
Primitives for Workload Summarization and Implications for
SQL

 Surajit Chaudhuri Prasanna Ganesan Vivek Narasayya

 Microsoft Research Stanford University Microsoft Research
 Redmond, USA Palo Alto, USA Redmond, USA
surajitc@microsoft.com prasannag@cs.stanford.edu viveknar@microsoft.com

Abstract

Workload information has proved to be a crucial
component for database-administration tasks as
well as for analysis of query logs to understand
user behavior and system usage. These tasks
require the ability to summarize large SQL
workloads. In this paper, we identify primitives
that are important to enable many important
workload-summarization tasks. These primitives
also appear to be useful in a variety of practical
scenarios besides workload summarization.
Today’s SQL is inadequate to express these
primitives conveniently. We discuss possible
extensions to SQL and the relational engine to
efficiently support such summarization
primitives.

1. Introduction

The past few years have seen the emergence of a large
class of tasks that benefit from analysis of SQL workload
information. Some examples of such tasks are database
administration [3,27] and understanding user/application
behavior [14,15]. The problem of collecting a SQL
workload is itself rather easy as most commercial
database vendors provide profiling tools that enable
logging of SQL activity on the server over a
representative period of time, ranging from minutes to
days. However, little attention has been paid to
understanding the requirements for analysis of the
collected workload.

In analyzing the workloads, one of the key
requirements is identifying a small representative subset
that captures the essence of the large workload that has
been logged using automated tools. There are multiple
reasons why picking such a small representative subset is
necessary. First, the resources needed to accomplish tasks
such as index tuning grows (often super-linearly) with
increasing sizes of workloads. There is a significant
benefit to be gained by “filtering’’ the workload before it
is fed to these tasks, while not compromising its
characteristics. A second motivation arises from the
necessity of having to meaningfully summarize data for
viewing by DBAs or analysts. It is important to be able to
offer relatively small representative synopses of the
workload, before “drilling down” to identify the queries
of interest.

The simplest way to obtain a representative subset is
to pick a uniform random sample of the workload. While
sampling is conceptually simple and, in fact, useful in
many situations, a DBA may like to obtain a
representative subset that has additional constraints, e.g.,
pick a representative workload with the 100 most
expensive queries while ensuring that every table in the
database occurs in at least 5 queries. Thus, the
specification for picking a representative subset for a
workload (henceforth called summary) depends on the
task at hand and, more often than not, sampling in itself is
not adequate.

A natural approach is to express the specification for a
summary workload as a SQL statement over the entire
workload represented in a relational database. We
discover that today’s SQL provides inadequate support for
conveniently specifying such summary workloads. In
trying to understand the precise implications for SQL to
better support workload analysis, we identify two key
primitives. As with traditional filtering, both these
primitives take as input a set of statements and output a
subset of those statements. The first primitive, that we call
dominance, allows filtering based on a partial order
among the statements in the workload. Thus, statements
that are “dominated” by other statements in the workload
(as determined by the partial order) are filtered out. For

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

example, when considering workload summarization for
the index-selection task, whenever two queries Q1 and Q2
are identical in all respects except, say, in their GROUP
BY clause, and if Q1 contains a superset of the GROUP
BY columns of Q2 (e.g., Q1 has GROUP BY A,B,C and
Q2 has GROUP BY A,B), we could declare that Q1
dominates Q2 , since the indexes chosen for Q1 are likely
to be adequate for Q2 as well.

The second primitive, which we call representation, is
a form of combinatorial optimization. It allows
specification of a subset of the workload such that a
certain objective function (an aggregate expression over
an attribute) is maximized or minimized, subject to a set
of constraints. For example, in the index-selection task,
we may wish to constrain the output to no more than 1000
statements in the workload, while trying to maximize
“coverage” (say total execution time of all statements in
the output) of the workload. It should also be noted that
both the dominance and representation primitives need to
be able to provide aggregate information as well. For
example, we should able to know the count of the total
number of statements a “dominating” statement in the
workload (Q1 in the example above) has “dominated”.

Of course, studying the implications of and
mechanisms for supporting these primitives in SQL may
not be worthwhile if these primitives are useful only for a
specialized application such as workload analysis.
However, the above primitives are useful in a variety of
scenarios besides workload summarization. This broader
applicability motivates us to investigate their inclusion in
SQL. The dominance primitive is a generalization of the
Skyline operator [5], and, we describe how, with suitable
extensions, it can leverage algorithms that have been
proposed [5,23,26] for implementing the Skyline operator.
Implementing the representation primitive in SQL
requires us to address trade-offs between functionality and
complexity. While the representation primitive can
potentially have wide usage, in its full generality it
requires us to solve the Integer Programming (IP)
problem that is known to be NP-hard [19]. While several
algorithms are known for solving the IP problem e.g.,
[31], their integration into SQL directly can result in a
very heavyweight operator whose usefulness on large data
sets may be rather limited. Thus, we propose an
alternative, simpler extension to SQL that allows efficient
and scalable implementation strategies. While falling
short of the optimization guarantees of the representation
primitive, this simpler extension appears to be adequate
for many common summarization tasks.

As a proof-of-concept of the expressiveness and utility
of these primitives, we evaluate them in the context of
summarizing workloads for index selection. We compare
our solution against a previously presented method for
workload compression [11] that requires the definition of
a distance function for index selection, which then uses a
clustering-based method for compression.

The rest of this paper is organized as follows. Section
2 describes primitives that are useful for several
summarization tasks. Section 3 presents a language that
exposes these primitives declaratively and shows how
various workload-summarization tasks can be expressed
in this language. In Section 4, we describe a few different
scenarios (besides workload summarization) where these
primitives also appear to be useful. In Section 5, we
discuss possible extensions to SQL and the query engine
to support these primitives. Section 6 presents a brief
evaluation of these primitives relative to workload
compression [11]. We discuss related work in Section 7
and conclude in Section 8.

2. Workload Summarization

In this section, we describe several examples of workload
summarization tasks, and then identify the logical
operations that are common across these tasks. To make
the examples that we present specific, we first present a
workload schema that describes the attributes of each
statement in the workload.

2.1 Workload Schema

Every workload-summarization task expects its workload
input to conform to a specific schema for workloads. A
workload schema defines the set of attributes of each
statement in the workload that the task may reference. In
this section, we present an example of such a workload
schema. Our purpose here is to introduce attributes that
can be referenced in the examples presented in the paper.
In general, we expect different applications to use
potentially different workload schemas. We note that as
workload analysis matures, a core standardized schema
can facilitate easy sharing of information across different
applications.

Attribute Type Meaning

StmtType Atomic Statement type: (SELECT,
UPDATE, INSERT,
DELETE)

SQLString Atomic SQL String of statement
Timestamp Datetime Time when statement was

executed
User Atomic Name/Id of user issuing

statement
Application Atomic Name of application

issuing statement
Weight Atomic A number representing the

importance of this
statement in the workload

FromTables Set Set of tables referenced in
FROM clause

WhereCols Set Set of columns referenced
in WHERE clause

JoinConds Set Set of join conditions in

statement
GroupByCols Set Set of columns in GROUP

BY clause
OrderByCols Sequence Set of columns in ORDER

BY clause
ProjCols Set Set of columns projected in

query
EstimatedCost Atomic Optimizer estimate of

query cost from plan
ExecutionCost Atomic Elapsed time executing

statement
CPUTime Atomic CPU time executing

statement
IOTime Atomic I/O time executing

statement
Memory Atomic Max memory consumed

during statement execution
IndexesUsed Set Set of indexes used in

answering statement

Our schema (shown in Table 1) contains attributes of

the following types: (1) Atomic-valued (e.g., Execution
cost of statement, Number of tables referenced) (2) Set-
valued (e.g., Set of tables referenced) (3) Sequence (e.g.,
Sequence of ORDER BY columns). We note that today’s
relational database systems do not support set and
sequence data types. In Section 5, we discuss the
implications of this non-support for workload
summarization as a database application.

We broadly categorize the attributes of a statement in
the workload into three categories: (1) Syntactic and
Structural. These include all attributes that describe the
syntax or structure of the statement. (2) Plan Information
(3) Execution Information.

2.2 Examples of Workload Summarization

In this section, we present examples of workload
summarization that appear to be useful either for
preparing input to automated tools or for consumption by
DBAs or analysts.

Example 1: Summarizing workloads for input to index
selection tools. Workloads often consist of different
templates (e.g., stored procedures, batches) that get
invoked repeatedly with different parameters. Within each
template, we may want to take advantage of certain
relationships between statements to filter out some
queries. For example, whenever two queries (say Qi and
Qj) are identical in all respects except their GROUP BY
and ORDER BY clauses, and if Qi.GroupByCols ⊂
Qj.GroupByCols and Qi.OrderByCols is a prefix of
Qj.OrderByCols, we could require that only Qj be
included in the workload summary, since indexes that are
beneficial for Qj are likely to be adequate for Qi as well.
After this filtering step, we would like to obtain a

“summary’’ while ensuring that each template receives
adequate representation (e.g., proportional to the number
of statements in each template). Finally, we would like
the workload summary to contain no more than 1000
queries such that the sum of the Weight attribute is
maximized, i.e., we capture as much of the total weight of
the original workload as possible.

Example 2: Finding queries that are potential resource
bottlenecks. DBAs often need to find queries that are
responsible for consuming the most resources (CPU, I/O,
Memory). Suppose the total CPU time (resp. I/O time,
Memory) consumed by all queries is CPUTotal (resp.
IOTotal, MemoryTotal). One natural summarization task
is to find the smallest subset of queries that covers at least
50% of CPUTotal, IOTotal and MemoryTotal.

Example 3: Identifying columns for potential
building/updating of statistics. For this task, we want to
detect queries with (a) a large discrepancy between the
optimizer’s estimated time and the actual execution time,
and (b) having large errors in cardinality estimation. We
filter out statements that do not have at least 50% error in
cardinality estimation or take less than one second to
execute. We then partition statements based on the tables
referenced (FromTables attribute) and join conditions
(JoinConds attribute). Within each partition, we narrow
down the columns that could benefit from the
creation/update of statistics by eliminating statements
which have a superset of the columns involved in some
other statement. Finally, we want no more than 5
statements per partition in the summary, and no more than
a total of 100 statements, while maximizing the total
value of CostRatio (defined as ExecutionCost /
EstimatedCost) over the statements in the summary.

2.3 Key Primitives in Workload Summarization

We now introduce the common primitives that are
necessary to accomplish the kinds of workload
summarization tasks described in Section 2.2.

2.3.1 Filtering

This primitive is simply the “traditional” filter, i.e., it
eliminates any statement in the workload that does not
satisfy a given Boolean expression. An atomic condition
in the filter is any predicate on an attribute of the
workload schema. For example, in Example 3 above, we
filter out statements with low errors in cardinality
estimation or with low execution times.

2.3.2 Dominance

The dominance primitive can be used to specify a
partial order among statements in the workload.
Moreover, this partial order is used also as a filtering and
aggregation (described later) operator. In particular, for
any pair of statements S1 and S2 in the workload, if per the

Table 1. Example of schema for workload.

partial order S1 is “dominated by” S2, then S1 must be
eliminated (filtered) from the output of the dominance
operator, with the exception of the case when S1
dominates S2 and S2 dominates S1. In the latter case, S1
and S2 are considered equivalent, and it is acceptable to
include either one (but not both) in the output. Thus, the
semantics of dominance is that it outputs a smallest subset
such that every statement not included in the output is
dominated by some statement in the output. The
specification of the partial order, or equivalently the test
for whether a statement is dominated by another
statement, is expressed by a conjunction of conditions on
the attributes of the statements. In general, we expect
some of these conditions to be strict equality conditions,
and the rest to be partial order conditions. We refer to the
attributes mentioned in the strict equality conditions as the
partitioning attributes associated with the dominance
primitive. In Example 1, the strict equality conditions are
that FromTables, JoinConds, and WhereCols of both
statements are identical, and the partial order conditions
are: (1) GroupByCols of the first statement is a subset of
GroupByCols of the second statement; (2) OrderByCols
of the first statement is a prefix of OrderByCols of the
second statement. We observe that the strict equality
conditions imply a partitioning of the statements. Note
also, that if in Example 1, two statements in the workload
have the same group by and order by columns, then either
of them (but not both) may be included in the output.

We illustrate the dominance relationship graphically
in Figure 1. Each node in the graph denotes a statement
and an edge from node X to node Y denotes that X
dominates Y. In the figure below, the output set of
statements is {A,B,C}.

Dominance is important for certain workload

summarization tasks. For example, an index that is
appropriate for statement S2 may also be appropriate for
S1, but not necessarily the other way around. In this paper
we restrict the comparison operators of the inequality
conditions to transitive operators, such as <, >, ≤, and ≥
for atomic-valued attributes, ⊂ , ⊆ , ⊃ , and ⊇ for set-
valued attributes, and prefix-of, subsequence-of, and
supersequence-of for sequence-valued attributes. We also

restrict an attribute of a statement to be compared with the
same attribute of the other statement. Since the
dominance relationship imposes a partial order, it is
transitive. As we discuss later (see Section 5), transitivity
is useful in enabling an efficient implementation of
dominance.

As noted earlier, the dominance primitive also
represents aggregation. With every statement S in the
output of the dominance operator, aggregation
information over the statements that were dominated by S
could be included. Each such specified aggregate
becomes a new attribute (which we refer to as a
dominance-based aggregate attribute) of each statement
output by the dominance primitive. A dominance-based
aggregate attribute corresponding to an output statement S
is the SUM or COUNT function (or, in principle, any
other aggregate function) applied to any attribute, over all
the statements that were eliminated by S, and including S
itself. Note that a statement can be dominated by two
different statements, neither of which dominates one
other. In Figure 1 above, H is dominated by E and F, but
neither E nor F dominates the other. In this case, we
establish a convention that H’s value will contribute to the
aggregate of either E or F but not both1.

2.3.3 Representation

The representation primitive allows specification of a
subset of the workload such that a certain objective
function (an aggregate expression over an attribute) is
maximized (or minimized), subject to a set of constraints.
Thus the representation primitive specifies an
optimization problem. Representation consists of five
parts, each of which we describe below:

Partitioning Attributes
 Representation can specify a partitioning of the input
to be used, so that constraints can be specified at a per-
partition level. Partitioning is similar to a GROUP BY, in
that each partition corresponds to all statements that have
the same values for all the partitioning attributes.

Optimization Criterion

The optimization criterion can be specified in one of
the following forms: (1) Minimize an aggregate over an
attribute, e.g., the number of statements in the output,
subject to the constraints; (2) Maximize an aggregate over
an attribute, e.g., maximize sum of ExecutionCost subject
to the constraints.

Global Constraints

Global constraints are constraints on an aggregate
computed over the entire output set of statements. We
permit any conditional expression involving aggregates

1 In general, we could allow H’s value to be distributed in some
manner across all statements that dominate it (E and F), but we
do not consider this possibility in this paper.

A B C

D

E F

G

H

Figure 1. Graphical representation of
dominance relationship.

over any of the attributes of the input. Referring to
Example 1, we see that the requirement that the chosen
statements should cover at least 75% of the total
ExecutionCost of statements in the input workload is a
global constraint.

Local Constraints
Local constraints are identical to global constraints,
except that the constraint applies to each individual
partition. For example, we could specify that every
partition should contain enough output statements to
cover at least 75% of the total statements in that partition.

Filter Constraints

Filter constraints are constraints that apply to each
individual statement chosen by the representation process.
A statement not satisfying the filter constraint may not be
a part of the output. Note that a filter constraint may
involve aggregate expressions computed over partitions or
the entire input workload. For example, we could have a
filter constraint requiring that every statement chosen has
an execution cost at least 30% higher than the average
execution cost in its partition.

3. A Language for Workload Summarization

We now briefly describe a language for declaratively
specifying workload-summarization tasks such as the
ones described earlier. This language, which we refer to
as WAL (Workload Analysis Language), supports the
primitives of filtering, partitioning, dominance and
representation presented in Section 2. The purpose of
introducing WAL is to highlight (a) the importance of
exposing these primitives in a declarative manner, thereby
making it possible to specify sophisticated summarization
tasks easily, and (b) the expressiveness necessary for
accomplishing these tasks. We present this language as
though it were an extension of SQL and, in Section 5, we
discuss the implications actually extending SQL in this
fashion.

We describe the syntax for specifying a query in WAL
in Section 3.1 and provide several example queries in
WAL in Section 3.2. We note that the focus of this section
is not on the specific syntax we propose, but rather on the
tasks that are enabled by it.

3.1 WAL Syntax

The overall structure of a query in WAL is shown
below.

SELECT <select clause>
FROM <from clause>
WHERE <filter condition>
DOMINATE <dominate-clause >
REPRESENT <representation-clause>

We now discuss each of the clauses in more detail. We do
not go into details on clauses that are already part of the
SQL language.

SELECT clause

The SELECT clause is similar to that of any SQL
query. It permits the specification of a subset of the
attributes in the workload schema, together with other
aggregates. In addition, we allow defining dominance-
based aggregate attributes (see Section 2.3.2). Note that
dominance-based aggregates are similar to aggregates
computed for each group specified by the GROUP BY
clause of a traditional SQL query. The difference is that,
for each output statement S, the aggregate is computed
over the set of all statements dominated by S. These
aggregates are defined by prefixing DOM to the
traditional keywords for computing aggregates. For
example, DOMSUM(ExecutionCost) returns, for each
statement S output by the dominance primitive, the sum
of the ExecutionCost of all statements dominated by S,
and including S itself. Thus, for each aggregate function
(e.g., SUM, COUNT) in SQL, there is a corresponding
dominance-based aggregate function. We note that the
scope of such an attribute is the block defined by the
SELECT clause. Thus e.g., this attribute can be
referenced in the REPRESENT clause in a constraint.

FROM clause

The FROM clause simply specifies a single table or
view. In the context of workload summarization, it is
implicit that this table or view conforms to the workload
schema. Note that the view may itself be an arbitrary SQL
query whose result conforms to the workload schema. For
example, traditional SQL operators such as UNION,
DIFFERENCE etc., could be used to combine two or
more workloads in meaningful ways.

WHERE clause

As in SQL, the WHERE clause is permitted to be an
arbitrary boolean condition applicable to each tuple of the
table or view specified in the FROM clause.

DOMINATE clause

The syntax of the DOMINATE clause is:
 DOMINATE WITH (PARTITIONING BY <attr-list>)

 (SLAVE.Attr Op MASTER.Attr) *
Thus, the strict equality dominance conditions are

specified by the shorthand PARTITIONING BY (<attr-
list>). This is followed by the conditions that define the
partial order. All conditions are implicitly ANDed.
Logically, each condition for the partial order is specified
by a comparison operator (e.g., ≤) and an attribute over
which the comparison condition is applied. Note that
SLAVE.Attr Op MASTER.Attr is a syntactic redundancy
to make the query examples in this paper more readable.
In this paper MASTER and SLAVE can be viewed as
keywords. For reasons mentioned earlier (see Section

2.3.2) Op is restricted to any comparison operator that is
transitive.

We observe that the SKYLINE OF clause proposed in
[5] is a special case of the DOMINATE clause. The
SKYLINE OF clause specifies a set of attributes A1, …
Ak and a direction (MIN/MAX) with each attribute. Thus,
for example, SKYLINE of A min, B max maps to
SLAVE.A > MASTER.A and SLAVE.B < MASTER.B in
our definition of dominance. Our definition of dominance
generalizes SKYLINE by allowing creation of
dominance-based aggregate attributes (see Section 2.3.2
and SELECT clause above), which may be referenced in
other parts of the WAL query (e.g., in the representation
clause).

REPRESENT Clause

This clause allows specification of the representation
primitive. In particular, it allows specifying: (1) the
partitioning attributes, (2) the objective function to
maximize or minimize, and (3) the constraints the output
must satisfy. We now present the syntax of the
representation clause and then describe it in more detail.

REPRESENT WITH (PARTITIONING BY <attr-list>)
 [MAXIMIZING | MINIMIZING] <aggr-expr>

(GLOBAL CONSTRAINT <global-constraint>)*
(FILTER CONSTRAINT <filter-constraint>)*
(LOCAL CONSTRAINT <local-constraint>)*

The optional PARTITIONING BY specifies a set of

attributes on which to partition the statements in the
workload. Note that LOCAL CONSTRAINTs are meant
to be used only if PARTITIONING BY is specified.

<aggr-expr> is an aggregate expression of the form
Aggregate(Attribute) that is to be maximized (or
minimized) subject to specified constraints, and we refer
to it as the optimization criterion. Aggregate can be the
SUM or COUNT aggregate function.

<filter-constraint> is a condition of the form (Attr Op
Expression). <global-constraint> and <local-constraint>
are both conditions of the form (Aggregate(Attr) Op
Expression). In all these constraints, Expression can
involve constants, aggregates on an attribute computed
over the entire set of statements input to the representation
primitive (obtained by prefixing the aggregate by the
keyword GLOBAL), or aggregates computed over the set
of tuples within a partition (obtained by prefixing the
aggregate with the keyword LOCAL). Note that LOCAL
can only be used in a filter or local constraint, and not in a
global constraint.

3.2 Examples of Summarization Tasks in WAL

We now present several examples of workload-
summarization tasks expressed as queries in WAL. These
examples highlight the expressiveness and usefulness of
our primitives exposed in a declarative interface. We

begin by giving corresponding WAL queries for
Examples 1-3 presented in Section 2.2, and then give a
couple more examples. In all the examples below, we
assume that WorkloadTable is the name of the table
containing the workload statements according to the
schema described in Table 1 (see Section 2.1).

Example 1. Preparing workload for input to index
selection tool (see Section 2.2 for detailed description).
SELECT *, DOMSUM(Weight) AS Dom_Weight
FROM WorkloadTable
DOMINATE WITH PARTITIONING BY

FromTables, JoinConds, WhereCols
 SLAVE.GroupByCols SUBSET MASTER.GroupByCols
 SLAVE.OrderByCols PREFIX MASTER.OrderByCols
REPRESENT WITH PARTITIONING BY

FromTables, JoinConds, WhereCols
MAXIMIZING Sum(DOM_Weight)

GLOBAL CONSTRAINT Count(*) ≤ 200
LOCAL CONSTRAINT Count(*) ≥
int(200*LOCAL.Count(*)/GLOBAL.Count(*))

Example 2. Finding queries that are potential
performance bottlenecks (see Section 2.2 for detailed
description).
SELECT * FROM WorkloadTable
REPRESENT WITH
MINIMIZING COUNT(*)
GLOBAL CONSTRAINT SUM(CPUTime) >

0.50 * GLOBAL.SUM(CPUTime)
GLOBAL CONSTRAINT SUM(IOTime) >

0.50 * GLOBAL.SUM(IOTime)
GLOBAL CONSTRAINT SUM(Memory) >

0.50 * GLOBAL.SUM(Memory)

Example 3. Identifying columns for potential
building/updating of statistics (see Section 2.2 for
detailed description).
SELECT * FROM WorkloadTable
WHERE ABS(CardEst – CardActual)/CardActual > 0.5
 AND (ExecutionCost > 1.0)
DOMINATE WITH PARTITIONING BY
 FromTables, JoinConds
 SLAVE.SelectCols SUBSET MASTER.SelectCols
 SLAVE.WhereCols SUBSET MASTER.WhereCols
REPRESENT WITH PARTITIONING BY

FromTables, JoinConds
MAXIMIZING SUM(CostRatio)
GLOBAL CONSTRAINT Count(*) ≤ 100
LOCAL CONSTRAINT Count(*) ≤ 5

Example 4. Obtaining summary of workload for use in
building samples of database for approximate
processing of aggregation queries. We refer the reader
to [9,10,18] for more details on the role of workload
information in approximate query processing. In this
example, among all queries in each partition specified in

the representation clause, we are requesting at most 10
queries. We also require that the total number of queries
does not exceed 500, while maximizing the total weight
of all queries that are selected.
SELECT * FROM WorkloadTable
REPRESENT WITH PARTITIONING BY
 FromTables, JoinConds, GroupByCols, WhereCols
MAXIMIZING SUM(Weight)

GLOBAL CONSTRAINT Count(*) ≤ 500
LOCAL CONSTRAINT Count(*) ≤ 10

Example 5. Finding queries in each application with
low relative index usage. Find a subset of at most 100
queries in the workload maximizing total execution cost
such that, for each application, we pick a subset of queries
that has lower-than-average index usage despite having a
higher-than-average number of tables referenced,
compared to other queries from that application.
 SELECT * FROM WorkloadTable
REPRESENT WITH PARTITIONING BY Application
MAXIMIZING Sum(ExecutionCost)
GLOBAL CONSTRAINT COUNT(*) <= 1000
LOCAL CONSTRAINT AVG(NumIndexesUsed) <

 0.75 * LOCAL.AVG(NumIndexesUsed)
LOCAL CONSTRAINT AVG(NumTables) >

1.25 * LOCAL.AVG (NumTables)

3.3 Discussion on Complexity

We briefly discuss the algorithmic complexity of each
of the primitives discussed in Section 2.2 and supported in
WAL. We assume that the table (or view) specified in the
FROM clause has n statements. The filtering primitive
can be performed in linear time, and the partitioning
operation (required both for dominance and representation
primitives) can also be performed in linear time using a
hash-based scheme (or O(n log n) time using a sort-based
scheme). The dominance operation can be performed in
worst-case O(n2) time by testing the dominance
conditions for each pair of statements.

The complexity of the representation primitive
depends on the specific formulation. In its full generality,
the problem of finding a subset of statements that
maximizes (or minimizes) an aggregate subject to a set of
linear constraints is equivalent to the 0-1 Integer
Programming problem, which is known to be NP-Hard
[19]. Even simplifications of the general problem are
known to be hard. For example, the problem of
minimizing Count(*) subject to a bounded number of
global constraints of the form SUM(Attri) ≥ ki, where
each of the attributes is confined to being arbitrary, non-
negative real numbers, can be shown to be NP-hard by a
simple reduction to the Partition problem (see [19] for a
description of the Partition problem). Likewise, the
problem of maximizing SUM(Attr0) subject to c global
constraints: SUM(Attr1) ≤ k1, …. SUM(Attrc) ≤ kc is the

well-known multi-dimensional knapsack problem which
is also NP-Hard [7].

Given the complexity of the representation operation,
a natural question is how this operation can be supported
in practice. We note that the general problem (0-1 Integer
Programming problem) has been well-studied and several
standard software packages exist for solving it (e.g., [31]).
Such solutions could be invoked outside the database
server directly by the workload-summarization
application. Unfortunately, even the best-known solutions
do not scale well for large inputs (e.g., millions of
statements in the workload). Our observation is that a
large class of workload-summarization tasks does not
need to solve the most general optimization problem. In
Section 5, we discuss incorporating support for less
general forms of representation inside a SQL query
engine that can provide optimal answers efficiently for
some simple, common cases and approximate or heuristic
answers for more complex cases.

4. Applicability of Primitives to Other
Scenarios

Although the dominance and representation primitives
presented in this paper are motivated by the need for
effective workload summarization, the applicability of
these operations is not limited to workload
summarization. In this section we present a few other
domains where these operations could be useful in
complementing existing analysis techniques in the
respective domains.

Scenario 1: Customer Relationship Management (CRM)

Consider a company that wants to mail product
catalogs to its customers. The company has a fixed budget
for mailing costs. The concept of dominance can help in
this scenario as follows: To avoid sending multiple
catalogs to a single address, the company considers all
customers with the same address as equivalent, and will
pick exactly one customer at that address, for example,
the person in the household with the highest income. To
maximize the expected benefit from the mailing, the
company may like to select a subset of customers with
largest total “importance” (e.g., measured by money spent
on their products in the past). Representation is useful
for specifying such a subset while not exceeding the
mailing-cost budget (a global constraint), and ensuring
that exactly one customer is picked from each address (a
local constraint).

Scenario 2: Personalization

Consider personalization of web pages based on user
profiles. When a user requests a web page, only a fixed
number of targeted ads (say K) can typically be displayed
on that page. The concept of partitioning and local

constraints can be useful to specify that that at most two
ads from each category (such as food, jewelry, books etc.)
should be chosen. Dominance can be useful in specifying
whether, within a category (based on user’s profile), the
expensive items or the inexpensive items should
dominate. Representation is necessary since the company
running the web site wishes to pick a subset of ads such
that a certain objective function (e.g., likelihood of click-
throughs) is maximized, while not exceeding the global
constraint of K ads.

Scenario 3: Web-Community Management

Consider a web community scenario where an
incoming question needs to be answered by locating a
certain set of “experts” on the subject. The goal is to
provide a timely response from as highly rated an expert
as possible. For cost effectiveness, we do not want to
request more than N experts for any given question.
Dominance can be useful to partition experts according to
different time zones in order to improve chances of a
quick response. Within each zone, we can define a person
with higher expertise rating and average response time as
“dominating” any other expert with lower rating and
higher average response time. Representation can be
useful for specifying that we find the subset of at most N
experts while maximizing the sum of the expertise rating,
subject to having at least one expert from each partition.

5. Dominance and Representation in SQL
Engine

The examples of workload-summarization tasks and
the tasks from other domains that we have presented
indicate that the primitives of dominance and
representation have broad applicability. There are two
issues to consider for implementing workload-
summarization tasks as SQL applications. First,
workload-summarization queries reference attributes of
type Set and Sequence (see schema in Table 1), which are
not supported in today’s database systems. We do not
address this issue in the paper other than to note that these
data types are already finding their way into SQL
standards (e.g., array types are part of the SQL 1999
standard [30] and multi-set types are part of the SQL 2003
standard [30], currently in the final stages of
standardization).

The second issue is that today’s commercial database
systems do not support the primitives of dominance and
representation. We have already indicated in Section 3.1
how dominance and representation may possibly be
exposed in the query syntax of SQL. While our focus is
not on the narrow specifics of the syntax, for ease of
exposition, in the rest of this section we will assume the
syntax for exposing dominance and representation as
described in Section 3.1.

Before discussing how these two primitives could be
supported by a SQL query engine, we briefly consider the

physical operator for partitioning. Partitioning is
important as partitioning attributes are specified as part of
both dominance and representation clauses (see Sections
2.3 and 3.1). We note that partitioning of the input can be
achieved either by hashing or by sort-based methods (with
the latter possibly exploiting indexes or existing orders on
the input). Once the input is partitioned, dominance and
representation operators may need to be invoked within
each partition. Note that techniques from group-wise
processing [8,12] can be leveraged for implementation of
the dominance and special forms of representation. Such
group-wise processing allows an arbitrary sub-query to be
executed inside each partition. The result of the overall
query is the union over the results of the sub-query over
each partition. However, the general problem of
representation involves challenges that go beyond group-
wise processing. Moreover, explicitly supporting
dominance and representation as part of the syntax
facilitates specification as well as optimization2.

5.1 Implementing Dominance

We now discuss the physical operator necessary for
the dominance primitive, i.e., executing a SQL query with
the DOMINATE clause (see Section 3). The specification
of the attributes in PARTITIONING BY induces a
partitioning of the input. Thus the checking of dominance
conditions is limited to tuples within a partition. We note
that this partitioning can be performed as described above.
Therefore, we focus below on the processing necessary
within each partition only.

As noted in Section 3.1, the dominance operator
generalizes the Skyline operator. Despite these
generalizations, the techniques for implementation of
Skyline operator [5,23,26] can be leveraged for
implementing the dominance operator. This is because the
optimizations in the physical operators that implement
Skyline only require a transitive dominance condition,
which is preserved by our generalizations.

However, one important new requirement for the
physical operator for dominance (not required for
Skyline) is computation of dominance-based aggregate
attributes (see Section 3.1), if used by the query.

We now mention an optimization that can be applied
to a SQL query containing the DOMINATE clause. When
the FROM clause references a view containing a foreign
key join of two or more tables, it may be possible to push
the dominance operator below a join operator, thereby
potentially improving execution efficiency. A full
exploration of the available transformations involving the
dominance operator is an interesting area of future work.

2 We observe that as proposed in [8,12], it may be
interesting to expose partitioning as a separate operator by
itself.

5.2 Implementing Representation

As described in Section 3.3, implementing a
representation operator inside a SQL query engine to
support the REPRESENT clause (Section 3.1) in its full
generality requires the ability to implement solvers for the
Integer Programming problem. Several such industry
strength solvers e.g., [31] can provide exact or
approximate answers to mathematical optimization
problems. While incorporating such a solver into the SQL
query engine may be possible and indeed useful for a
class of applications, the resulting operator will be very
expensive to execute, particularly on large data sets that
are typical in today’s databases.

Thus, in the rest of this section, we first discuss a less
expensive physical operator that may sometimes be more
suitable in the database context (Section 5.2.1). We then
present two important special cases of the general
problem for which there are efficient implementations
with guaranteed quality (Sections 5.2.2 and 5.2.3
respectively).

5.2.1 User-Guided Search

We design this solution so that: (a) it is efficient and
(b) application developers can exercise control, if
necessary, over the heuristic for performing the search.
We achieve (a) by using a simple greedy heuristic that
examines one tuple at a time in a single pass over the
input. To achieve (b), we extend the syntax of the
REPRESENT clause with an optional RANKING BY
<Expression-List >. The full syntax of the REPRESENT
clause is shown below for completeness:

REPRESENT WITH (PARTITIONING BY <attr-list>)
 [MAXIMIZING | MINIMIZING] <aggr-expr>

(GLOBAL CONSTRAINT <global-constraint>)*
(FILTER CONSTRAINT <filter-constraint>)*
(LOCAL CONSTRAINT <local-constraint>)*

 (RANKING BY <Expression-List>)

When the RANKING BY clause is specified, <aggr-

expr> is limited to being COUNT(*). The RANKING BY
specifies the order in which the input tuples should be
accessed. We scan the input tuples in the order specified
by the <Expression-List> in RANKING BY. For
example, RANKING BY (A+B) DESC means that tuples
must be considered for inclusion in the output in
descending order of the expression (A+B) evaluated on
each tuple. When the RANKING BY clause is not
specified, the implementation for the general case of IP is
invoked.

Despite the restriction of only allowing <aggr-expr>
to be COUNT(*), it may be possible (for the application
developer) to map a query that requires
maximizing/minimizing a SUM(Attr) aggregate to a query
that only maximizes/minimizes COUNT(*) but using
RANKING BY. Of course, while the two queries are not

equivalent, the quality/performance trade-off may be
acceptable for the application. For example, consider
maximizing SUM(Attr) subject to Count(*) ≤ k. This
could be mapped e.g., to a maximizing COUNT(*) query
with constraint Count(*) ≤ k and RANKING BY Attr
DESC.

The semantics of a query with RANKING BY can be
procedurally described as follows. We first describe it for
the MINIMIZING case. Observe that before the input is
scanned, all ≤ constraints are trivially satisfied. If addition
of the next tuple would violate any ≤ constraint, then the
tuple is discarded. Otherwise, the tuple is added to the
output. We terminate as soon as all ≥ constraints are
satisfied or we reach the end of the input. A final check is
performed to see if all ≥ constraints are satisfied, and if
not, we report that we were unable to find a feasible
solution. The procedure for the MAXIMIZING case is
identical except that the termination condition is only
when the end of the input is reached. Finally, we note that
there are known algorithms for Top-K query processing
e.g., [16,17], and it may be possible to leverage these
algorithms to obtain an efficient implementation.

Observe that RANKING BY provides a particular way
to specify how the general mathematical optimization
problem should be solved. Another such approach is
uniform random sampling or stratified sampling.
Sampling is already of interest to the database community
at large as evidenced by their incorporation into SQL
standards [30]. Although we do not get into the details of
syntactic extensions, we observe that it is possible to
expose stratified sampling using our approach, e.g., by
combining PARTITIONING BY with a local equality
constraint on Count(*). Likewise uniform random
sampling can be exposed using a single global equality
constraint. Note that in these cases we are not
maximizing/minimizing an aggregate, but rather finding a
random subset with the specified count.

5.2.2 Maximizing SUM(Attr)

We now describe an operator for efficiently finding
an optimal solution for a special class of queries. Consider
a query MAXIMIZING an aggregate over some attribute,
say A, subject to arbitrary filter constraints, together with
a local constraint on Count(*), and a global constraint on
Count(*). Intuitively, such queries require selecting some
set of tuples to maximize an objective, while being
constrained by the total number of tuples to be selected, as
well as having constraints on how these chosen tuples are
distributed across the different partitions. There are many
interesting queries that fall into this class, including four
of the five examples queries in Section 3.2 as well as all
of the queries we use in our evaluation (see Section 6).

Providing an efficient operator to solve this special
case exactly (i.e., obtain an optimal solution) is relatively
straightforward. When both the global and local
constraints are of the form Count(*) ≥ c1, the solution is
trivially the entire input. When the global constraint is

Count(*) ≥ c1 and the local constraint is Count(*) ≤ c2, we
ignore the global constraint and within each partition add
tuples to the output in descending order of attribute A
until we cannot add any more tuples without violating the
constraint. Note that we can take advantage of the group-
wise processing operator (as discussed earlier) to
repeatedly execute this operation within each partition.
Finally, we check if the global constraint is satisfied or
not and terminate. When the global constraint is Count(*)
≤ c1 and the local constraint is Count(*) ≥ c2, we
minimally satisfy each local constraint separately, i.e.,
pick exactly c2 tuples from each partitioning in
descending order of A. If we have already violated the
global constraint, then no solution exists. Otherwise, we
now pick the remaining tuples from the input in
descending order of A and add to the output as long as the
global constraint is not violated. The final case is when
the global constraint is Count(*) ≤ c1 and the local
constraint is Count(*) ≤ c2 (c2 must be ≤ c1). In this case,
we access the input in descending order of A, and keep
adding a tuple as long as it does not violate the local
constraint of a partition. We stop when we have added c1
tuples to the output (or reach the end of input).

5.2.3 Minimizing Count(*)

The second class of queries for which optimal
solutions or solutions with guarantees can be implemented
efficiently is when we want to MINIMIZE Count(*).

Exact Solution: In the case when there are arbitrary

filter conditions, and at most one other constraint, either
global or local, we can obtain an exact solution. The input
tuples are scanned in decreasing order of the attribute
involved in the constraint, and are added to the output
until the constraint is satisfied. As in 5.2.2, if the
constraint is a local constraint, we use the groupwise
operator to execute this operation within each partition.
Finally, when there is a global and local constraint on the
same attribute and in the same direction, we can similarly
get an optimal solution.

Approximate Solution: When there are multiple (say

c) global/local constraints, all of which are “≥”
constraints, we can use the same idea but in a multi-pass
fashion to an approximate solution. The constraints are
are satisfied one by one. In the ith pass, tuples are scanned
in descending order of the attribute in the ith constraint,
and added to the output until that constraint is satisfied.
Proceeding in this fashion until all the constraints are
satisfied leads to a solution with an approximation ratio of
c, where c is the total number of constraints. An
optimization that can lead to a better approximation ratio
in practice is to perform the ith pass only over tuples that
are not already in the output (and adjust the constraints to
take into account the contribution from tuples that are
already part of the output). Finally, it may be possible to

get a better approximation ratio by ordering the
constraints in an intelligent manner.

6. Evaluation

We have implemented a prototype application that
supports the dominance and representation primitives
described in this paper. Below, we present a preliminary
evaluation that shows the expressiveness and utility of
these primitives. In particular, we evaluate the quality of
workload summarization for the task of index selection.
Index selection is an extremely computation-intensive
task and the scalability of index-selection tools [3,27]
depends on the number of queries in the workload. The
simplest way to produce a smaller-sized workload to use
as input for index tuning is to use naïve random sampling.
Reference [11] introduced the idea of workload
compression and showed that the use of workload
compression to produce a smaller-sized workload was a
considerable improvement over naïve random sampling.
We use workload-summarization queries to generate a
small workload as input for index tuning. We show that
the performance obtained using our workload
summarization is comparable to that of workload
compression, while the process of obtaining the
summarized workload is itself considerably faster than
performing workload compression. We omit comparison
with random sampling here since [11] has already
established the poor performance of random sampling.

Methodology: We show results of our experiments for

four different workloads: SPJ (select-project-join
queries), SPJ-GB (select-project-join queries with
GROUP BY), SPJ-GB-OB (select-project-join queries
with GROUP BY and ORDER BY), and Single table
(single-table queries only). These workloads execute
against the TPC-H 1GB database, and are generated using
a query-generation program that is capable of varying a
number of parameters such as the number of joins, group-
by and order-by columns, selection conditions and their
selectivity etc. The number of queries in these workloads
varies from about 1000 to 2000 (see Figure 6 for exact
counts). For the sake of ensuring a fair comparison, we
restrict our comparison to summarization queries that are
constrained to generate exactly the same number of output
queries as produced by the workload-compression
algorithm. For each workload, we tune the physical
database design separately using the summarized
workload obtained (a) by our summarization queries, and
(b) by Workload Compression. We use the Index Tuning
Wizard [4] that is part of Microsoft SQL Server 2000 to
perform physical-design tuning. We measure the quality
of summarization by the optimizer-estimated cost of the
entire (i.e., original) workload on the tuned database.

Results: Figure 3 compares the quality of Workload
Compression with three different WAL queries (lower

Estimated Cost is better). All our WAL queries use the
dominance and partitioning conditions shown in Example
1 (Section 2). The WAL query which imposes a global
constraint on the total number of statements, along with a
local constraint requiring proportionate representation per
partition by Count (denoted by Proportionate (Count) in
the figure), appears to provide quality comparable to the
workload-compression algorithm. The WAL queries that
apply a local constraint requiring proportionate
representation per partition by EstimatedCost or only
return top queries by Dom_Weight (i.e., weights after
applying dominance) appear to be somewhat inferior in
quality. We also note that the execution of WAL queries
is about three orders of magnitude faster than workload
compression, which internally employs a clustering-based
solution.

Quality of Workload Summarization

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

SPJ SPJ-GB SPJ-GB-OB Single Table

Workload

E
st

im
at

ed
 C

o
st

Wkld Compression

Proportionate (Count)

Proportionate (Cost)

Top K

Compression Achieved

0

500

1000

1500

2000

2500

SPJ SPJ-GB SPJ-GB-
OB

Single
Table

Workload

N
um

be
r

o
f

Q
ue

ri
es

#Input Queries

#Non-Dominated Queries

#Represented Queries

Figure 4 shows the reduction in the number of
statements in the workload achieved by dominance and
representation respectively. We see from the figure that
that both these concepts are critical for pruning out
statements. We would expect the savings from dominance
and representation to be even higher when the input
contains even larger workloads.

7. Related Work

Recently, several tools have emerged that exploit
knowledge of the database workload for a variety of tasks
such as physical-design tuning [3,27], feedback-based
optimization [1,25], and approximate query processing
[2,9,10,18]. There has also been work [14,15] on
classifying database workloads (e.g., OLTP vs. DSS), so
as to enable automatic tuning and configuration of
database-system parameters based on workload type.
Typically, workloads collected by today’s database
profiling tools can be very large (millions of statements),
whereas most of the above tools work efficiently for
relatively small workload sizes. Thus, we view our work
as back-end infrastructure to help improve the
performance and scalability of such tools by intelligently
pre-processing and summarizing the workload.

In [11], the authors present the idea of workload
compression to find a smaller workload whose use results
in the same application quality as when the original
workload is used. Their work requires applications to
specify custom distance functions that quantify how close
two statements in the workload are. We note that
providing such distance functions may not be easy for all
applications. Our infrastructure, being declarative, is
simpler to use for applications. The work in this paper can
be viewed as a mechanism for quick pre-filtering, after
which more sophisticated compression using much richer
information, as in the above work, can be performed.

The group-wise processing techniques [8,12,21] are
useful in implementing the primitives of dominance and
representation. As discussed in Section 5, the SKYLINE
operator [5] is a special case of the dominance operator
proposed in this paper. Since both dominance and
SKYLINE operators satisfy the transitivity property, we
are able to leverage efficient execution strategies
previously proposed for SKYLINE to also implement
dominance. Also, as discussed in Section 5, the work on
processing Top-K queries e.g., [16,17] can be potentially
leveraged for implementing the representation operator.

In [29], the authors present a system called REDWAR
(Relational Database Workload Analyzer). This system
allows simple aggregations over the structure and
complexity of SQL statements and transaction run-time
behavior. While our WAL infrastructure supports such
analysis, it also allows more sophisticated summarization
through the dominance and representation primitives.

A survey of techniques for construction of statistical
workload models for different kinds of systems (database,
network-based, parallel etc.) is presented in [6]. The
“representativeness” of such models is quantified. In our
infrastructure, rather than automatically building models
based on the workload, we allow applications to
customize their workload summarization by using the
primitives proposed in this paper.
 The idea of workload analysis for studying the impact
of physical design on workload cost and index usage was

Figure 3. Quality of workload summarization
for index selection.

Figure 4. Importance of dominance and
representation in workload summarization

presented in [13]. Our work complements this idea with
new primitives that allow more sophisticated analysis and
summarization of such workload information.

8. Conclusion

In this paper we have identified the primitives of
dominance and representation that are crucial in various
tasks that require summarizing workloads. These
primitives also appear to be useful in many other practical
scenarios. Tighter integration of these primitives into a
traditional SQL query processing engine and their
evaluation for a broader set of tasks is an interesting area
of future work.

Acknowledgments

We thank Gautam Das for his valuable observations
on the complexity of representation primitive, as well as
the solutions for representation. We also thank Nicolas
Bruno, Venky Ganti and Christian Konig for their
insightful comments on the paper. Finally, we thank the
anonymous reviewers of this paper for their important
feedback.

References

[1] Aboulnaga, A. and Chaudhuri, S. Self-Tuning Histograms:
Building Histograms Without Looking at Data. Proceedings of
ACM SIGMOD, Philadelphia, 1999.
[2] Acharya S., Gibbons P.B., and Poosala V. Congressional
Samples for Approximate Answering of Aggregate Queries.
Proceedings of ACM SIGMOD, 2000.
[3] Agrawal, S., Chaudhuri, S., and Narasayya, V. Automated
Selection of Materialized Views and Indexes for SQL Databases.
Proceedings of VLDB 2000.
[4] Agrawal S., Chaudhuri S., Kollar L., and Narasayya V.
Index Tuning Wizard for Microsoft SQL Server 2000.
White paper.
http://msdn.microsoft.com/library/techart/itwforsql.htm
[5] Borzsonyi S, Stocker K., Kossmann D. The Skyline
operator. Proceedings of ICDE 2001.
[6] Calzarossa M., and Serazzi G. Workload
Characterization: A Survey. Proceedings of IEEE, 81(8), Aug
1993.
[7] Chandra, A. K., Hirschberg, D. S., and Wong, C. K.
Approximate algorithms for some generalized knapsack
problems, Theoretical Computer. Science. 3, 293-304, 1976.
[8] Chatziantoniou D. and Ross, K.A. Groupwise Processing
of Relational Queries. Proceedings of VLDB 1997.
[9] Chaudhuri S., Das G., Datar M., Motwani R., and
Narasayya V. Overcoming Limitations of Sampling for
Aggregation Queries. Proceedings of ICDE 2001.
[10] Chaudhuri S., Das G., and Narasayya V. A Robust
Optimization Based Approach for Approximate Answering of
Aggregate Queries. Proceedings of ACM SIGMOD 2001.
[11] Chaudhuri S., Gupta A, and Narasayya V. Workload
Compression. Proceedings of ACM SIGMOD 2002.

[12] Chaudhuri S., Kaushik R., and Naughton J.F. On
Relational Support for XML Publishing: Beyond Sorting and
Tagging. Proceedings of ACM SIGMOD 2003.
[13] Chaudhuri, S., and Narasayya, V. AutoAdmin What-If
Index Analysis Utility. Proceedings of SIGMOD 1998.
[14] Elnaffar S. A Methodology for Auto-Recognizing DBMS
Workloads. Proceedings of CASCON’02.
[15] Elnaffar S., Martin P., and Horman R. Automatically
Classifying Database Workloads. In Proceedings of CIKM’02.
[16] Fagin R. Combining fuzzy information from multiple
systems. Proceedings of ACM PODS 1996.
[17] Fagin R. Fuzzy queries in multimedia database systems.
Proceedings of ACM PODS 1998.
[18] Ganti V., Lee M.L., and Ramakrishnan R. ICICLES: Self-
tuning Samples for Approximate Query Processing. Proceedings
of VLDB 2000.
[19] Garey M.R., and Johnson D.S. Computers and
Intractability. A Guide to the Theory of NP-Completeness. W.H.
Freeman and Company, New York, 1979.
[20] Johnson, D.S. Approximation Algorithms for
Combinatorial Problems, Journal of Computer and System
Sciences, 9 (1974),pp. 256—278.
[21] Legaria, C.G., and Joshi, M.M. Orthogonal optimization
of subqueries and aggregation. Proceedings of SIGMOD 2001.
[22] Lovasz L. On the Ratio of Optimal Integral and
Fractional Covers. Discrete Mathematics, 13(1975), pp. 383-
390.
[23] Papadias D., Tao Y., Fu G., Seeger B.: An Optimal and
Progressive Algorithm for Skyline Queries. Proceedings of
ACM SIGMOD 2003.
[24] Srinivasan, A. Improved approximations of packing
and covering problems, Proc. 27th Ann. ACM
Symposium. on Theory of Comp., pp 268-276, 1995.
[25] Stillger M., Lohman G., and Markl V. LEO: DB2’s
Learning Optimizer. In Proceedings of VLDB 2001.
[26] Tan K., Eng P., Ooi B.C.: Efficient Progressive Skyline
Computation. Proceedings of VLDB 2001.
[27] Valentin, G., Zuliani, M., Zilio, D., and Lohman, G. DB2
Advisor: An Optimizer That is Smart Enough to Recommend Its
Own Indexes. Proceedings of ICDE 2000.
[28] V. V. Vazirani. Approximation Algorithms.
Springer-Verlag, Berlin, 2001.
[29] Yu P.,Chen M., Heiss H., and Lee S. On Workload
Characterization of Relational Database Environments. IEEE
Transactions on Software Engineering, Vol 18, No. 4, April ‘92.
[30] http://www.wiscorp.com/SQLStandards.html
[31] http://www.ilog.com/products/cplex

