Engine 

The examples of workload-summarization tasks and 
the tasks from other domains that we have presented 
indicate that the primitives of dominance and 
representation have broad applicability.  There are two 
issues to consider for implementing workload-
summarization tasks as SQL applications. First, 
workload-summarization queries reference attributes of 
type Set and Sequence (see schema in Table 1), which are 
not supported in today’s database systems. We do not 
address this issue in the paper other than to note that these 
data types are already finding their way into SQL 
standards (e.g., array types are part of the SQL 1999 
standard [30] and multi-set types are part of the SQL 2003 
standard [30], currently in the final stages of 
standardization). 

The second issue is that today’s commercial database 
systems do not support the primitives of dominance and 
representation. We have already indicated in Section 3.1 
how dominance and representation may possibly be 
exposed in the query syntax of SQL. While our focus is 
not on the narrow specifics of the syntax, for ease of 
exposition, in the rest of this section we will assume the 
syntax for exposing dominance and representation as 
described in Section 3.1.  

Before discussing how these two primitives could be 
supported by a SQL query engine, we briefly consider the 

physical operator for partitioning. Partitioning is 
important as partitioning attributes are specified as part of 
both dominance and representation clauses (see Sections 
2.3 and 3.1). We note that partitioning of the input can be 
achieved either by hashing or by sort-based methods (with 
the latter possibly exploiting indexes or existing orders on 
the input). Once the input is partitioned, dominance and 
representation operators may need to be invoked within 
each partition. Note that techniques from group-wise 
processing [8,12] can be leveraged for implementation of 
the dominance and special forms of representation. Such 
group-wise processing allows an arbitrary sub-query to be 
executed inside each partition. The result of the overall 
query is the union over the results of the sub-query over 
each partition. However, the general problem of 
representation involves challenges that go beyond group-
wise processing. Moreover, explicitly supporting 
dominance and representation as part of the syntax 
facilitates specification as well as optimization2.  

5.1 Implementing Dominance  

We now discuss the physical operator necessary for 
the dominance primitive, i.e., executing a SQL query with 
the DOMINATE clause (see Section 3). The specification 
of the attributes in PARTITIONING BY induces a 
partitioning of the input. Thus the checking of dominance 
conditions is limited to tuples within a partition. We note 
that this partitioning can be performed as described above. 
Therefore, we focus below on the processing necessary 
within each partition only.  

As noted in Section 3.1, the dominance operator 
generalizes the Skyline operator. Despite these 
generalizations, the techniques for implementation of 
Skyline operator [5,23,26] can be leveraged for 
implementing the dominance operator. This is because the 
optimizations in the physical operators that implement 
Skyline only require a transitive dominance condition, 
which is preserved by our generalizations. 

However, one important new requirement for the 
physical operator for dominance (not required for 
Skyline) is computation of dominance-based aggregate 
attributes (see Section 3.1), if used by the query.   

We now mention an optimization that can be applied 
to a SQL query containing the DOMINATE clause. When 
the FROM clause references a view containing a foreign 
key join of two or more tables, it may be possible to push 
the dominance operator below a join operator, thereby 
potentially improving execution efficiency. A full 
exploration of the available transformations involving the 
dominance operator is an interesting area of future work. 

                                                           
2 We observe that as proposed in [8,12], it may be 
interesting to expose partitioning as a separate operator by 
itself. 



 

5.2 Implementing Representation 

As described in Section 3.3, implementing a 
representation operator inside a SQL query engine to 
support the REPRESENT clause (Section 3.1) in its full 
generality requires the ability to implement solvers for the 
Integer Programming problem. Several such industry 
strength solvers e.g., [31] can provide exact or 
approximate answers to mathematical optimization 
problems. While incorporating such a solver into the SQL 
query engine may be possible and indeed useful for a 
class of applications, the resulting operator will be very 
expensive to execute, particularly on large data sets that 
are typical in today’s databases.  

Thus, in the rest of this section, we first discuss a less 
expensive physical operator that may sometimes be more 
suitable in the database context (Section 5.2.1). We then 
present two important special cases of the general 
problem for which there are efficient implementations 
with guaranteed quality (Sections 5.2.2 and 5.2.3 
respectively).  
 
5.2.1 User-Guided Search  

We design this solution so that: (a) it is efficient and 
(b) application developers can exercise control, if 
necessary, over the heuristic for performing the search. 
We achieve (a) by using a simple greedy heuristic that 
examines one tuple at a time in a single pass over the 
input. To achieve (b), we extend the syntax of the 
REPRESENT clause with an optional RANKING BY 
<Expression-List >. The full syntax of the REPRESENT 
clause is shown below for completeness: 

 
REPRESENT WITH (PARTITIONING BY <attr-list>) 
 [MAXIMIZING | MINIMIZING] <aggr-expr> 

(GLOBAL CONSTRAINT <global-constraint>)* 
(FILTER CONSTRAINT <filter-constraint>)*  
(LOCAL CONSTRAINT <local-constraint>)*  

  (RANKING BY <Expression-List>) 
 
When the RANKING BY clause is specified, <aggr-

expr> is limited to being COUNT(*). The RANKING BY 
specifies the order in which the input tuples should be 
accessed. We scan the input tuples in the order specified 
by the <Expression-List> in RANKING BY. For 
example, RANKING BY (A+B) DESC means that tuples 
must be considered for inclusion in the output in 
descending order of the expression (A+B) evaluated on 
each tuple. When the RANKING BY clause is not 
specified, the implementation for the general case of IP is 
invoked.  

Despite the restriction of only allowing <aggr-expr> 
to be COUNT(*), it may be possible (for the application 
developer) to map a query that requires 
maximizing/minimizing a SUM(Attr) aggregate to a query 
that only maximizes/minimizes COUNT(*) but using 
RANKING BY. Of course, while the two queries are not 

equivalent, the quality/performance trade-off may be 
acceptable for the application. For example, consider 
maximizing SUM(Attr) subject to Count(*) ≤ k. This 
could be mapped e.g., to a maximizing COUNT(*) query 
with constraint Count(*) ≤ k and RANKING BY Attr 
DESC. 

The semantics of a query with RANKING BY can be 
procedurally described as follows. We first describe it for 
the MINIMIZING case. Observe that before the input is 
scanned, all ≤ constraints are trivially satisfied. If addition 
of the next tuple would violate any ≤ constraint, then the 
tuple is discarded. Otherwise, the tuple is added to the 
output. We terminate as soon as all ≥ constraints are 
satisfied or we reach the end of the input. A final check is 
performed to see if all ≥ constraints are satisfied, and if 
not, we report that we were unable to find a feasible 
solution. The procedure for the MAXIMIZING case is 
identical except that the termination condition is only 
when the end of the input is reached. Finally, we note that 
there are known algorithms for Top-K query processing 
e.g., [16,17], and it may be possible to leverage these 
algorithms to obtain an efficient implementation.  

Observe that RANKING BY provides a particular way 
to specify how the general mathematical optimization 
problem should be solved. Another such approach is 
uniform random sampling or stratified sampling. 
Sampling is already of interest to the database community 
at large as evidenced by their incorporation into SQL 
standards [30]. Although we do not get into the details of 
syntactic extensions, we observe that it is possible to 
expose stratified sampling using our approach, e.g., by 
combining PARTITIONING BY with a local equality 
constraint on Count(*).  Likewise uniform random 
sampling can be exposed using a single global equality 
constraint. Note that in these cases we are not 
maximizing/minimizing an aggregate, but rather finding a 
random subset with the specified count.  

  
5.2.2 Maximizing SUM(Attr)  

We now describe an  operator for efficiently finding 
an optimal solution for a special class of queries. Consider 
a query MAXIMIZING an aggregate over some attribute, 
say A, subject to arbitrary filter constraints, together with 
a local constraint on Count(*), and a global constraint on 
Count(*). Intuitively, such queries require selecting some 
set of tuples to maximize an objective, while being 
constrained by the total number of tuples to be selected, as 
well as having constraints on how these chosen tuples are 
distributed across the different partitions. There are many 
interesting queries that fall into this class, including four 
of the five examples queries in Section 3.2 as well as all 
of the queries we use in our evaluation (see Section 6). 

Providing an efficient operator to solve this special 
case exactly (i.e., obtain an optimal solution) is relatively 
straightforward. When both the global and local 
constraints are of the form Count(*) ≥ c1, the solution is 
trivially the entire input. When the global constraint is 



 

Count(*) ≥ c1 and the local constraint is Count(*) ≤ c2, we 
ignore the global constraint and within each partition add 
tuples to the output in descending order of attribute A 
until we cannot add any more tuples without violating the 
constraint. Note that we can take advantage of the group-
wise processing operator (as discussed earlier) to 
repeatedly execute this operation within each partition.  
Finally, we check if the global constraint is satisfied or 
not and terminate. When the global constraint is Count(*) 
≤ c1 and the local constraint is Count(*) ≥ c2, we 
minimally satisfy each local constraint separately, i.e., 
pick exactly c2 tuples from each partitioning in 
descending order of A. If we have already violated the 
global constraint, then no solution exists. Otherwise, we 
now pick the remaining tuples from the input in 
descending order of A and add to the output as long as the 
global constraint is not violated. The final case is when 
the global constraint is Count(*) ≤ c1 and the local 
constraint is Count(*) ≤ c2 (c2 must be ≤ c1).  In this case, 
we access the input in descending order of A, and keep 
adding a tuple as long as it does not violate the local 
constraint of a partition. We stop when we have added c1 
tuples to the output (or reach the end of input).  
 
5.2.3 Minimizing Count(*) 

The second class of queries for which optimal 
solutions or solutions with guarantees can be implemented 
efficiently is when we want to MINIMIZE Count(*).  

 
Exact Solution: In the case when there are arbitrary 

filter conditions, and at most one other constraint, either 
global or local, we can obtain an exact solution. The input 
tuples are scanned in decreasing order of the attribute 
involved in the constraint, and are added to the output 
until the constraint is satisfied. As in 5.2.2, if the 
constraint is a local constraint, we use the groupwise 
operator to execute this operation within each partition. 
Finally, when there is a global and local constraint on the 
same attribute and in the same direction, we can similarly 
get an optimal solution.  

 
Approximate Solution:  When there are multiple (say 

c) global/local constraints, all of which are “≥” 
constraints, we can use the same idea but in a multi-pass 
fashion to an approximate solution. The constraints are 
are satisfied one by one. In the ith pass, tuples are scanned 
in descending order of the attribute in the ith constraint, 
and added to the output until that constraint is satisfied.  
Proceeding in this fashion until all the constraints are 
satisfied leads to a solution with an approximation ratio of 
c, where c is the total number of constraints.  An 
optimization that can lead to a better approximation ratio 
in practice is to perform the ith pass only over tuples that 
are not already in the output (and adjust the constraints to 
take into account the contribution from tuples that are 
already part of the output). Finally, it may be possible to 

get a better approximation ratio by ordering the 
constraints in an intelligent manner.  

6.  Evaluation 

We have implemented a prototype application that 
supports the dominance and representation primitives 
described in this paper. Below, we present a preliminary 
evaluation that shows the expressiveness and utility of 
these primitives. In particular, we evaluate the quality of 
workload summarization for the task of index selection. 
Index selection is an extremely computation-intensive 
task and the scalability of index-selection tools [3,27] 
depends on the number of queries in the workload. The 
simplest way to produce a smaller-sized workload to use 
as input for index tuning is to use naïve random sampling. 
Reference [11] introduced the idea of workload 
compression and showed that the use of workload 
compression to produce a smaller-sized workload was a 
considerable improvement over naïve random sampling. 
We use workload-summarization queries to generate a 
small workload as input for index tuning. We show that 
the performance obtained using our workload 
summarization is comparable to that of workload 
compression, while the process of obtaining the 
summarized workload is itself considerably faster than 
performing workload compression. We omit comparison 
with random sampling here since [11] has already 
established the poor performance of random sampling.  

 
Methodology: We show results of our experiments for 

four different workloads: SPJ (select-project-join 
queries), SPJ-GB (select-project-join queries with 
GROUP BY), SPJ-GB-OB (select-project-join queries 
with GROUP BY and ORDER BY), and Single table 
(single-table queries only). These workloads execute 
against the TPC-H 1GB database, and are generated using 
a query-generation program that is capable of varying a 
number of parameters such as the number of joins, group-
by and order-by columns, selection conditions and their 
selectivity etc. The number of queries in these workloads 
varies from about 1000 to 2000 (see Figure 6 for exact 
counts). For the sake of ensuring a fair comparison, we 
restrict our comparison to summarization queries that are 
constrained to generate exactly the same number of output 
queries as produced by the workload-compression 
algorithm. For each workload, we tune the physical 
database design separately using the summarized 
workload obtained (a) by our summarization queries, and 
(b) by Workload Compression. We use the Index Tuning 
Wizard [4] that is part of Microsoft SQL Server 2000 to 
perform physical-design tuning. We measure the quality 
of summarization by the optimizer-estimated cost of the 
entire (i.e., original) workload on the tuned database. 
 
Results: Figure 3 compares the quality of Workload 
Compression with three different WAL queries (lower 



 

Estimated Cost is better). All our WAL queries use the 
dominance and partitioning conditions shown in Example 
1 (Section 2).   The WAL query which imposes a global 
constraint on the total number of statements, along with a 
local constraint requiring proportionate representation per 
partition by Count (denoted by Proportionate (Count) in 
the figure), appears to provide quality comparable to the 
workload-compression algorithm. The WAL queries that 
apply a local constraint requiring proportionate 
representation per partition by EstimatedCost or only 
return top queries by Dom_Weight (i.e., weights after 
applying dominance) appear to be somewhat inferior in 
quality. We also note that the execution of WAL queries 
is about three orders of magnitude faster than workload 
compression, which internally employs a clustering-based 
solution. 
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Figure 4 shows the reduction in the number of 
statements in the workload achieved by dominance and 
representation respectively. We see from the figure that 
that both these concepts are critical for pruning out 
statements. We would expect the savings from dominance 
and representation to be even higher when the input 
contains even larger workloads. 

7. Related Work  

Recently, several tools have emerged that exploit 
knowledge of the database workload for a variety of tasks 
such as physical-design tuning [3,27], feedback-based 
optimization [1,25], and approximate query processing 
[2,9,10,18]. There has also been work [14,15] on 
classifying database workloads (e.g., OLTP vs. DSS), so 
as to enable automatic tuning and configuration of 
database-system parameters based on workload type.  
Typically, workloads collected by today’s database 
profiling tools can be very large (millions of statements), 
whereas most of the above tools work efficiently for 
relatively small workload sizes. Thus, we view our work 
as back-end infrastructure to help improve the 
performance and scalability of such tools by intelligently 
pre-processing and summarizing the workload.  

In [11], the authors present the idea of workload 
compression to find a smaller workload whose use results 
in the same application quality as when the original 
workload is used.  Their work requires applications to 
specify custom distance functions that quantify how close 
two statements in the workload are. We note that 
providing such distance functions may not be easy for all 
applications. Our infrastructure, being declarative, is 
simpler to use for applications. The work in this paper can 
be viewed as a mechanism for quick pre-filtering, after 
which more sophisticated compression using much richer 
information, as in the above work, can be performed.  

The group-wise processing techniques [8,12,21] are 
useful in implementing the primitives of dominance and 
representation. As discussed in Section 5, the SKYLINE 
operator [5] is a special case of the dominance operator 
proposed in this paper. Since both dominance and 
SKYLINE operators satisfy the transitivity property, we 
are able to leverage efficient execution strategies 
previously proposed for SKYLINE to also implement 
dominance. Also, as discussed in Section 5, the work on 
processing Top-K queries e.g., [16,17] can be potentially 
leveraged for implementing the representation operator.  

In [29], the authors present a system called REDWAR 
(Relational Database Workload Analyzer). This system 
allows simple aggregations over the structure and 
complexity of SQL statements and transaction run-time 
behavior. While our WAL infrastructure supports such 
analysis, it also allows more sophisticated summarization 
through the dominance and representation primitives.  

A survey of techniques for construction of statistical 
workload models for different kinds of systems (database, 
network-based, parallel etc.) is presented in [6]. The 
“representativeness” of such models is quantified. In our 
infrastructure, rather than automatically building models 
based on the workload, we allow applications to 
customize their workload summarization by using the 
primitives proposed in this paper. 
      The idea of workload analysis for studying the impact 
of physical design on workload cost and index usage was 

Figure 3. Quality of workload summarization 
for index selection. 

Figure 4. Importance of dominance and 
representation in workload summarization 



 

presented in [13]. Our work complements this idea with 
new primitives that allow more sophisticated analysis and 
summarization of such workload information.  

8.  Conclusion 

In this paper we have identified the primitives of 
dominance and representation that are crucial in various 
tasks that require summarizing workloads. These 
primitives also appear to be useful in many other practical 
scenarios. Tighter integration of these primitives into a 
traditional SQL query processing engine and their 
evaluation for a broader set of tasks is an interesting area 
of future work.  
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