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Abstract 

We introduce a new database object called Cache 
Table that enables persistent caching of the full or 
partial content of a remote database table. The 
content of a cache table is either defined 
declaratively and populated in advance at setup 
time, or determined dynamically and populated 
on demand at query execution time. Dynamic 
cache tables exploit the characteristics of typical 
transactional web applications with a high 
volume of short transactions, simple equality 
predicates, and 3-4 way joins. Based on federated 
query processing capabilities, we developed a set 
of new technologies for database caching: cache 
tables, "Janus" (two-headed) query execution 
plans, cache constraints, and asynchronous cache 
population methods. Our solution supports 
transparent caching both at the edge of content-
delivery networks and in the middle-tier of an 
enterprise application infrastructure, improving 
the response time, throughput and scalability of 
transactional web applications. 

1. Introduction 

Transactional Web Applications (TWAs) have reached 
widespread use in modern enterprise application 
infrastructures �[22]. Such applications are typically 
implemented with a broad range of technologies including 
network load balancers, HTTP servers, application servers, 
transaction-processing monitors and databases. In its 
simplest form, a TWA is realized with an HTTP server 
hosting presentation logic, and an application server 
hosting business logic (in the form of Java servlets or 
EJBs) that in turn obtains data by issuing queries to a 
relational database. Figure 1 depicts an example enterprise 
application configuration.  

 
Figure 1: Typical Multi-Tier Enterprise Architecture 

1.1 The Cache Jam 

The various layers of the application infrastructure stack 
hurt its response time and scalability.  The last few years 
have seen the wide use of caching static HTML pages and 
data as a technique to achieve better response time and 
scalability of interactive TWAs. Caching takes place at 
various stages: the cache of a client browser, forward and 
reverse proxy caches, nodes of content-delivery overlay 
networks, and in specialized object caches that are part of 
application business logic �[21]. 

However, as TWAs get more dynamic with increased 
personalization and the need to deliver frequently updated 
information, such static caching techniques become less 
useful. High-volume web sites often serve highly 
personalized content to their users. As a consequence, the 
data they need to build web pages is very dynamic in 
nature and often cannot be profitably cached far away 
from the enterprise servers. For this reason, some 
enterprise applications run their business logic in the 
application server nodes deployed in remote data centers 
close to end users (these are also called “Web Hosting”  
services). What’s more, the partnership between content-
delivery network service providers (e.g., Akamai �[2]) and 
application server vendors (such as IBM and BEA) will 
make it easier for companies to move more content and 
applications out of origin servers, thereby improving 
response time and reducing demands on in-house systems. 
The benefit of these approaches, however, will always be 
limited when the remote application servers try to access 
needed data from central backend databases. 

Database caching is a promising technique to address 
the dynamic nature of TWAs �[10]�[21]. Data stored in a 
database cache is accessed by the application using 
database queries in just the same way the backend 
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database is accessed. The database cache entity may itself 
be implemented in different ways. Semantic caching �[9] 
and DBProxy �[4] are approaches where results of queries 
are preserved in the cache and new queries are checked to 
see if they can be satisfied with the local data alone.  In 
contrast, �[23] and �[24] describe systems where a full-
fledged database server is co-located with the application 
server. One advantage of the latter approach is that a 
significant portion of logic (query parsing and analysis) 
that already exists in full-fledged systems can be exploited 
for managing the cache. Plus, this approach also allows 
caching other associated database objects, such as triggers, 
constraints, indices, stored procedures and so on which 
can be important not only for application performance and 
semantics but also for providing continued service for 
applications when backend databases are unavailable. Our 
approach in the DBCache project falls into this category. 
We are prototyping a database cache feature that is 
incorporated into a full-fledged DBMS, namely DB2. In 
our research prototype, we aim to turn a regular DB2 
instance into a transparent database cache manager by 
modifying the engine code and leveraging existing 
federated database functionality.  

Our solution aims to support database caching not only 
at mid-tier nodes of central enterprise infrastructures as in 
�[23] and �[24], but also at remote data centers and edge 
servers of content delivery networks. Given that there 
might be potentially a large number of database cache 
deployments in the latter scenario (e.g., Akamai's network 
currently has nearly 15,000 edge caching servers), 
declarative way of specifying table subsets can easily 
make the whole system unmanageable. In our solution, the 
database cache addresses this key problem by adapting to 
the system load by automatically choosing the data to 
cache. It is also vital that applications should be able to 
work seamlessly with database caches and not require any 
change in their existing queries.  

Our on-demand caching solution exploits the typical 
characteristics of TWA queries. Our analysis of TWA 
query workloads (based on the Trade2 �[18] and ECDW 
�[3]�[19] benchmarks) shows that equality predicates on key 
or non-key columns (sometimes mixed with range 
predicates in the same query) and 3-4 way join queries are 
very common. In contrast, earlier work on semantic 
caching is best suited for range queries with no joins. 

1.2 Database Cache Design Space 

The easiest approach to implement a database cache would 
be to replicate the entire content of selected tables from 
the backend database. In this case, each cache table 
referred to in a query can be used without any further 
checking as long as stale data is acceptable. The simplicity 
of this approach attracted various database cache products 
including Oracle 9i Internet Application Server �[23] and 
our earlier work in the DBCache project �[3]�[19]. But, 
typically, front-end systems are much less powerful than 
backend systems making full-table caching difficult or 

even sometimes impossible. Even for a powerful front-end 
system, large table sizes can easily make full-table caching 
infeasible due to increased replication and maintenance 
costs in the cache. 

Sub-table caching, on the other hand, can provide an 
effective alternative by caching only the “ interesting”  parts 
of the backend tables. Materialized view technologies may 
seem a good match to implement a sub-table cache 
although they were developed for different purposes. In 
current database products, materialized views store 
precomputed query results, that are later used to speed up 
performance and data access of expensive queries 
�[13]�[25].  

Nicknames are references to remote tables that can be 
used in federated queries �[15].  At first blush, it appears 
that no extra effort is needed to implement a sub-table 
cache by creating materialized views on nicknames. This 
way, existing materialized view matching mechanisms can 
be exploited to route queries to either cached tables 
(materialized views) or backend tables (nicknames) 
depending on query predicates. However, in a database 
cache this approach is too restrictive and ineffective for 
the following reasons: 
� Materialized views require declarative specification. 

Once specified, the definition of materialized view 
content cannot change dynamically based on demand. 
Unfortunately, it is often impossible to know a priori 
exactly what to cache because of the dynamic nature 
of web applications (e.g., caching the content of a 
shopping cart or hot items of a product catalog in a 
typical e-commerce application). 

� From the application viewpoint, cache tables must be 
semantically equivalent (i.e., peer level object) to the 
associated backend tables. One can argue that 
theoretically, a materialized view, derived from a 
single table, can inherit all the semantics (i.e., 
triggers, constraints, etc.) of its base table, and hence 
it can satisfy this requirement. However, as far as 
updates are concerned, cache tables and materialized 
views have clearly different semantics (our future 
vision of DBCache will include user updates 
performed directly in the cache database).  

1.3 Our Contributions 

We introduce the notion of a cache table and show how to 
use this new database object to build a seamless, adaptive 
database cache. Our caching scheme allows us to take 
advantage of DB2’s sophisticated distributed query 
processing power for database caching. As a result, the 
optimizer may choose to execute a query either at the local 
database cache or the remote backend server, or more 
importantly, it can partition the query into subqueries that 
can be distributed amongst both databases.  

We show how entire tables (ideal for rarely changing 
data) as well as subsets of tables can be cached. Our 
significant contributions are (1) a database cache model 
based on our cache table concept that supports transparent 
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Figure 2: DBCache Schema Setup Example 
 

caching of declaratively specified as well as dynamically 
changing subsets of remote database tables, (2) a novel 
query rewrite method to translate input queries into an 
appropriate form that can process dynamic subsets at 
runtime, (3) asynchronous mechanisms to load cache 
tables on demand and to keep them consistent with respect 
to the updates performed at the backend database. 

We propose a runtime solution that involves building a 
special query plan with three parts: a probe, a local query 
and a remote query. When such a plan is run, the probe is 
always executed first, and its result dynamically 
determines whether to run the local or the remote query 
next. Since this plan has two operational parts, we call it a 
two-headed or a Janus plan. The condition checked by the 
probe is created by using a set of new cache constraints in 
our system, which let us guarantee the correctness of the 
results. While the remote query is constructed with only 
nicknames, the local query may include both nicknames 
and cache tables so that the query can be partitioned and 
then distributed among both databases by the optimizer.  

The rest of the paper is organized as follows: We start 
with a definition of cache tables in Section �2. Section �3 
presents cache constraints that are a key part of our 
dynamic cache model. In Section �4, we describe our query 
engine modifications that let us make use of cache tables. 
Section �5 explains the techniques developed for the 
population and maintenance of cache tables. Performance 
evaluation of dynamic cache tables is provided in Section 
�6. We present related work on database caching in Section 
�7, and concluding remarks in Section �8. 

2. Cache Tables 

A Cache Table is a database object by which an end user 
can specify that a table (cache table) in a database (cache 
database) is a cache of a table (backend table) in another 
database (backend database). Each cache table is 
associated with a nickname that represents the 
corresponding backend table. The name of a cache table is 
the same as the backend table name, which is the target of 
the query in the original configuration. If the content of the 
cache table cannot answer the query, we transparently 
route the query to its respective backend table through the 
nickname. In DBCache, we provide two types of cache 
tables: declarative and dynamic. Although query 
compilation and maintenance mechanisms differ 
depending on the type, we allow mixed settings in a cache 
database. 

2.1 Schema Setup in a Cache Database 

To achieve transparent deployment of a database cache, 
we make no changes to the database schema as viewed by 
the applications. Each backend table is represented in the 
cache database schema either with a cache table or a 
nickname depending on whether caching is enabled for the 
backend table. Figure 2 shows an example cache schema 
setup. The names of the schemas and their elements are 

created to be the same as their counterparts in the backend 
database1. Moreover, all the cache tables have exactly the 
same number and types of columns as those of their 
counterparts. As a result, the cache database schema 
resembles the actual user schema in the backend database, 
requiring no change in existing queries of the applications. 

The main advantage of this setting is that for each 
cache table it allows us to easily cache other relevant 
logical and physical database objects associated with the 
backend table2. The cache database needs to have the 
logical objects (such as views, functions, constraints, 
stored procedures and so on) to be able to execute the 
queries locally, while the physical objects such as indexes 
are necessary for query performance.  

2.2 Declarative Cache Tables 

Declarative cache tables are useful when the desired 
content of the cache tables is known upfront. In this case, a 
declarative cache table is created with a predicate similar 
to a materialized view as shown in Figure 3. Note that 
when no predicate is provided, the entire table is cached 
from the backend database. 

CREATE CACHE TABLE <Cache Table Name> AS 
  SELECT * FROM <Nickname Name> 
  WHERE <Predicate Definition> 

Figure 3: Declarative Cache Table Creation 

We implemented declarative cache tables by exploiting 
the existing materialized view support in DB2 �[25] with 
some modifications. The details are given in Section �4.1. 

2.3 Dynamic Cache Tables 

Dynamic cache tables are populated on demand as dictated 
by the queries issued by the application. Hence, they 
eliminate the need for a DBA to specify what needs to be 
cached in cache tables. Instead, a dynamic cache table 
needs to be associated with a backend table through a 
nickname. The on-demand loading aspect provides a key 
feature needed for an adaptable cache. Moreover, dynamic 
cache tables can be used as a cornerstone to develop new 

                                                           
1 Note that each cache table comes with an associated nickname 

whose name is uniquely generated by the cache system. 
2 Other database objects can easily be created for the cache tables 

by executing the same DDL statements that were used for the 
backend database. 



 

 

methods to cache only “hot”  items from backend 
databases. Figure 4 shows a DDL template to create a 
dynamic cache table. 

CREATE CACHE TABLE <Cache Table Name> 
  FOR <Nickname Name> 

Figure 4: Dynamic Cache Table Creation 

Utilization of cache tables brings into play new 
challenges in their management and in query processing. 
In the following sections, we address these issues and 
describe our solutions.  For declarative cache tables, we 
rely mostly on existing materialized view support in the 
DB2 engine. Hence, our main challenge in DBCache was 
to compile queries against dynamic cache tables and we 
have developed novel techniques for this purpose. Since 
our solutions are closely tied to representation of dynamic 
cache data in our design, we first explain the dynamic 
cache model and then show how we create query plans for 
cache tables. 

3. Dynamic Cache Model 

We describe the content of dynamic cache tables with 
cache constraint definitions. By observing cache 
constraints, we guarantee that the result of a query 
obtained by using the dynamic cache tables is the same as 
the result of the query if it were to be executed at the 
backend database (modulo the differences due to the 
cached data base being out-of-date). This property is our 
correctness principle in DBCache. Cache constraints help 
us to determine a set of dynamic cache tables that can be 
used in a query that satisfy the correctness principle. These 
tables are called eligible cache tables for the query. 

There are two types of cache constraints enforced for 
dynamic cache tables: cache key constraints defined on 
columns of a cache table, and referential cache constraints 
that involve multiple cache tables. In the current 
prototype, we assume that DBAs specify these cache 
constraints. We plan to automate this task in the future. 

3.1 Cache Keys 

A cache key is a cache table column whose values identify 
the records that are cached in the cache table. A cache key 
does not have to be unique; instead, all the values in a 
cache key column must be domain complete. This 
property guarantees that for any value of a domain-
complete column, the cache table contains all the rows 
from the backend table that contain this value. Note that 
unique columns (hence, primary key columns as well) of a 
cache table are domain complete by definition. If a cache 
key is defined on a non-unique column, DBCache satisfies 
the domain completeness property for that column by 
fetching all required records from the backend and loading 
them into the cache table (details are provided in Section 
�5).  

For a single cache table ���, the domain completeness 
property guarantees the correctness of equality predicates 

in the form of “��������	
��” , where �� is a domain-
complete column. In this case, we can say that ���
 is an 
eligible table.  

Cache keys are explicitly defined in the system and 
their definitions clearly state the intention to trigger on-
demand loading for missing cache key values. Figure 5 
shows a DDL template to create a cache key for a dynamic 
cache table. 

ALTER TABLE <Dynamic Cache Table Name> 
  ADD CACHE KEY <Column Name> 

Figure 5: Adding a Cache Key to a Dynamic Cache Table 

3.2 Referential Cache Constraints 

We have developed another type of cache constraint that 
guarantees the correctness of equi-joins between cache 
tables. Basically, we define a new relationship type 
between cache tables that is specific to the cache database. 

Using the domain completeness property, we can 
determine a set of eligible cache tables that could be used 
to answer queries involving single table equality 
predicates as described in the previous section. But if the 
query also includes other cache tables participating in 
equi-join predicates, how can we determine their 
eligibility? We need additional information that tells us 
that if one cache table is eligible in an equi-join then the 
other is too. We have developed the notion of referential 
cache constraints to address this requirement. From this 
perspective, they are semantically different from 
referential integrity constraints. Our on-demand loading 
mechanisms described in Section �5 always enforce the 
referential cache constraints while populating the cache 
tables. Hence, the cache system always guarantees to keep 
correlated values in the cache tables consistent. 

A Referential Cache Constraint (RCC) can be defined 
between any columns of two cache tables depending on 
whether or not a join operation is possible between them. 
An RCC creates a cache-parent/cache-child relationship 
between two cache tables. When there is an RCC between 
a column �� of a cache table ��� (cache-parent) and 
column �� of another cache table ��� (cache-child), it 
indicates that for any value of �� in ���, ��� includes all 
rows having that value in their �� column. But for a row of 
���, the associated row(s) in ��� may or may not exist. 
Note that this parent-child relationship is completely cache 
specific in the sense that it is defined from the join 
processing point of view. To illustrate this, suppose there 
is a an equi-join predicate �����������, where ��, �� are 
backend tables whose cache tables are ���, ���  
respectively, and ��� is the cache-parent of ��� through 
columns �� and ��. If we know that ��� is an eligible 
cache table for use in a local query plan then so is ���. In 
short, it is safe to execute the join ������������� in the 
cache database. Figure 6 shows an example DDL template 
to create RCCs in DBCache. 



 

 

ALTER TABLE <Dynamic Cache Table1>  
  ADD CACHE REFERENCE FROM <Column Name1> 
  TO <Dynamic Cache Table2>(<Column Name2>) 

Figure 6: DDL for Adding a Referential Cache Constraint  

3.3 Cache Groups 

In DBCache, we use the term cache group to identify a set 
of related cache tables whose content is (directly or 
transitively) populated by the values of one or more cache 
keys of a single cache table, called the root table. The 
tables in a cache group that are reachable from the root 
table via RCC constraints are called member tables. The 
cache group notion helps us organize the cache tables in a 
way that (1) we can recognize the application contexts 
more easily, and (2) as explained in the following section, 
we can detect potential problems caused by conflicting 
cache constraint definitions. If a cache table does not 
contain any cache key (i.e., if it is not a root table), it must 
be a member of at least one cache group. Otherwise the 
cache system cannot populate that cache table. In such a 
rare case, the cache table can be populated manually and 
still be made use of due to unique/primary key columns. In 
a cache database, a cache group may be completely 
covered by another one if its root table is a member of that 
cache group. Or, some cache groups may overlap by 
sharing one or more member tables. Note that cache 
groups are implicitly constructed based on cache 
constraints (i.e., they are not declaratively specified). In 
that respect, our cache group concept is very different 
from the one introduced in TimesTen �[24]. 

We represent a cache group as a directed graph, called 
cache group graph, where nodes denote cache tables and 
edges denote RCCs. The direction of an edge for an RCC 
is from a cache-parent to a cache-child table. The graph 
may also contain bi-directional edges indicating that there 
are two RCCs on the same columns of cache tables in both 
directions. Each row in one cache table requires having 
corresponding rows in the other table. A (unidirectional) 
path is formed from a source table to a target table in the 
graph by following the directions of a set of RCCs. Each 
participant table must be traversed only once in a path. But 
a path can start and end with the same table. Such a path is 
called cycle. Note that each bi-directional edge 
corresponds to a cycle. 

Cache keys are represented in the graph as annotations 
to the node representing the root cache table. Underlined 
cache keys denote non-unique cache keys. Notice that a 
cache group graph corresponds to a reachability graph of 
the root table node, which can reach all other nodes 
representing members of the cache group. When two or 
more cache groups are connected to each other via 
overlapping members, combined representation of the 
cache group graphs is captured in a connectivity graph.  

Figure 7 shows a connectivity graph which includes 
two cache group graphs shown inside dashed lines.  The 
content of the cache groups are identified by �������� 

and ��� cache keys of their respective root tables. For 
example, when a “Gold”  customer is cached based on the 
“�����������
�”  predicate, the system guarantees that 
all gold customers, their orders and orderline rows will be 
cached, benefiting join queries involving these tables. 

3.4 Issues with Cache Constraints 

Uncontrolled use of cache constraints can cause an 
unexpected amount of data to be loaded into the cache 
database. This not only causes severe performance 
problems during population, but also maintenance 
problems later in the system (e.g., during cache 
invalidation). Unexpected cache load occurs when there 
are recurring load operations for the same cache table. We 
call this phenomenon the recursive cache load problem. In 
the extreme case, this problem can cause loading the entire 
content of the backend table. A cache group is called safe 
if the setting of cache constraints does not cause any 
recursive cache loads in any of its cache tables. In the next 
two sections, we address unsafe conditions and define a 
set of rules to exclude them in a cache group. 

3.4.1 Dangerous Paths 

It is easy to see that when a cache group graph contains a 
cycle, then there is a danger of recursive cache load for 
each participant table. A safe condition that prevents the 
recursive cache load problem for a cycle is when a single 
column of each participant table is used during the 
traversal. Such a cycle is called homogeneous cycle. Note 
that each bi-directional edge creates a homogeneous cycle. 
On the other hand, a heterogeneous cycle is formed by a 
path if one of the participant tables contains two or more 
columns used in the traversal. Figure 8 shows different 
examples of each cycle type. Heterogeneous cycles pose a 
potential recursive cache load problem, hence as a 
precondition, they are not allowed. We set the following 
rule to exclude them in the cache group definitions: 

Rule-1: A cache group graph must not include any 
heterogeneous cycles. 

Note that our example does not have any recursive 
cache load problem since there isn’ t any heterogeneous 
cycle. But, there would be one, if ������� table was a 
cache-child of �����
��� through a column other than ���
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(e.g., an RCC from order location of �����
��� to product 
manufacturing location of �������). If this is allowed, 
when a new row is loaded in the ������� table, all the 
corresponding �����
��� rows having the same ���
will be 
loaded. Then, for each new �����
��� row, we may have 
to load a new ������� row due to the new RCC. This may 
in turn force us to load more rows for the �����
��� as 
each new ������� row requires all corresponding 
�����
��� rows. As a result, we may have to repeat all 
these operations, and in the extreme case we may load the 
entire �������
and �����
���
tables. 

3.4.2 Implications of Domain Completeness Property 

Although the domain completeness property provides 
key functionality for the correctness of equality predicates, 
complicated situations may arise because of its semantics. 
In particular, enforcing the domain completeness property 
on non-unique columns in a cache table may lead to the 
recursive cache load problem. 

In DBCache, a cache table column is not explicitly 
defined as domain complete. Instead, it implicitly becomes 
domain complete if one of the following conditions is 
satisfied. 

(1) if the column is a unique (or primary key) column,  
(2) if a cache key is defined for the column, 
(3) if the column is involved in a homogenous cycle, 
(4) if the column is the only column used in the RCCs 

where its cache table is participating as a cache-
child, and the cache table does not contain any cache 
key defined on another column.  

(1) and (2) address domain-complete columns created as a 
direct consequence of the definition. The following 
theorem shows how domain-complete columns result from 
(3). 

Theorem: All the columns involved in a homogeneous 
cycle are domain complete. 
Proof: Suppose that there is a homogeneous cycle �� in a 
cache group graph �, including � cache tables: 
���������������� ����������������. When a cache 
table ��� is populated with a set of rows having a set of 
values ��! !�� in the column ��, then for each value ��, the 
table ���"�
will be populated with all the rows having �� in 
the column ��"�. Thus ���"����"�� will be domain 
complete. Similarly ���"� will be populated with all the 
rows containing the values ��! !��, making ���"����"�� 
domain complete. Eventually, the newly loaded values 

��! !�� in ���#����#�� will cause ��� to be populated with 
all the rows including those values in column ��, making it 
domain complete. 

In our example in Figure 7, the ��� column of ����� 
table is involved in a homogeneous cycle, and hence is 
domain complete according to (3). 

Note that the domain completeness property created by 
(4) is different than others in the sense that such a column 
cannot coexist with any other domain-complete column. In 
other words, the domain completeness property is 
destroyed when the cache table contains a new domain-
complete column. In the example, ��� and ��� columns of 
�����
��� table are not domain complete as there are two 
RCCs. But with the absence of one of them, the column 
used in the remaining RCC will be domain complete in 
�����
���. 

For a given cache table, there is no limit on the number 
of domain-complete columns as long as they are unique. 
But at most one non-unique column can be domain 
complete. To explain why such a restriction is needed, 
let’s assume that two non-unique columns are domain 
complete in a cache table. When we insert a set of rows 
into the cache table for a specific value in the first cache 
key column, to satisfy the domain completeness property 
of the second column we may have to load more sets of 
rows from the backend for each new value in the second 
column. These new rows may force us to do another round 
of loads to satisfy the domain completeness property of the 
first column and so on. As a result, satisfying domain 
completeness for both columns can become 
unmanageable, and in the extreme case we may end up 
loading the entire backend table. As a result, we have the 
following rule for a cache table: 

Rule-2: A cache table must not have more than one  
non-unique domain-complete column. 

The domain completeness properties caused by (1) and 
(4) are irrelevant for this rule: For (1), the columns are 
unique, and for (4), two domain-complete columns cannot 
coexist as explained above. In order to enforce Rule-2 for 
domain-complete columns that may be created by (2) and 
(3), we do not allow the following situations in our model: 
� A cache table having more than one non-unique cache 

key. 
� A cache table having a non-unique cache key and at 

the same time having one or more non-unique 
columns which are involved in homogeneous cycles.  

� A cache table having two or more non-unique 
columns which are involved in homogeneous cycles. 

A new cache constraint is created in the system only if 
its addition does not violate Rule 1 and 2. 

3.4.3 Other issues 

Selectivity of non-unique cache keys is also an 
important factor for the usability of dynamic caching. If 
the cache keys are chosen from low-selectivity columns 

(a) A Homogeneous Cycle (b) Heterogeneous Cycles 

Figure 8: Cycle Examples in a Cache Group Graph 
 



 

 

(e.g., gender), the system will be forced to load a large 
amount of data dynamically. In general, it is better to use 
declarative cache tables for such cases.  

We are planning to develop a cache advisor tool to 
setup cache key constraints based on a given query 
workload. Without having such a workload as an input, we 
can still automate the process by taking hints from the 
backend database schema. Primary keys and referential 
integrity (RI) constraints can give us an idea about 
selecting cache keys and RCCs. Especially, if there are 
some RI constraints replicated at the cache database, 
special attention must be paid to the loading order of cache 
tables during on-demand loading. Moreover, in general, it 
is reasonable to expect that there is a join operation 
through the RI columns in a query workload. Therefore, 
when there is an RI relationship between two cache tables 
in the cache database, we always map it to an RCC and we 
always keep RCCs and RI constraints consistent. In the 
mapping process, the cache table that contains the foreign 
key becomes a cache-parent and the other becomes a 
cache-child. We can also create an additional RCC by 
switching the roles to increase the likelihood of eligibility 
of both cache tables in a join operation. This way, we can 
handle joins between cache tables while satisfying RI 
constraints in the cache database. However, due to the 
recursive cache load problem, these RCCs can not always 
be created together. In such cases, we may have to choose 
either keeping RI constraints between cache tables or the 
capability to execute joins from cache-parent to cache-
child. This decision must normally be made by the DBA 
as each application’s requirements might be different. 

4. Query Compilation for Cache Tables 

In this section, we present our modifications to the DB2 
query compiler to generate query plans for cache tables. It 
is important to note that the focus of this paper is on read-
only queries. Although there is some support in DBCache 
to handle updates at the database cache, we do not address 
it here due to space limitations. 

4.1 Query Plans for Declarative Cache Tables 

We exploit existing materialized view matching 
mechanisms for declarative cache tables. For that reason, 
declarative cache tables are created as materialized views 
(with special properties) over nicknames so that during 
query compilation, the view matching mechanism can 
route queries either to the local cache database or to the 
backend database. There is, however, one obstacle to 
activate this mechanism: In our setting, queries refer to 
cache tables, whereas query routing always occurs only 
from base tables (i.e., nicknames) to the materialized 
views (i.e., declarative cache tables), not vice versa. To 
overcome this problem, we implemented a name 
replacement mechanism that takes effect in the database 
engine after semantic processing of the queries (i.e., 
constraint checking, trigger processing, etc.) is done. 

Basically, we replace each declarative cache table 
reference with its corresponding nickname in the query so 
that the existing view matching mechanism can be 
activated to route the query. 

4.2 Generating Query Plans for Dynamic Cache 
Tables 

The decision on choosing dynamic cache tables over 
nicknames to answer a query must be done at runtime 
since the content of dynamic cache tables may change 
between subsequent executions of queries. In our solution, 
we create two plan alternatives for each query during 
query compilation. The first plan considers all possible 
dynamic cache tables usable (it may include nicknames for 
other tables) in the query, hence it is called a local plan. 
The second plan is constructed only with the nicknames to 
enable remote query execution. Then, both plans are tied 
together with a conditional switch operator as shown in 
Figure 9. We name this new class of query plans Janus 
plans.  

The switch condition contains a subquery, called the 
probe query, that is used to decide at runtime which leg of 
the Janus plan to execute. In other words, the execution of 
a Janus plan starts with executing the probe query 
followed by either the local or the remote plan depending 
on the probe query result. The probe query performs a data 
access only for each potential cache table to find out 
whether or not it can be used to answer the input query. 
Therefore, by setting up the probe query properly, Janus 
plans provide the needed mechanism for making a runtime 
decision of whether or not the cache tables can be utilized, 
while avoiding costly query recompilation.  

A Janus plan is constructed in four steps:  
(1) We process the initial query plan to convert it into a 

remote plan, which contains only nicknames. As 
explained in step 3, during local plan generation, we 
switch back as many of these nickname references as 
possible to dynamic cache tables. This method 
ensures that the query is executable even if the Janus 
plan cannot be created. For example, when the 
currency setting of the cache database indicates that 
the applications cannot tolerate out-of-date data, no 
attempt is made to generate a Janus plan, resulting in 
retrieving the data from the backend database. 

Condition 
Probe Query  
(Generated  

from the input  
query predicates) 

Figure 9: Janus Plan to Handle Dynamic Cache Tables 
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(2) A probe query is generated by checking all the 
equality predicates3 to determine whether they can 
participate in the probe query condition. If no such 
predicate is found, then the process is aborted at this 
point. A detailed description of the probe query 
generation is given below.  

(3) The input query graph is cloned and in the clone 
nicknames are replaced with the corresponding cache 
table names (Details are provided below). Basically, 
the clone becomes the “ local”  query plan and the 
unaltered plan remains as the “remote”  query plan. 
Note that the local query may contain both cache 
tables and nicknames. This may result in distributed 
execution of the query using DB2’s federated 
database functionality. 

(4) A switch operator is inserted at the top of the query 
plan4. Local, remote and probe query plans are 
plugged into the switch operator. 

The cost of data access for determining whether or not 
cache tables are usable might seem too expensive. 
However, as shown next, the probe query has a very 
simple structure and its results can be potentially reused by 
the local query. So, we anticipate that the extra overhead 
of the probe query will be acceptable considering the 
benefits of executing a local query as opposed to a remote 
one. We verified this claim with a set of performance 
experiments, whose results are given in Section �6. 

Creating Probe Query and Local Query Plans: 
The probe query determines whether or not the input query 
can be executed in the local cache. It is created as a scalar 
subquery to keep its execution cost at a minimum and to 
find out its result with a simple existence check operation. 
As stated before, probe query predicates are constructed 
only from the equality predicates of the input query3. The 
definition of domain completeness ensures that the scalar 
subquery in the probe is sufficient to guarantee the 
correctness. Thus, if a single record of the probe query 
result is found in the local cache, it is guaranteed that it is 
safe to execute the local query. 

A probe query is constructed by examining the equality 
predicates of the input query using the domain 
completeness property. During this process, we also find 
out initial set of cache tables and predicates usable in the 
local query.  

Formally speaking, given a query $! let ��!��! !�� be 
the subset of tables used in Q that have corresponding 
cache tables ���!���! !��� and ������ ��� be all of 
                                                           
3 That does not mean that DBCache can handle the queries that have only 

equality predicates. Our bottom line requirement here is that there must 
be at least one equality predicate including a domain-complete column 
in the query. 

4 One may ask why Janus plans are not created separately for each base 
table in the query graph. Although this will eliminate the need for a 
probe query, the dynamic nature of the switch operator provides only 
dynamic statistics which makes further query optimization very 
difficult. This is an open question and may require further research. 

the equality predicates in $.  Initially, let the sets �
��	
,

and
 �
��	
 be empty. �
��	
 represents our eligibility set. 
Every ��� and �% can be used in the probe query iff there is 
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After the dynamic cache tables for the probe query are 
determined, the following checks are done for join 
predicates to find out whether any other potential dynamic 
cache table ���
can take part in the local query: 
� For every equi-join predicate
 �% of the form  

“�����
�
�����” , if �� � �
��	
 and ��� is a cache-parent 
of ��� in an RCC through the columns ������
 and 
������, then update the set �
��	

�
��
�
�
��	
 

� For every equi-outer-join predicate �% of the form 
“������������������” , if ��
�  �
��	
 and ��� is a cache-
parent of ���
 in an RCC through the columns ������

and ������, then update the set �
��	

�
��
�
�
��	
 

These steps are repeated until no more dynamic cache 
tables can be added to �
��	
. Finally, each table �� � �
��	


is replaced with its respective dynamic cache table ��� in 
the local query plan. 

Note that in this algorithm, the way of checking probe 
predicates at runtime has the consequence that if one of 
the cache table’s predicates fails, then none of the cache 
tables will be used. In the future, we will explore using the 
subset of eligible cache tables under such a condition. 

5. Cache Table Population and Maintenance 

In this section, we present population and maintenance 
mechanisms for cache tables. These mechanisms are 
different for declarative and dynamic cache tables. 

5.1 Mechanisms for Declarative Cache Tables 

To populate declarative cache tables initially and to keep 
them up-to-date later, DBCache relies on DPropR utility 
�[16] which is IBM’s asynchronous data replication tool for 
relational data. DPropR consists of two independent 
programs, a data change capture program and an apply 
program. Based on subscription settings, the capture 
program detects changes in a source database and notifies 
the apply program. Using the predicates given during the 
creation of declarative cache tables, we automatically 
configure the replication subscriptions. When the capture 
and apply programs start running, the declarative cache 
tables are loaded with the data from their counterparts in 



 

 

the backend database and asynchronously updated at the 
specified frequency. 

5.2 Mechanisms for Dynamic Cache Tables 

In this section, we present the on-demand loading feature, 
and accompanying cache invalidation mechanisms to keep 
dynamic cache tables consistent with the backend 
database. Figure 10 illustrates the components developed 
for this purpose. 

5.2.1 On-demand Loading of Dynamic Cache Tables 

Each execution of a remote query in a Janus plan 
corresponds to a cache miss in DBCache. The cache key 
values that have failed the probe query are used to perform 
on-demand cache loading. To extract those values, we 
attach a special user defined function (with no side effects) 
to the remote query. However, we don’ t populate the 
cache tables immediately, because cache constraints may 
require loading an unknown amount of additional data into 
an unknown number of cache tables. As this operation 
may cause severe performance problems, we pass on the 
cache key values along with associated cache table 
information to a cache daemon by creating a non-
persistent MQ message in the user defined function. The 
daemon runs as a lower priority background process and 
checks the cache constraints and issues the required insert 
statements asynchronously against relevant cache tables.  

The basic idea behind our cache population algorithm 
is to prepare (at most) one insert statement per cache table 
in a cache group, and then to execute these statements in a 
single transaction in cache-parent-to-child order of the 
affected tables. Statement preparation is done using the 
following procedure. 
(1) For each received cache key value, we determine the 

set of rows that need to be inserted into the 
corresponding table ��4 (a.k.a. qualifying rows of 
��4) by considering all cache keys of ��4. For each 
defined cache key we need to guarantee domain 
completeness. Note that non-unique cache keys result 
in loading multiple rows for ��4. 

(2) Starting from cache table ��4, for every RCC 
constraint ����

�
����"�, we determine the qualifying 

rows for ���"� based on the qualifying rows for ��� 
and the cache keys defined on ���"�. The set of 
qualifying rows for ���"� is the set of cache-child 
rows corresponding to the qualifying rows set of ��� 
plus all the rows necessary to satisfy domain 
completeness properties due to the cache keys of 
���"�. Recursively, for all outgoing edges from ���"�, 
we repeat step (2). Note that if we encounter a non-
unique cache key or if we have multiple incoming 
edges for a cache table, we might have to revisit cache 
tables and expand their set of qualifying rows. 

Qualifying rows for a cache table are represented as a 
(nested) subquery. Thus, the insert statement for each 

visited cache table contains a select subquery on the 
nickname to retrieve all the qualifying rows that do not 
already exist in the table. 

5.2.2 Cache Invalidation 

The content of dynamic cache tables is invalidated as they 
get updated/deleted in the backend database. As in the 
setting for declarative cache tables, updates are detected 
by the capture program of the DPropR utility �[16]. 
However, instead of using the apply component, we utilize 
the cache daemon to process updates for dynamic cache 
tables. The capture program provides facilities to access 
updated rows. As shown in Figure 10, we generate 
invalidation messages and send them to the cache daemon. 
Upon receiving such a message, the daemon creates delete 
statements according to the cache constraints and issues 
them against the cache database. Once the invalidated data 
is discarded from the cache, updated rows can be reloaded 
as new requests are processed. In the future, we plan to 
explore updating the cached data rather than invalidating it 
as well as a way of discarding unused data from the cache. 

6. Experiments 

In the experiments we did not focus on how much 
response time improvement we can achieve with database 
caching. There is a large number of related work in the 
literature that experimentally show benefits of caching in 
the Internet environment �[4]�[8]�[11]�[20]�[21]. Instead, we 
performed a set of experiments to evaluate the overhead of 
Janus plans for dynamic cache tables. We do not report 
any experimental results for declarative cache tables here 
since their implementation relies on materialized view 
mechanisms, and performance issues for materialized view 
selection and matching were also well studied in the 
literature �[13]�[25]. Our goal for dynamic cache table 
experiments was twofold: (1) to measure the additional 
runtime cost incurred by probe query execution and the 
switch operator in the Janus plans, (2) to measure the 
overhead of on-demand loading operation for Janus plans. 
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Figure 10: Components for On-demand Loading and Maintenance 



 

 

6.1 Experiment Settings 

We picked two tables as cache tables and generated three 
types of queries for these tables from IBM’s Trade2 J2EE 
Benchmark �[18]. The benchmark models an online 
brokerage firm providing web-based services such as 
login, buy, sell, get quote, and more. Different types of 
queries helped us to understand the overhead of Janus 
plans in various application scenarios. The first query type 
is a simple select statement with unique cache key (created 
on the primary key column) access, the second type again 
is a simple select statement but with non-unique cache key 
access, and the third type is a join query involving two 
tables as shown in Table 2. We created the same primary 
keys and indices at the cache database. Table 1 and Figure 
11 show the cache and backend database settings for the 
experiments. 

Table Name Rows Primary Key Indices 

TradeHoldingBean 227,117 (Userid, Indx) Symbol 

TradeQuoteBean 5,000 Symbol - 

Table 1: Cache Tables and their Backend Database Settings 

Unique 
Cache Key 
Access 

SELECT T1.Symbol, T1.Price, T1.Details 
FROM TradeQuoteBean T1 
WHERE T1.Symbol = ? 

Non-unique 
Cache Key 
Access  

SELECT T1.UserID, T1.Symbol, T1.Quantity, 
T1.Price 
FROM TradeHoldingBean T1 
WHERE T1.Symbol = ? 

Join Query SELECT T1.UserID, T1.Symbol, T1.Price, 
T1.Quantity, T2.Details 
FROM TradeHoldingBean T1, TradeQuoteBean T2 
WHERE T1.UserID = ? AND T1.Symbol = 
T2.Symbol 

Table 2: Queries Used in the Experiments 

All experiments were performed on two IBM 
IntelliStation Netfinity 3500 machines with 1GHz Intel P4 
CPU, 1GBytes of memory and Windows 2000 operating 
system. Our cache and backend database machines were 
connected in a local area environment. Our DBCache 
research prototype �[7] was implemented using the DB2 
v8.1 code base. 

6.2 Janus Plan Overhead: Cache Hit Case 

In this experiment we compared performance of a Janus 
plan against directly querying local cache tables. Note that 
the latter corresponds to pure execution of the local query 
plan in a Janus plan. Therefore, the difference between the 
numbers showed us how much overhead was introduced 
by the probe query and switch operator when a cache hit 
occurs. We populated all cache tables with full backend 
data so that the probe query always finds the required 
cache key value in the cache tables, hence triggering the 

local query plan execution. Figure 12-A shows the results 
of this experiment. 

As seen from the graph and the table, the overhead 
dramatically drops as the local query plan gets relatively 
more costly than the probe query in the Janus plan. Even 
for a simple query including only a single join operation, 
the overhead is less than 1%. Considering that a typical 
TWA workload will contain many similar or more 
complex queries as the dominant cost factor, the overall 
overhead of Janus plans will be minimal when a cache hit 
occurs. We further reduced the overhead of Janus plans for 
simple queries accessing a single table by combining the 
probe and the local query. 

6.3 Janus Plan Overhead: Cache Miss Case 

We expect the overhead of Janus plans to be even more 
negligible in a cache miss case due to high network costs 
for the execution of the remote query plan. This time we 
first measured pure remote execution of the queries and 
then compared these numbers with those of Janus plans. 
The difference tells us the overhead. To guarantee a cache 
miss, we issued queries against initially empty cache 
tables, and used different constant values in each query.  

Note that when a cache miss occurs there are two 
cases. In the first case, if the probe query tests only 
domain-complete column values, then only the remote 
query is executed and the results are returned without 
populating any cache tables. On the other hand, if the test 
occurs for cache keys, then, in addition, we create MQ 
messages to send missing cache key values to the cache 
daemon. Therefore, we conducted two sets of experiments 
to evaluate the performance in each case. 

Figure 12-B shows the results for the cache miss case 
when no population occurs. As expected, the overhead is 
less than in the cache hit case, since the network cost 
became main factor in query response times, reducing the 
effect of Janus plans.  

In the last experiment, we enabled on-demand loading 
for each cache miss and generated MQ messages for the 
cache daemon. Note that this is actually an extreme case 
since under normal circumstances, the number of cache 
misses will decrease as the cache tables get populated. We 
observed a considerable overhead for simple queries 
caused by the MQ mechanism to pass cache key values. 
However, as the remote query plan gets relatively more 
costly, the overhead dramatically drops. The results of this 
experiment are shown in Figure 12-C. 
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Figure 11: Cache Constraint Definitions in the Experiments 
 



 

 

Overall, the experiments verified that dynamic cache 
tables add only minimal overhead in the cache database. 
Considering the benefits of on-demand database caching 
in terms of better response time, higher scalability and 
availability on the Internet, the overhead will be 
negligible. 

7. Related Work 

Oracle �[23] and TimesTen �[24] offer database cache 
products that are directly related to our work. Similar to 
our previous DBCache solution �[3]�[19], Oracle’s approach 
involves full-table caching using a full-fledged database 
server in the middle-tier with updates fed through 
replication. Their solution ensures that other objects such 
as stored procedures and user-defined functions get 
deployed in the middle-tier from the backend as well. 
Although this approach has the advantage of considerable 
application transparency, it is not very adaptive and 
requires considerable cache management tasks on the part 
of administrators. TimesTen Front-Tier �[24], on the other 
hand, allows sub-table level caching and update queries at 
cache databases. However, applications must be aware of 
the cache content and choose the target database (i.e., 
cache or backend) accordingly. Moreover, Front-Tier is 
restricted to work only with Oracle as the backend 
database. A cache group notion similar to ours was first 
introduced by TimesTen. However, their cache group 
definition is solely based on referential integrity 
constraints of the backend database and is less powerful. 

One distinctive feature of DBCache from these 
products is that it can do distributed query execution. In 
DBCache, the user query can be executed at either the 
local database cache or the remote backend server, or 
more importantly, the query can be partitioned and then 
distributed to both databases for cost optimal execution. 

Query result caching is a similar approach to database 
caching in the sense that the cache content is checked with 
backend database queries. But, unlike database caches, the 

cache can store only partial backend table data, not any 
other relevant database objects such as triggers, 
constraints, stored procedures, etc. The earliest query 
caching work was semantic caching �[9], which described 
ways in which a client proxy might cache the results of 
queries executed in a remote database. The big 
disadvantage of semantic caching was that it worked only 
for range queries and did not address joins. As we saw in 
the analysis of TWA queries, both these query styles are 
very common. Further, semantic caching did not address 
the impact of updates of cached data in the remote server.   

The DBProxy project �[4] offers an improvement on 
semantic caching by supporting common TWA queries 
and building an infrastructure to invalidate out of date data 
in the cache. However, DBProxy suffers from the other 
disadvantage of semantic caching – conventional RDBMS 
architectures support complex SQL queries. This means 
that the cache implementation plays “catch-up”  always 
lagging behind the syntax supported in the database server. 
This lack of transparency makes it difficult for application 
developers to adopt such approaches. 

Most query result caches use materialized view 
technology to store and match the cache content, although 
materialized views were first developed for improving 
query performance in data warehouses and OLAP 
applications �[12]�[13]�[25]. As we stressed throughout the 
paper, our cache table concept goes beyond that of 
materialized views by providing richer semantics and 
supporting dynamically changing content. 

There are other caching methods that take place in 
various forms ranging from HTML pages to business 
object caches at different layers of transactional web 
application infrastructures. Proxy caches like �[5]�[8]�[20] 
and EJB caches in IBM’s WebSphere �[17] and BEA’s 
WebLogic �[6] application server products are a few 
examples. �[21] and �[22] provide a good survey of existing 
products and ongoing research efforts in this area. 

Finally, there is a countless number of caching 
methods proposed in different database contexts. 
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Figure 12: Experimental Results: Measuring Overhead of Janus Plans 



 

 

Examples include caching in client/server databases �[11], 
in mediator systems �[1], in database middleware systems 
�[14], and so on. However, these methods are geared 
towards solving specific performance problems in their 
application domains. 

8. Conclusions 

The focus of the DBCache project has been on developing 
the core functionality for cache tables. We have 
implemented sophisticated mechanisms inside the DB2 
query engine not only to cache static subsets of backend 
tables but also dynamically changing, workload-driven 
subsets.  Once the set of dynamic cache tables and cache 
constraints have been specified, DBCache can 
asynchronously populate the cache tables on demand. 
Caching data from backend database servers in such an 
adaptable fashion is a key feature needed to deploy 
database caches at remote data centers or at the edge of 
content delivery networks. As a result, businesses will be 
able to move processing outside of their central 
infrastructures, improving the response time, throughput 
and scalability of transactional web applications. 

Our long term goal for the DBCache project is to 
achieve a highly efficient, scalable, zero-admin database 
cache. The cache table concept presented in this paper is 
an important step towards this goal. We plan to design 
new tools that will ease the deployment of DBCache as 
well as new techniques that will iteratively refine the 
cache settings at runtime by adding or dropping cache 
elements. For example, DBCache will actively monitor 
results of the workload, determine new potential cache 
table candidates, create cache constraints and start caching 
data for them. We are now laying the foundations for this 
truly adaptable database cache. 
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