

Cache Tables: Paving the Way for an Adaptive Database Cache
Mehmet Altınel1 Christof Bornhövd1 Sailesh Krishnamurthy2 C. Mohan1 Hamid Pirahesh1

Berthold Reinwald1
1 IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

2 Comp. Sci. Div, Dept EECS, UC Berkeley, Berkeley, CA 94720

Contact email: {mohan,maltinel,cborn}@almaden.ibm.com

Abstract

We introduce a new database object called Cache
Table that enables persistent caching of the full or
partial content of a remote database table. The
content of a cache table is either defined
declaratively and populated in advance at setup
time, or determined dynamically and populated
on demand at query execution time. Dynamic
cache tables exploit the characteristics of typical
transactional web applications with a high
volume of short transactions, simple equality
predicates, and 3-4 way joins. Based on federated
query processing capabilities, we developed a set
of new technologies for database caching: cache
tables, "Janus" (two-headed) query execution
plans, cache constraints, and asynchronous cache
population methods. Our solution supports
transparent caching both at the edge of content-
delivery networks and in the middle-tier of an
enterprise application infrastructure, improving
the response time, throughput and scalability of
transactional web applications.

1. Introduction

Transactional Web Applications (TWAs) have reached
widespread use in modern enterprise application
infrastructures �[22]. Such applications are typically
implemented with a broad range of technologies including
network load balancers, HTTP servers, application servers,
transaction-processing monitors and databases. In its
simplest form, a TWA is realized with an HTTP server
hosting presentation logic, and an application server
hosting business logic (in the form of Java servlets or
EJBs) that in turn obtains data by issuing queries to a
relational database. Figure 1 depicts an example enterprise
application configuration.

Figure 1: Typical Multi-Tier Enterprise Architecture

1.1 The Cache Jam

The various layers of the application infrastructure stack
hurt its response time and scalability. The last few years
have seen the wide use of caching static HTML pages and
data as a technique to achieve better response time and
scalability of interactive TWAs. Caching takes place at
various stages: the cache of a client browser, forward and
reverse proxy caches, nodes of content-delivery overlay
networks, and in specialized object caches that are part of
application business logic �[21].

However, as TWAs get more dynamic with increased
personalization and the need to deliver frequently updated
information, such static caching techniques become less
useful. High-volume web sites often serve highly
personalized content to their users. As a consequence, the
data they need to build web pages is very dynamic in
nature and often cannot be profitably cached far away
from the enterprise servers. For this reason, some
enterprise applications run their business logic in the
application server nodes deployed in remote data centers
close to end users (these are also called “Web Hosting”
services). What’s more, the partnership between content-
delivery network service providers (e.g., Akamai �[2]) and
application server vendors (such as IBM and BEA) will
make it easier for companies to move more content and
applications out of origin servers, thereby improving
response time and reducing demands on in-house systems.
The benefit of these approaches, however, will always be
limited when the remote application servers try to access
needed data from central backend databases.

Database caching is a promising technique to address
the dynamic nature of TWAs �[10]�[21]. Data stored in a
database cache is accessed by the application using
database queries in just the same way the backend

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

HTML Clients

Web
Server(s)

Application
Server(s)

Internet Http

Http

Database
Server(s)

SQL LB

Network Load
Balancer(s)

Http

database is accessed. The database cache entity may itself
be implemented in different ways. Semantic caching �[9]
and DBProxy �[4] are approaches where results of queries
are preserved in the cache and new queries are checked to
see if they can be satisfied with the local data alone. In
contrast, �[23] and �[24] describe systems where a full-
fledged database server is co-located with the application
server. One advantage of the latter approach is that a
significant portion of logic (query parsing and analysis)
that already exists in full-fledged systems can be exploited
for managing the cache. Plus, this approach also allows
caching other associated database objects, such as triggers,
constraints, indices, stored procedures and so on which
can be important not only for application performance and
semantics but also for providing continued service for
applications when backend databases are unavailable. Our
approach in the DBCache project falls into this category.
We are prototyping a database cache feature that is
incorporated into a full-fledged DBMS, namely DB2. In
our research prototype, we aim to turn a regular DB2
instance into a transparent database cache manager by
modifying the engine code and leveraging existing
federated database functionality.

Our solution aims to support database caching not only
at mid-tier nodes of central enterprise infrastructures as in
�[23] and �[24], but also at remote data centers and edge
servers of content delivery networks. Given that there
might be potentially a large number of database cache
deployments in the latter scenario (e.g., Akamai's network
currently has nearly 15,000 edge caching servers),
declarative way of specifying table subsets can easily
make the whole system unmanageable. In our solution, the
database cache addresses this key problem by adapting to
the system load by automatically choosing the data to
cache. It is also vital that applications should be able to
work seamlessly with database caches and not require any
change in their existing queries.

Our on-demand caching solution exploits the typical
characteristics of TWA queries. Our analysis of TWA
query workloads (based on the Trade2 �[18] and ECDW
�[3]�[19] benchmarks) shows that equality predicates on key
or non-key columns (sometimes mixed with range
predicates in the same query) and 3-4 way join queries are
very common. In contrast, earlier work on semantic
caching is best suited for range queries with no joins.

1.2 Database Cache Design Space

The easiest approach to implement a database cache would
be to replicate the entire content of selected tables from
the backend database. In this case, each cache table
referred to in a query can be used without any further
checking as long as stale data is acceptable. The simplicity
of this approach attracted various database cache products
including Oracle 9i Internet Application Server �[23] and
our earlier work in the DBCache project �[3]�[19]. But,
typically, front-end systems are much less powerful than
backend systems making full-table caching difficult or

even sometimes impossible. Even for a powerful front-end
system, large table sizes can easily make full-table caching
infeasible due to increased replication and maintenance
costs in the cache.

Sub-table caching, on the other hand, can provide an
effective alternative by caching only the “ interesting” parts
of the backend tables. Materialized view technologies may
seem a good match to implement a sub-table cache
although they were developed for different purposes. In
current database products, materialized views store
precomputed query results, that are later used to speed up
performance and data access of expensive queries
�[13]�[25].

Nicknames are references to remote tables that can be
used in federated queries �[15]. At first blush, it appears
that no extra effort is needed to implement a sub-table
cache by creating materialized views on nicknames. This
way, existing materialized view matching mechanisms can
be exploited to route queries to either cached tables
(materialized views) or backend tables (nicknames)
depending on query predicates. However, in a database
cache this approach is too restrictive and ineffective for
the following reasons:
� Materialized views require declarative specification.

Once specified, the definition of materialized view
content cannot change dynamically based on demand.
Unfortunately, it is often impossible to know a priori
exactly what to cache because of the dynamic nature
of web applications (e.g., caching the content of a
shopping cart or hot items of a product catalog in a
typical e-commerce application).

� From the application viewpoint, cache tables must be
semantically equivalent (i.e., peer level object) to the
associated backend tables. One can argue that
theoretically, a materialized view, derived from a
single table, can inherit all the semantics (i.e.,
triggers, constraints, etc.) of its base table, and hence
it can satisfy this requirement. However, as far as
updates are concerned, cache tables and materialized
views have clearly different semantics (our future
vision of DBCache will include user updates
performed directly in the cache database).

1.3 Our Contributions

We introduce the notion of a cache table and show how to
use this new database object to build a seamless, adaptive
database cache. Our caching scheme allows us to take
advantage of DB2’s sophisticated distributed query
processing power for database caching. As a result, the
optimizer may choose to execute a query either at the local
database cache or the remote backend server, or more
importantly, it can partition the query into subqueries that
can be distributed amongst both databases.

We show how entire tables (ideal for rarely changing
data) as well as subsets of tables can be cached. Our
significant contributions are (1) a database cache model
based on our cache table concept that supports transparent

Cache Schema

Backend DB

User Schema

Nickname

Nickname

Cache Database

CT1

Cache Table

T1

Tn

Backend Table

Input
Queries

Figure 2: DBCache Schema Setup Example

caching of declaratively specified as well as dynamically
changing subsets of remote database tables, (2) a novel
query rewrite method to translate input queries into an
appropriate form that can process dynamic subsets at
runtime, (3) asynchronous mechanisms to load cache
tables on demand and to keep them consistent with respect
to the updates performed at the backend database.

We propose a runtime solution that involves building a
special query plan with three parts: a probe, a local query
and a remote query. When such a plan is run, the probe is
always executed first, and its result dynamically
determines whether to run the local or the remote query
next. Since this plan has two operational parts, we call it a
two-headed or a Janus plan. The condition checked by the
probe is created by using a set of new cache constraints in
our system, which let us guarantee the correctness of the
results. While the remote query is constructed with only
nicknames, the local query may include both nicknames
and cache tables so that the query can be partitioned and
then distributed among both databases by the optimizer.

The rest of the paper is organized as follows: We start
with a definition of cache tables in Section �2. Section �3
presents cache constraints that are a key part of our
dynamic cache model. In Section �4, we describe our query
engine modifications that let us make use of cache tables.
Section �5 explains the techniques developed for the
population and maintenance of cache tables. Performance
evaluation of dynamic cache tables is provided in Section
�6. We present related work on database caching in Section
�7, and concluding remarks in Section �8.

2. Cache Tables

A Cache Table is a database object by which an end user
can specify that a table (cache table) in a database (cache
database) is a cache of a table (backend table) in another
database (backend database). Each cache table is
associated with a nickname that represents the
corresponding backend table. The name of a cache table is
the same as the backend table name, which is the target of
the query in the original configuration. If the content of the
cache table cannot answer the query, we transparently
route the query to its respective backend table through the
nickname. In DBCache, we provide two types of cache
tables: declarative and dynamic. Although query
compilation and maintenance mechanisms differ
depending on the type, we allow mixed settings in a cache
database.

2.1 Schema Setup in a Cache Database

To achieve transparent deployment of a database cache,
we make no changes to the database schema as viewed by
the applications. Each backend table is represented in the
cache database schema either with a cache table or a
nickname depending on whether caching is enabled for the
backend table. Figure 2 shows an example cache schema
setup. The names of the schemas and their elements are

created to be the same as their counterparts in the backend
database1. Moreover, all the cache tables have exactly the
same number and types of columns as those of their
counterparts. As a result, the cache database schema
resembles the actual user schema in the backend database,
requiring no change in existing queries of the applications.

The main advantage of this setting is that for each
cache table it allows us to easily cache other relevant
logical and physical database objects associated with the
backend table2. The cache database needs to have the
logical objects (such as views, functions, constraints,
stored procedures and so on) to be able to execute the
queries locally, while the physical objects such as indexes
are necessary for query performance.

2.2 Declarative Cache Tables

Declarative cache tables are useful when the desired
content of the cache tables is known upfront. In this case, a
declarative cache table is created with a predicate similar
to a materialized view as shown in Figure 3. Note that
when no predicate is provided, the entire table is cached
from the backend database.

CREATE CACHE TABLE <Cache Table Name> AS
 SELECT * FROM <Nickname Name>
 WHERE <Predicate Definition>

Figure 3: Declarative Cache Table Creation

We implemented declarative cache tables by exploiting
the existing materialized view support in DB2 �[25] with
some modifications. The details are given in Section �4.1.

2.3 Dynamic Cache Tables

Dynamic cache tables are populated on demand as dictated
by the queries issued by the application. Hence, they
eliminate the need for a DBA to specify what needs to be
cached in cache tables. Instead, a dynamic cache table
needs to be associated with a backend table through a
nickname. The on-demand loading aspect provides a key
feature needed for an adaptable cache. Moreover, dynamic
cache tables can be used as a cornerstone to develop new

1 Note that each cache table comes with an associated nickname

whose name is uniquely generated by the cache system.
2 Other database objects can easily be created for the cache tables

by executing the same DDL statements that were used for the
backend database.

methods to cache only “hot” items from backend
databases. Figure 4 shows a DDL template to create a
dynamic cache table.

CREATE CACHE TABLE <Cache Table Name>
 FOR <Nickname Name>

Figure 4: Dynamic Cache Table Creation

Utilization of cache tables brings into play new
challenges in their management and in query processing.
In the following sections, we address these issues and
describe our solutions. For declarative cache tables, we
rely mostly on existing materialized view support in the
DB2 engine. Hence, our main challenge in DBCache was
to compile queries against dynamic cache tables and we
have developed novel techniques for this purpose. Since
our solutions are closely tied to representation of dynamic
cache data in our design, we first explain the dynamic
cache model and then show how we create query plans for
cache tables.

3. Dynamic Cache Model

We describe the content of dynamic cache tables with
cache constraint definitions. By observing cache
constraints, we guarantee that the result of a query
obtained by using the dynamic cache tables is the same as
the result of the query if it were to be executed at the
backend database (modulo the differences due to the
cached data base being out-of-date). This property is our
correctness principle in DBCache. Cache constraints help
us to determine a set of dynamic cache tables that can be
used in a query that satisfy the correctness principle. These
tables are called eligible cache tables for the query.

There are two types of cache constraints enforced for
dynamic cache tables: cache key constraints defined on
columns of a cache table, and referential cache constraints
that involve multiple cache tables. In the current
prototype, we assume that DBAs specify these cache
constraints. We plan to automate this task in the future.

3.1 Cache Keys

A cache key is a cache table column whose values identify
the records that are cached in the cache table. A cache key
does not have to be unique; instead, all the values in a
cache key column must be domain complete. This
property guarantees that for any value of a domain-
complete column, the cache table contains all the rows
from the backend table that contain this value. Note that
unique columns (hence, primary key columns as well) of a
cache table are domain complete by definition. If a cache
key is defined on a non-unique column, DBCache satisfies
the domain completeness property for that column by
fetching all required records from the backend and loading
them into the cache table (details are provided in Section
�5).

For a single cache table ���, the domain completeness
property guarantees the correctness of equality predicates

in the form of “��������	
��” , where �� is a domain-
complete column. In this case, we can say that ���
 is an
eligible table.

Cache keys are explicitly defined in the system and
their definitions clearly state the intention to trigger on-
demand loading for missing cache key values. Figure 5
shows a DDL template to create a cache key for a dynamic
cache table.

ALTER TABLE <Dynamic Cache Table Name>
 ADD CACHE KEY <Column Name>

Figure 5: Adding a Cache Key to a Dynamic Cache Table

3.2 Referential Cache Constraints

We have developed another type of cache constraint that
guarantees the correctness of equi-joins between cache
tables. Basically, we define a new relationship type
between cache tables that is specific to the cache database.

Using the domain completeness property, we can
determine a set of eligible cache tables that could be used
to answer queries involving single table equality
predicates as described in the previous section. But if the
query also includes other cache tables participating in
equi-join predicates, how can we determine their
eligibility? We need additional information that tells us
that if one cache table is eligible in an equi-join then the
other is too. We have developed the notion of referential
cache constraints to address this requirement. From this
perspective, they are semantically different from
referential integrity constraints. Our on-demand loading
mechanisms described in Section �5 always enforce the
referential cache constraints while populating the cache
tables. Hence, the cache system always guarantees to keep
correlated values in the cache tables consistent.

A Referential Cache Constraint (RCC) can be defined
between any columns of two cache tables depending on
whether or not a join operation is possible between them.
An RCC creates a cache-parent/cache-child relationship
between two cache tables. When there is an RCC between
a column �� of a cache table ��� (cache-parent) and
column �� of another cache table ��� (cache-child), it
indicates that for any value of �� in ���, ��� includes all
rows having that value in their �� column. But for a row of
���, the associated row(s) in ��� may or may not exist.
Note that this parent-child relationship is completely cache
specific in the sense that it is defined from the join
processing point of view. To illustrate this, suppose there
is a an equi-join predicate �����������, where ��, �� are
backend tables whose cache tables are ���, ���
respectively, and ��� is the cache-parent of ��� through
columns �� and ��. If we know that ��� is an eligible
cache table for use in a local query plan then so is ���. In
short, it is safe to execute the join ������������� in the
cache database. Figure 6 shows an example DDL template
to create RCCs in DBCache.

ALTER TABLE <Dynamic Cache Table1>
 ADD CACHE REFERENCE FROM <Column Name1>
 TO <Dynamic Cache Table2>(<Column Name2>)

Figure 6: DDL for Adding a Referential Cache Constraint

3.3 Cache Groups

In DBCache, we use the term cache group to identify a set
of related cache tables whose content is (directly or
transitively) populated by the values of one or more cache
keys of a single cache table, called the root table. The
tables in a cache group that are reachable from the root
table via RCC constraints are called member tables. The
cache group notion helps us organize the cache tables in a
way that (1) we can recognize the application contexts
more easily, and (2) as explained in the following section,
we can detect potential problems caused by conflicting
cache constraint definitions. If a cache table does not
contain any cache key (i.e., if it is not a root table), it must
be a member of at least one cache group. Otherwise the
cache system cannot populate that cache table. In such a
rare case, the cache table can be populated manually and
still be made use of due to unique/primary key columns. In
a cache database, a cache group may be completely
covered by another one if its root table is a member of that
cache group. Or, some cache groups may overlap by
sharing one or more member tables. Note that cache
groups are implicitly constructed based on cache
constraints (i.e., they are not declaratively specified). In
that respect, our cache group concept is very different
from the one introduced in TimesTen �[24].

We represent a cache group as a directed graph, called
cache group graph, where nodes denote cache tables and
edges denote RCCs. The direction of an edge for an RCC
is from a cache-parent to a cache-child table. The graph
may also contain bi-directional edges indicating that there
are two RCCs on the same columns of cache tables in both
directions. Each row in one cache table requires having
corresponding rows in the other table. A (unidirectional)
path is formed from a source table to a target table in the
graph by following the directions of a set of RCCs. Each
participant table must be traversed only once in a path. But
a path can start and end with the same table. Such a path is
called cycle. Note that each bi-directional edge
corresponds to a cycle.

Cache keys are represented in the graph as annotations
to the node representing the root cache table. Underlined
cache keys denote non-unique cache keys. Notice that a
cache group graph corresponds to a reachability graph of
the root table node, which can reach all other nodes
representing members of the cache group. When two or
more cache groups are connected to each other via
overlapping members, combined representation of the
cache group graphs is captured in a connectivity graph.

Figure 7 shows a connectivity graph which includes
two cache group graphs shown inside dashed lines. The
content of the cache groups are identified by ��������

and ��� cache keys of their respective root tables. For
example, when a “Gold” customer is cached based on the
“�����������
�” predicate, the system guarantees that
all gold customers, their orders and orderline rows will be
cached, benefiting join queries involving these tables.

3.4 Issues with Cache Constraints

Uncontrolled use of cache constraints can cause an
unexpected amount of data to be loaded into the cache
database. This not only causes severe performance
problems during population, but also maintenance
problems later in the system (e.g., during cache
invalidation). Unexpected cache load occurs when there
are recurring load operations for the same cache table. We
call this phenomenon the recursive cache load problem. In
the extreme case, this problem can cause loading the entire
content of the backend table. A cache group is called safe
if the setting of cache constraints does not cause any
recursive cache loads in any of its cache tables. In the next
two sections, we address unsafe conditions and define a
set of rules to exclude them in a cache group.

3.4.1 Dangerous Paths

It is easy to see that when a cache group graph contains a
cycle, then there is a danger of recursive cache load for
each participant table. A safe condition that prevents the
recursive cache load problem for a cycle is when a single
column of each participant table is used during the
traversal. Such a cycle is called homogeneous cycle. Note
that each bi-directional edge creates a homogeneous cycle.
On the other hand, a heterogeneous cycle is formed by a
path if one of the participant tables contains two or more
columns used in the traversal. Figure 8 shows different
examples of each cycle type. Heterogeneous cycles pose a
potential recursive cache load problem, hence as a
precondition, they are not allowed. We set the following
rule to exclude them in the cache group definitions:

Rule-1: A cache group graph must not include any
heterogeneous cycles.

Note that our example does not have any recursive
cache load problem since there isn’ t any heterogeneous
cycle. But, there would be one, if ������� table was a
cache-child of �����
��� through a column other than ���

���

��������

�����

�����
���

���

���

���

�������

Cache
Group Graph

Cache
Group Graph

��������

Figure 7: Connectivity Graph Example

(e.g., an RCC from order location of �����
��� to product
manufacturing location of �������). If this is allowed,
when a new row is loaded in the ������� table, all the
corresponding �����
��� rows having the same ���
will be
loaded. Then, for each new �����
��� row, we may have
to load a new ������� row due to the new RCC. This may
in turn force us to load more rows for the �����
��� as
each new ������� row requires all corresponding
�����
��� rows. As a result, we may have to repeat all
these operations, and in the extreme case we may load the
entire �������
and �����
���
tables.

3.4.2 Implications of Domain Completeness Property

Although the domain completeness property provides
key functionality for the correctness of equality predicates,
complicated situations may arise because of its semantics.
In particular, enforcing the domain completeness property
on non-unique columns in a cache table may lead to the
recursive cache load problem.

In DBCache, a cache table column is not explicitly
defined as domain complete. Instead, it implicitly becomes
domain complete if one of the following conditions is
satisfied.

(1) if the column is a unique (or primary key) column,
(2) if a cache key is defined for the column,
(3) if the column is involved in a homogenous cycle,
(4) if the column is the only column used in the RCCs

where its cache table is participating as a cache-
child, and the cache table does not contain any cache
key defined on another column.

(1) and (2) address domain-complete columns created as a
direct consequence of the definition. The following
theorem shows how domain-complete columns result from
(3).

Theorem: All the columns involved in a homogeneous
cycle are domain complete.
Proof: Suppose that there is a homogeneous cycle �� in a
cache group graph �, including � cache tables:
���������������� ����������������. When a cache
table ��� is populated with a set of rows having a set of
values ��! !�� in the column ��, then for each value ��, the
table ���"�
will be populated with all the rows having �� in
the column ��"�. Thus ���"����"�� will be domain
complete. Similarly ���"� will be populated with all the
rows containing the values ��! !��, making ���"����"��
domain complete. Eventually, the newly loaded values

��! !�� in ���#����#�� will cause ��� to be populated with
all the rows including those values in column ��, making it
domain complete.

In our example in Figure 7, the ��� column of �����
table is involved in a homogeneous cycle, and hence is
domain complete according to (3).

Note that the domain completeness property created by
(4) is different than others in the sense that such a column
cannot coexist with any other domain-complete column. In
other words, the domain completeness property is
destroyed when the cache table contains a new domain-
complete column. In the example, ��� and ��� columns of
�����
��� table are not domain complete as there are two
RCCs. But with the absence of one of them, the column
used in the remaining RCC will be domain complete in
�����
���.

For a given cache table, there is no limit on the number
of domain-complete columns as long as they are unique.
But at most one non-unique column can be domain
complete. To explain why such a restriction is needed,
let’s assume that two non-unique columns are domain
complete in a cache table. When we insert a set of rows
into the cache table for a specific value in the first cache
key column, to satisfy the domain completeness property
of the second column we may have to load more sets of
rows from the backend for each new value in the second
column. These new rows may force us to do another round
of loads to satisfy the domain completeness property of the
first column and so on. As a result, satisfying domain
completeness for both columns can become
unmanageable, and in the extreme case we may end up
loading the entire backend table. As a result, we have the
following rule for a cache table:

Rule-2: A cache table must not have more than one
non-unique domain-complete column.

The domain completeness properties caused by (1) and
(4) are irrelevant for this rule: For (1), the columns are
unique, and for (4), two domain-complete columns cannot
coexist as explained above. In order to enforce Rule-2 for
domain-complete columns that may be created by (2) and
(3), we do not allow the following situations in our model:
� A cache table having more than one non-unique cache

key.
� A cache table having a non-unique cache key and at

the same time having one or more non-unique
columns which are involved in homogeneous cycles.

� A cache table having two or more non-unique
columns which are involved in homogeneous cycles.

A new cache constraint is created in the system only if
its addition does not violate Rule 1 and 2.

3.4.3 Other issues

Selectivity of non-unique cache keys is also an
important factor for the usability of dynamic caching. If
the cache keys are chosen from low-selectivity columns

(a) A Homogeneous Cycle (b) Heterogeneous Cycles

Figure 8: Cycle Examples in a Cache Group Graph

(e.g., gender), the system will be forced to load a large
amount of data dynamically. In general, it is better to use
declarative cache tables for such cases.

We are planning to develop a cache advisor tool to
setup cache key constraints based on a given query
workload. Without having such a workload as an input, we
can still automate the process by taking hints from the
backend database schema. Primary keys and referential
integrity (RI) constraints can give us an idea about
selecting cache keys and RCCs. Especially, if there are
some RI constraints replicated at the cache database,
special attention must be paid to the loading order of cache
tables during on-demand loading. Moreover, in general, it
is reasonable to expect that there is a join operation
through the RI columns in a query workload. Therefore,
when there is an RI relationship between two cache tables
in the cache database, we always map it to an RCC and we
always keep RCCs and RI constraints consistent. In the
mapping process, the cache table that contains the foreign
key becomes a cache-parent and the other becomes a
cache-child. We can also create an additional RCC by
switching the roles to increase the likelihood of eligibility
of both cache tables in a join operation. This way, we can
handle joins between cache tables while satisfying RI
constraints in the cache database. However, due to the
recursive cache load problem, these RCCs can not always
be created together. In such cases, we may have to choose
either keeping RI constraints between cache tables or the
capability to execute joins from cache-parent to cache-
child. This decision must normally be made by the DBA
as each application’s requirements might be different.

4. Query Compilation for Cache Tables

In this section, we present our modifications to the DB2
query compiler to generate query plans for cache tables. It
is important to note that the focus of this paper is on read-
only queries. Although there is some support in DBCache
to handle updates at the database cache, we do not address
it here due to space limitations.

4.1 Query Plans for Declarative Cache Tables

We exploit existing materialized view matching
mechanisms for declarative cache tables. For that reason,
declarative cache tables are created as materialized views
(with special properties) over nicknames so that during
query compilation, the view matching mechanism can
route queries either to the local cache database or to the
backend database. There is, however, one obstacle to
activate this mechanism: In our setting, queries refer to
cache tables, whereas query routing always occurs only
from base tables (i.e., nicknames) to the materialized
views (i.e., declarative cache tables), not vice versa. To
overcome this problem, we implemented a name
replacement mechanism that takes effect in the database
engine after semantic processing of the queries (i.e.,
constraint checking, trigger processing, etc.) is done.

Basically, we replace each declarative cache table
reference with its corresponding nickname in the query so
that the existing view matching mechanism can be
activated to route the query.

4.2 Generating Query Plans for Dynamic Cache
Tables

The decision on choosing dynamic cache tables over
nicknames to answer a query must be done at runtime
since the content of dynamic cache tables may change
between subsequent executions of queries. In our solution,
we create two plan alternatives for each query during
query compilation. The first plan considers all possible
dynamic cache tables usable (it may include nicknames for
other tables) in the query, hence it is called a local plan.
The second plan is constructed only with the nicknames to
enable remote query execution. Then, both plans are tied
together with a conditional switch operator as shown in
Figure 9. We name this new class of query plans Janus
plans.

The switch condition contains a subquery, called the
probe query, that is used to decide at runtime which leg of
the Janus plan to execute. In other words, the execution of
a Janus plan starts with executing the probe query
followed by either the local or the remote plan depending
on the probe query result. The probe query performs a data
access only for each potential cache table to find out
whether or not it can be used to answer the input query.
Therefore, by setting up the probe query properly, Janus
plans provide the needed mechanism for making a runtime
decision of whether or not the cache tables can be utilized,
while avoiding costly query recompilation.

A Janus plan is constructed in four steps:
(1) We process the initial query plan to convert it into a

remote plan, which contains only nicknames. As
explained in step 3, during local plan generation, we
switch back as many of these nickname references as
possible to dynamic cache tables. This method
ensures that the query is executable even if the Janus
plan cannot be created. For example, when the
currency setting of the cache database indicates that
the applications cannot tolerate out-of-date data, no
attempt is made to generate a Janus plan, resulting in
retrieving the data from the backend database.

Condition
Probe Query
(Generated

from the input
query predicates)

Figure 9: Janus Plan to Handle Dynamic Cache Tables

Local query
involving

Cache Tables
and Nicknames

Remote query
involving

Nicknames

Switch
Operator

(2) A probe query is generated by checking all the
equality predicates3 to determine whether they can
participate in the probe query condition. If no such
predicate is found, then the process is aborted at this
point. A detailed description of the probe query
generation is given below.

(3) The input query graph is cloned and in the clone
nicknames are replaced with the corresponding cache
table names (Details are provided below). Basically,
the clone becomes the “ local” query plan and the
unaltered plan remains as the “remote” query plan.
Note that the local query may contain both cache
tables and nicknames. This may result in distributed
execution of the query using DB2’s federated
database functionality.

(4) A switch operator is inserted at the top of the query
plan4. Local, remote and probe query plans are
plugged into the switch operator.

The cost of data access for determining whether or not
cache tables are usable might seem too expensive.
However, as shown next, the probe query has a very
simple structure and its results can be potentially reused by
the local query. So, we anticipate that the extra overhead
of the probe query will be acceptable considering the
benefits of executing a local query as opposed to a remote
one. We verified this claim with a set of performance
experiments, whose results are given in Section �6.

Creating Probe Query and Local Query Plans:
The probe query determines whether or not the input query
can be executed in the local cache. It is created as a scalar
subquery to keep its execution cost at a minimum and to
find out its result with a simple existence check operation.
As stated before, probe query predicates are constructed
only from the equality predicates of the input query3. The
definition of domain completeness ensures that the scalar
subquery in the probe is sufficient to guarantee the
correctness. Thus, if a single record of the probe query
result is found in the local cache, it is guaranteed that it is
safe to execute the local query.

A probe query is constructed by examining the equality
predicates of the input query using the domain
completeness property. During this process, we also find
out initial set of cache tables and predicates usable in the
local query.

Formally speaking, given a query $! let ��!��! !�� be
the subset of tables used in Q that have corresponding
cache tables ���!���! !��� and ������ ��� be all of

3 That does not mean that DBCache can handle the queries that have only

equality predicates. Our bottom line requirement here is that there must
be at least one equality predicate including a domain-complete column
in the query.

4 One may ask why Janus plans are not created separately for each base
table in the query graph. Although this will eliminate the need for a
probe query, the dynamic nature of the switch operator provides only
dynamic statistics which makes further query optimization very
difficult. This is an open question and may require further research.

the equality predicates in $. Initially, let the sets �
��	
,

and
 �
��	
 be empty. �
��	
 represents our eligibility set.
Every ��� and �% can be used in the probe query iff there is
a �% of the form “�������	
���” , where �� is a domain-
complete column of ���. In this case, the sets are updated
as �
��	

�
��
�
�
��	
, and �
��	

�
�%
�
�
��	
. After all the
equality predicates in $ have been processed, the
condition of the probe query becomes:
&'()�)��$��
�

�
&'()�)��$��!

where ��*�
��	
*

And each �$� is a subquery created as:

)&+&��
�

,-�.
���

/�&-&
������
�
�	
���
�01���
2�����
�
�	
���3 � �
��	
�

After the dynamic cache tables for the probe query are
determined, the following checks are done for join
predicates to find out whether any other potential dynamic
cache table ���
can take part in the local query:
� For every equi-join predicate
 �% of the form

“�����
�
�����” , if �� � �
��	
 and ��� is a cache-parent
of ��� in an RCC through the columns ������
 and
������, then update the set �
��	

�
��
�
�
��	

� For every equi-outer-join predicate �% of the form
“������������������” , if ��
� �
��	
 and ��� is a cache-
parent of ���
 in an RCC through the columns ������

and ������, then update the set �
��	

�
��
�
�
��	

These steps are repeated until no more dynamic cache
tables can be added to �
��	
. Finally, each table �� � �
��	

is replaced with its respective dynamic cache table ��� in
the local query plan.

Note that in this algorithm, the way of checking probe
predicates at runtime has the consequence that if one of
the cache table’s predicates fails, then none of the cache
tables will be used. In the future, we will explore using the
subset of eligible cache tables under such a condition.

5. Cache Table Population and Maintenance

In this section, we present population and maintenance
mechanisms for cache tables. These mechanisms are
different for declarative and dynamic cache tables.

5.1 Mechanisms for Declarative Cache Tables

To populate declarative cache tables initially and to keep
them up-to-date later, DBCache relies on DPropR utility
�[16] which is IBM’s asynchronous data replication tool for
relational data. DPropR consists of two independent
programs, a data change capture program and an apply
program. Based on subscription settings, the capture
program detects changes in a source database and notifies
the apply program. Using the predicates given during the
creation of declarative cache tables, we automatically
configure the replication subscriptions. When the capture
and apply programs start running, the declarative cache
tables are loaded with the data from their counterparts in

the backend database and asynchronously updated at the
specified frequency.

5.2 Mechanisms for Dynamic Cache Tables

In this section, we present the on-demand loading feature,
and accompanying cache invalidation mechanisms to keep
dynamic cache tables consistent with the backend
database. Figure 10 illustrates the components developed
for this purpose.

5.2.1 On-demand Loading of Dynamic Cache Tables

Each execution of a remote query in a Janus plan
corresponds to a cache miss in DBCache. The cache key
values that have failed the probe query are used to perform
on-demand cache loading. To extract those values, we
attach a special user defined function (with no side effects)
to the remote query. However, we don’ t populate the
cache tables immediately, because cache constraints may
require loading an unknown amount of additional data into
an unknown number of cache tables. As this operation
may cause severe performance problems, we pass on the
cache key values along with associated cache table
information to a cache daemon by creating a non-
persistent MQ message in the user defined function. The
daemon runs as a lower priority background process and
checks the cache constraints and issues the required insert
statements asynchronously against relevant cache tables.

The basic idea behind our cache population algorithm
is to prepare (at most) one insert statement per cache table
in a cache group, and then to execute these statements in a
single transaction in cache-parent-to-child order of the
affected tables. Statement preparation is done using the
following procedure.
(1) For each received cache key value, we determine the

set of rows that need to be inserted into the
corresponding table ��4 (a.k.a. qualifying rows of
��4) by considering all cache keys of ��4. For each
defined cache key we need to guarantee domain
completeness. Note that non-unique cache keys result
in loading multiple rows for ��4.

(2) Starting from cache table ��4, for every RCC
constraint ����

�
����"�, we determine the qualifying

rows for ���"� based on the qualifying rows for ���
and the cache keys defined on ���"�. The set of
qualifying rows for ���"� is the set of cache-child
rows corresponding to the qualifying rows set of ���
plus all the rows necessary to satisfy domain
completeness properties due to the cache keys of
���"�. Recursively, for all outgoing edges from ���"�,
we repeat step (2). Note that if we encounter a non-
unique cache key or if we have multiple incoming
edges for a cache table, we might have to revisit cache
tables and expand their set of qualifying rows.

Qualifying rows for a cache table are represented as a
(nested) subquery. Thus, the insert statement for each

visited cache table contains a select subquery on the
nickname to retrieve all the qualifying rows that do not
already exist in the table.

5.2.2 Cache Invalidation

The content of dynamic cache tables is invalidated as they
get updated/deleted in the backend database. As in the
setting for declarative cache tables, updates are detected
by the capture program of the DPropR utility �[16].
However, instead of using the apply component, we utilize
the cache daemon to process updates for dynamic cache
tables. The capture program provides facilities to access
updated rows. As shown in Figure 10, we generate
invalidation messages and send them to the cache daemon.
Upon receiving such a message, the daemon creates delete
statements according to the cache constraints and issues
them against the cache database. Once the invalidated data
is discarded from the cache, updated rows can be reloaded
as new requests are processed. In the future, we plan to
explore updating the cached data rather than invalidating it
as well as a way of discarding unused data from the cache.

6. Experiments

In the experiments we did not focus on how much
response time improvement we can achieve with database
caching. There is a large number of related work in the
literature that experimentally show benefits of caching in
the Internet environment �[4]�[8]�[11]�[20]�[21]. Instead, we
performed a set of experiments to evaluate the overhead of
Janus plans for dynamic cache tables. We do not report
any experimental results for declarative cache tables here
since their implementation relies on materialized view
mechanisms, and performance issues for materialized view
selection and matching were also well studied in the
literature �[13]�[25]. Our goal for dynamic cache table
experiments was twofold: (1) to measure the additional
runtime cost incurred by probe query execution and the
switch operator in the Janus plans, (2) to measure the
overhead of on-demand loading operation for Janus plans.

Cache Keys
Used in Select

Queries

Changes

DB2 Instance
(DBCache)

Cache
Daemon

Input
Query

Remote Query
(By Federated DB)

Backend
DB

Capture
Program

Invalidation
Messages

Invalidation
Message
Generator

MQ

MQ

Result

Insert / Delete
Statements

Updates from
Other Sources

Figure 10: Components for On-demand Loading and Maintenance

6.1 Experiment Settings

We picked two tables as cache tables and generated three
types of queries for these tables from IBM’s Trade2 J2EE
Benchmark �[18]. The benchmark models an online
brokerage firm providing web-based services such as
login, buy, sell, get quote, and more. Different types of
queries helped us to understand the overhead of Janus
plans in various application scenarios. The first query type
is a simple select statement with unique cache key (created
on the primary key column) access, the second type again
is a simple select statement but with non-unique cache key
access, and the third type is a join query involving two
tables as shown in Table 2. We created the same primary
keys and indices at the cache database. Table 1 and Figure
11 show the cache and backend database settings for the
experiments.

Table Name Rows Primary Key Indices

TradeHoldingBean 227,117 (Userid, Indx) Symbol

TradeQuoteBean 5,000 Symbol -

Table 1: Cache Tables and their Backend Database Settings

Unique
Cache Key
Access

SELECT T1.Symbol, T1.Price, T1.Details
FROM TradeQuoteBean T1
WHERE T1.Symbol = ?

Non-unique
Cache Key
Access

SELECT T1.UserID, T1.Symbol, T1.Quantity,
T1.Price
FROM TradeHoldingBean T1
WHERE T1.Symbol = ?

Join Query SELECT T1.UserID, T1.Symbol, T1.Price,
T1.Quantity, T2.Details
FROM TradeHoldingBean T1, TradeQuoteBean T2
WHERE T1.UserID = ? AND T1.Symbol =
T2.Symbol

Table 2: Queries Used in the Experiments

All experiments were performed on two IBM
IntelliStation Netfinity 3500 machines with 1GHz Intel P4
CPU, 1GBytes of memory and Windows 2000 operating
system. Our cache and backend database machines were
connected in a local area environment. Our DBCache
research prototype �[7] was implemented using the DB2
v8.1 code base.

6.2 Janus Plan Overhead: Cache Hit Case

In this experiment we compared performance of a Janus
plan against directly querying local cache tables. Note that
the latter corresponds to pure execution of the local query
plan in a Janus plan. Therefore, the difference between the
numbers showed us how much overhead was introduced
by the probe query and switch operator when a cache hit
occurs. We populated all cache tables with full backend
data so that the probe query always finds the required
cache key value in the cache tables, hence triggering the

local query plan execution. Figure 12-A shows the results
of this experiment.

As seen from the graph and the table, the overhead
dramatically drops as the local query plan gets relatively
more costly than the probe query in the Janus plan. Even
for a simple query including only a single join operation,
the overhead is less than 1%. Considering that a typical
TWA workload will contain many similar or more
complex queries as the dominant cost factor, the overall
overhead of Janus plans will be minimal when a cache hit
occurs. We further reduced the overhead of Janus plans for
simple queries accessing a single table by combining the
probe and the local query.

6.3 Janus Plan Overhead: Cache Miss Case

We expect the overhead of Janus plans to be even more
negligible in a cache miss case due to high network costs
for the execution of the remote query plan. This time we
first measured pure remote execution of the queries and
then compared these numbers with those of Janus plans.
The difference tells us the overhead. To guarantee a cache
miss, we issued queries against initially empty cache
tables, and used different constant values in each query.

Note that when a cache miss occurs there are two
cases. In the first case, if the probe query tests only
domain-complete column values, then only the remote
query is executed and the results are returned without
populating any cache tables. On the other hand, if the test
occurs for cache keys, then, in addition, we create MQ
messages to send missing cache key values to the cache
daemon. Therefore, we conducted two sets of experiments
to evaluate the performance in each case.

Figure 12-B shows the results for the cache miss case
when no population occurs. As expected, the overhead is
less than in the cache hit case, since the network cost
became main factor in query response times, reducing the
effect of Janus plans.

In the last experiment, we enabled on-demand loading
for each cache miss and generated MQ messages for the
cache daemon. Note that this is actually an extreme case
since under normal circumstances, the number of cache
misses will decrease as the cache tables get populated. We
observed a considerable overhead for simple queries
caused by the MQ mechanism to pass cache key values.
However, as the remote query plan gets relatively more
costly, the overhead dramatically drops. The results of this
experiment are shown in Figure 12-C.

���5�

���5�

��	����
���67�	�

��	��$����7�	�

���5�

������

Figure 11: Cache Constraint Definitions in the Experiments

Overall, the experiments verified that dynamic cache
tables add only minimal overhead in the cache database.
Considering the benefits of on-demand database caching
in terms of better response time, higher scalability and
availability on the Internet, the overhead will be
negligible.

7. Related Work

Oracle �[23] and TimesTen �[24] offer database cache
products that are directly related to our work. Similar to
our previous DBCache solution �[3]�[19], Oracle’s approach
involves full-table caching using a full-fledged database
server in the middle-tier with updates fed through
replication. Their solution ensures that other objects such
as stored procedures and user-defined functions get
deployed in the middle-tier from the backend as well.
Although this approach has the advantage of considerable
application transparency, it is not very adaptive and
requires considerable cache management tasks on the part
of administrators. TimesTen Front-Tier �[24], on the other
hand, allows sub-table level caching and update queries at
cache databases. However, applications must be aware of
the cache content and choose the target database (i.e.,
cache or backend) accordingly. Moreover, Front-Tier is
restricted to work only with Oracle as the backend
database. A cache group notion similar to ours was first
introduced by TimesTen. However, their cache group
definition is solely based on referential integrity
constraints of the backend database and is less powerful.

One distinctive feature of DBCache from these
products is that it can do distributed query execution. In
DBCache, the user query can be executed at either the
local database cache or the remote backend server, or
more importantly, the query can be partitioned and then
distributed to both databases for cost optimal execution.

Query result caching is a similar approach to database
caching in the sense that the cache content is checked with
backend database queries. But, unlike database caches, the

cache can store only partial backend table data, not any
other relevant database objects such as triggers,
constraints, stored procedures, etc. The earliest query
caching work was semantic caching �[9], which described
ways in which a client proxy might cache the results of
queries executed in a remote database. The big
disadvantage of semantic caching was that it worked only
for range queries and did not address joins. As we saw in
the analysis of TWA queries, both these query styles are
very common. Further, semantic caching did not address
the impact of updates of cached data in the remote server.

The DBProxy project �[4] offers an improvement on
semantic caching by supporting common TWA queries
and building an infrastructure to invalidate out of date data
in the cache. However, DBProxy suffers from the other
disadvantage of semantic caching – conventional RDBMS
architectures support complex SQL queries. This means
that the cache implementation plays “catch-up” always
lagging behind the syntax supported in the database server.
This lack of transparency makes it difficult for application
developers to adopt such approaches.

Most query result caches use materialized view
technology to store and match the cache content, although
materialized views were first developed for improving
query performance in data warehouses and OLAP
applications �[12]�[13]�[25]. As we stressed throughout the
paper, our cache table concept goes beyond that of
materialized views by providing richer semantics and
supporting dynamically changing content.

There are other caching methods that take place in
various forms ranging from HTML pages to business
object caches at different layers of transactional web
application infrastructures. Proxy caches like �[5]�[8]�[20]
and EJB caches in IBM’s WebSphere �[17] and BEA’s
WebLogic �[6] application server products are a few
examples. �[21] and �[22] provide a good survey of existing
products and ongoing research efforts in this area.

Finally, there is a countless number of caching
methods proposed in different database contexts.

0

10

20

30

40

50

60

70

Unique Cache
Key

Non-unique
Cache Key

Simple Join

R
es

p
o

n
se

 T
im

e
(m

s)

Direct Access

Cache Hit

0

10

20

30

40

50

60

70

80

Unique Cache
Key

Non-unique
Cache Key

Simple Join

R
es

p
o

n
se

 T
im

e
(m

s)

Remote

Cache Miss

0

10

20

30

40

50

60

70

80

90

Unique Cache
Key

Non-unique
Cache Key

Simple Join

R
es

p
o

n
se

 T
im

e
(m

s)

No on-demand

With on-demand

Unique
Cache Key

Non-Unique
Cache Key

Join Query

15% 5% <1%

(A) Cache Hit Case

Unique
Cache Key

Non-Unique
Cache Key

Join Query

2% 3% <1%

(B) Cache Miss Case (No MQ Messages for on-
demand loading)

Unique
Cache Key

Non-Unique
Cache Key

Join Query

35% 23% 6%

(C) Cache Miss Case (With MQ messages for
on-demand loading)

Figure 12: Experimental Results: Measuring Overhead of Janus Plans

Examples include caching in client/server databases �[11],
in mediator systems �[1], in database middleware systems
�[14], and so on. However, these methods are geared
towards solving specific performance problems in their
application domains.

8. Conclusions

The focus of the DBCache project has been on developing
the core functionality for cache tables. We have
implemented sophisticated mechanisms inside the DB2
query engine not only to cache static subsets of backend
tables but also dynamically changing, workload-driven
subsets. Once the set of dynamic cache tables and cache
constraints have been specified, DBCache can
asynchronously populate the cache tables on demand.
Caching data from backend database servers in such an
adaptable fashion is a key feature needed to deploy
database caches at remote data centers or at the edge of
content delivery networks. As a result, businesses will be
able to move processing outside of their central
infrastructures, improving the response time, throughput
and scalability of transactional web applications.

Our long term goal for the DBCache project is to
achieve a highly efficient, scalable, zero-admin database
cache. The cache table concept presented in this paper is
an important step towards this goal. We plan to design
new tools that will ease the deployment of DBCache as
well as new techniques that will iteratively refine the
cache settings at runtime by adding or dropping cache
elements. For example, DBCache will actively monitor
results of the workload, determine new potential cache
table candidates, create cache constraints and start caching
data for them. We are now laying the foundations for this
truly adaptable database cache.

Acknowledgements

We would like to thank Nesime Tatbul, Qiong Luo,
Honguk Woo, Larry Brown, Bruce Lindsay, Dan Wolfson
and Theo Haerder for their contributions to the DBCache
project. We are also benefited from fruitful discussions
with IBM SWG team including Mary Roth, Eileen Lin,
and George Lapis.

REFERENCES
[1] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S.

Subrahmanian, “Query Caching and Optimization in Distributed
Mediator Systems” , SIGMOD’96, Montreal, Canada, June 1996

[2] Akami Technologies, http://www.akamai.com/

[3] M. Altinel, Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, B.
Lindsay, H. Woo, L. Brown, “DBCache: Database Caching For
Web Application Servers” , (Demo Description), SIGMOD’02,
Madison, WI, June 2002

[4] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “DBProxy: A
Dynamic Data Cache for Web Applications” , ICDE’03, Bangalore,
India, March 2003

[5] J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, T. Zhong, “Web
caching for database applications with Oracle Web Cache” ,
SIGMOD’02, Madison, WI, June 2002

[6] BEA WebLogic Application Server,
http://www.bea.com/products/weblogic/server/index.shtml

[7] C. Bornhövd, M. Altinel, S. Krishnamurthy, C. Mohan, H.
Pirahesh, B. Reinwald, “DBCache: Middle-tier Database Caching
for Highly Scalable e-Business Architectures” , (Demo Description),
SIGMOD’03, San Diego, CA, June 2003

[8] K. S. Candan, W. Li, Q. Luo, W. Hsiung, and D. Agrawal,
“Enabling Dynamic Content Caching for Database-Driven Web
Sites” , SIGMOD’01, Santa Barbara, CA, June 2001

[9] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava and M. Tan,
“Semantic Data Caching and Replacement” , VLDB'96, Mumbai
(Bombay), India, September 1996

[10] A. Datta, K. Dutta, H. M. Thomas, D. E. VanderMeer, K.
Ramamritham, D. Fishman., “A Comparative Study of Alternative
Middle Tier Caching Solutions to Support Dynamic Web Content
Acceleration” , VLDB’01, Rome, Italy, September 2001

[11] M. J. Franklin and M. Carey, “Client-server caching revisited” , in
Readings in database systems (3rd ed.), M. Stonebraker, J. M.
Hellerstein (Edtrs), Morgan Kaufmann Publishers Inc., 1998

[12] J. Goldstein and P. Larson, “Optimizing Queries Using
Materialized Views: A Practical, Scalable Solution” , SIGMOD’01,
Santa Barbara, CA, June 2001

[13] A. Gupta and I. S. Mumick (Editors), “Materialized Views:
Techniques, Implementations, and Applications” , The MIT Press,
1999.

[14] L. M. Haas, D. Kossmann, I. Ursu, “Loading a Cache with Query
Results” , VLDB’99, Edinburgh, Scotland, September, 1999

[15] IBM DB2 DataJoiner,
http://www-4.ibm.com/software/data/datajoiner/

[16] IBM DB2 DataPropagator, http://www-4.ibm.com/software/
data/DPropR/

[17] IBM WebSphere Application Server,
http://www-3.ibm.com/software/webservers/appserv/

[18] IBM WebSphere Performance Benchmark Sample (Trade 2
Application), http://www-3.ibm.com/software/webservers/appserv/
wpbs_download.html

[19] Q. Luo, S. Krishnamurthy, C.Mohan, H. Woo, H. Pirahesh, B. G.
Lindsay, J. F. Naughton, “Middle-tier database caching for e-
Business”, SIGMOD’02, Madison, WI, June, 2002

[20] Q. Luo and Jeffrey F. Naughton, “Form-Based Proxy Caching for
Database-Backed Web Sites” , VLDB’01, Rome, Italy, September
2001

[21] C. Mohan, “Caching Technologies for Web Applications”,
VLDB’01, Rome, Italy, September 2001.
http://www.almaden.ibm.com/u/mohan/Caching_VLDB2001.pdf

[22] C. Mohan, “Application Servers and Associated Technologies” ,
VLDB’02, Hong Kong, China, August 2002.
http://www.almaden.ibm.com/u/mohan/AppServersTutorial_VLDB
2002_Slides.pdf

[23] Oracle Corporation, “Oracle Internet Application Server
Documentation Library”
http://technet.oracle.com/docs/products/ias/doc_index.htm

[24] The TimesTen Team, “Mid-tier Caching: The FrontTier Approach” ,
SIGMOD’02, Madison, WI, June 2002

[25] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, M. Urata,
“Answering Complex SQL Queries Using Automatic Summary
Tables” , SIGMOD’00, Philadelphia, PA, May 2000

