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Abstract

We present the BHUNT scheme for automatically
discovering algebraic constraints between pairs of
columns in relational data. The constraints may be
“fuzzy” in that they hold for most, but not all, of the
records, and the columns may be in the same table or
different tables. Such constraints are of interest in the
context of both data mining and query optimization, and
the BHUNT methodology can potentially be adapted to
discover fuzzy functional dependencies and other use-
ful relationships. BHUNT first identifies candidate sets
of column value pairs that are likely to satisfy an alge-
braic constraint. This discovery process exploits both
system catalog information and data samples, and em-
ploys pruning heuristics to control processing costs.
For each candidate, BHUNT constructs algebraic con-
straints by applying statistical histogramming, segmen-
tation, or clustering techniques to samples of column
values. Using results from the theory of tolerance inter-
vals, the sample sizes can be chosen to control the num-
ber of “exception” records that fail to satisfy the discov-
ered constraints. In query-optimization mode, BHUNT
can automatically partition the data into normal and ex-
ception records. During subsequent query processing,
queries can be modified to incorporate the constraints;
the optimizer uses the constraints to identify new, more
efficient access paths. The results are then combined
with the results of executing the original query against
the (small) set of exception records. Experiments on a
very large database using a prototype implementation
of BHUNT show reductions in table accesses of up to
two orders of magnitude, leading to speedups in query
processing by up to a factor of 6.8.
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1 Introduction and Overview

Commercial DBMS vendors increasingly view autonomic
and self-managing technologies as crucial for maintaining
the usability and decreasing the ownership costs of their
systems [10, 11]. Self-tuning database systems have also
been receiving renewed attention from the research com-
munity; see, e.g., [22] and references therein. Query opti-
mizers that actively learn about relationships in the data are
an important component of this emerging technology.

In this paper we provide a new data-driven technique
called BHUNT (for Bump HUNTer) that automatically dis-
covers algebraic relationships between attributes and pro-
vides this information to the optimizer in the form of con-
straint predicates, along with an estimate of the predicates’
selectivity. The optimizer can use this information in the
usual way to improve cost estimates. Perhaps more im-
portantly, knowledge of the discovered predicates can also
provide new access plans for the optimizer’s consideration.
As we show empirically, the new access paths can lead to
substantial speedups in query processing. Such predicates
also allow the database administrator (DBA) to consider
alternative physical organizations of the data, such as the
creation of materialized views and/or indexes, or the use
of alternative partitioning strategies. Finally, the predicates
may be of interest in their own right, providing new insights
into application data. BHUNT can potentially be extended
to discover other relationships such as fuzzy functional de-
pendencies.

1.1 Two Examples

To make the discussion concrete, we give two examples of
algebraic constraint predicates and their use in speeding up
query processing.

Example 1 Consider a hypothetical sales database
that contains tablesorders and deliveries
as in Figure 1, and suppose that the database con-
tains many year’s worth of data. A casual in-
spection of the columnsorders.shipDate and
deliveries.deliveryDate may not reveal any



meaningful relationships, but if we execute the SQL query

SELECT DAYS(deliveries.deliveryDate)
- DAYS(orders.shipDate)

FROM orders, deliveries
WHERE orders.orderID = deliveries.orderID

and plot a histogram of the resulting data points, we could
well obtain a plot as in Figure 2. It is apparent from the
figure that, except for a small number of outlier points, the
data satisfy the predicate

(deliveryDate BETWEEN shipDate + 2 DAYS
AND shipDate + 5 DAYS)

OR (deliveryDate BETWEEN shipDate + 12 DAYS
AND shipDate + 19 DAYS)

OR (deliveryDate BETWEEN shipDate + 31 DAYS
AND shipDate + 35 DAYS)

(1)

The three clauses in the predicate — equivalently, the three
“bumps” in the histogram — correspond to three shipping
methods. Knowledge of this predicate can help the opti-
mizer choose an efficient method for joining theorders
anddeliveries tables. E.g., consider the query

SELECT COUNT(*)
FROM orders, deliveries
WHERE orders.shipDate BETWEEN ’2003-07-01’

AND ’2003-07-05’
AND deliveries.deliveryTime > ’17:00’
AND orders.orderID = deliveries.orderID

Suppose that there exist indexes on columns
orders.orderID, deliveries.orderID,
and deliveries.deliveryDate but not on
orders.shipDate. Combining the predicate in
the foregoing query with the predicate in (1), we obtain the
following new local predicate for thedeliveries table:

(deliveryDate BETWEEN ’2003-07-01’ + 2 DAYS
AND ’2003-07-05’ + 5 DAYS)

OR
(deliveryDate BETWEEN ’2003-07-01’ + 12 DAYS

AND ’2003-07-05’ + 19 DAYS)
OR
(deliveryDate BETWEEN ’2003-07-01’ + 31 DAYS

AND ’2003-07-05’ + 35 DAYS)

(2)

One possible access plan first uses the index on
deliveries.deliveryDate to efficiently ap-
ply both the predicate in (2) and the predicate on
deliveries.deliveryTime to the deliveries
table. Then, for each qualifying row, the plan uses the
index onorders.orderID to find the matching record
in the orders table and apply the original predicate
on orders.shipDate. Observe that this access plan
is not available to the optimizer without knowledge of
the predicate in (1). Because the number of qualifying
rows from thedeliveries table is small, this access
plan should be relatively efficient. It is clearly more
efficient than the plan that first applies the predicate on
orders.shipDate and then joins each qualifying row
with its matching row from thedeliveries table.

Example 2 Consider the example of the Section 1, but
now suppose that thedeliveryDate column is located
in theorders table, as shown in Figure 3. Also suppose

orderID shipDate

2A5 2001-01-03
3C2 2001-04-15
3B8 2002-11-25
2E1 2002-10-31
3D6 2002-07-25
· · · · · ·

orders

orderID deliveryDate deliveryTime

2A5 2001-01-06 09:50
3C2 2001-04-27 13:00
3B8 2002-12-10 11:20
2E1 2002-12-02 16:10
3D6 2002-07-29 08:50
· · · · · · · · ·

deliveries

Figure 1:Two tables in a sales database

Figure 2:Histogram of shipping delays

that theorders table is horizontally range-partitioned on
deliveryDate across a number of parallel processing
nodes. Finally, suppose that we wish to process the follow-
ing query:

SELECT COUNT(*)
FROM orders
WHERE orders.shipDate = ’2003-07-01’

If we can discover the predicate in (1), then we can derive
the predicate

deliveryDate BETWEEN ’2003-07-01’ + 2 DAYS
AND ’2003-07-01’ + 5 DAYS

OR
deliveryDate BETWEEN ’2003-07-01’ + 12 DAYS

AND ’2003-07-01’ + 19 DAYS
OR
deliveryDate BETWEEN ’2003-07-01’ + 31 DAYS

AND ’2003-07-01’ + 35 DAYS.

(3)

The optimizer can then exploit this information to speed up
processing by identifying those partitions that potentially
contain rows satisfying the predicate in (3), and hence sat-
isfying the original query. Processing can then be restricted
to the identified partitions.

1.2 Algebraic Constraints

The predicate in (1) asserts an algebraic relationship be-
tween a pair of columns. In general, an algebraic relation-
ship on numerical attributesa1 anda2 has the mathematical
form

a1 ⊕ a2 ∈ I, (4)



orderID shipDate deliveryDate

2A5 2001-01-03 2001-01-06
3C2 2001-04-15 2001-04-27
3B8 2002-11-25 2002-12-10
2E1 2002-10-31 2002-12-02
3D6 2002-07-25 2002-07-29
· · · · · · · · ·

orders

Figure 3:Alternate version oforders table

where⊕ is an algebraic operator, i.e.,+, −, ×, or /, andI
is a subset of the real numbers. To completely specify the
relationship, we need to specify which particulara1 val-
ues get paired with which particulara2 values to form the
set of number pairs acted on by the⊕ operator. We do
this by specifying apairing rule P . In the simplest case,
the columns lie in the same tableR and eacha1 value is
paired with thea2 value in the same row. The pairing rule
is then trivial, and we denote it by the symbol∅R. When
the columns lie in tablesR andS, thenP is simply a two-
table join predicate that is satisfied for each pair of tuples
(r, s) such that(r.a1, s.a2) is one of the number pairs acted
on by⊕. We allow tablesR andS to coincide, so thatP
can be a self-join predicate. In general, there can be more
than one pairing rule between two specified columns, and
multiple pairs(a1, a2) can share the same pairing rule. An
example of the former situation occurs when two columns
are in the same table and specific column values are paired
if they occur in the same row or are paired if they appear in
different rows that are related via a self-join predicate. An
example of the latter situation occurs whenP represents a
join between tablesR andS, and an algebraic relationship
exists both betweenR.a1 andS.a2 and betweenR.b1 and
S.b2.

In light of the foregoing discussion, we specify analge-
braic constraint as a 5-tuple

AC = (a1, a2, P,⊕, I),

wherea1, a2, ⊕, andI are as in (4) andP is a pairing rule.
For example, the algebraic constraint in Example 1 is spec-
ified by takinga1 asdeliveries.deliveryDate, a2

asorders.shipDate, ⊕ as the subtraction operator,P
as the predicate

orders.orderID = deliveries.orderID,

and

I = { 2, 3, 4, 5 } ∪ { 12, 13, . . . , 19 }
∪ { 31, 32, 33, 34, 35 } .

The algebraic constraint in Example 2 is specified
almost identically, except that now we takea1 as
orders.deliveryDate and P as the trivial pairing
rule∅orders.

We restrict attention to the case in whichI = I1∪· · ·∪Ik

for somek ≥ 1, where the sets in the union are mutually

disjoint and either eachIj is an interval of the real line or
eachIj is an interval of the integers. Thus we focus on
algebraic constraints that correspond to disjunctive range
predicates. In this case we often write the algebraic con-
straint as

AC = (a1, a2, P,⊕, I1, . . . , Ik).

Useful algebraic constraints abound in real-world data
sets, but are often hidden from the DBMS for one of the
following reasons:

• The constraint is inherent to the problem domain but
unknown to both the application developer and the
DBA.

• The constraint is enforced by the application that uses
the DBMS and not by the DBMS itself.

• The DBA knows about the constraint but chooses not
to enforce it for reasons of cost.

• The constraint isfuzzy in that most, but not all, of the
data satisfy the constraint. The constraint is therefore
not a standard DBMS “rule” per se. (This is the case
in Examples 1 and 2.)

1.3 Overview of BHUNT

The BHUNT scheme automatically and efficiently finds
and exploits hidden, fuzzy algebraic constraints. BHUNT
proceeds by executing the following steps:

1. Findcandidates of the formC = (a1, a2, P,⊕). This
process involves, among other things, finding declared
or undeclared key columns and then finding columns
related to the key columns via an inclusion depen-
dency.

2. For each candidate, construct the algebraic constraint
(i.e., construct the intervalsI1, I2, . . . , Ik) by apply-
ing statistical histogramming, segmentation, or clus-
tering techniques to a sample of the column values.
The sample size is selected to control the number of
“exception” records that fail to satisfy the constraint.

3. Identify the most useful set of constraints, and create
“exception tables” to hold all of the exception records.

4. During query processing, modify the queries to incor-
porate the constraints — the optimizer uses the con-
straints to identify new, more efficient access paths.
Then combine the results with the results of executing
the original query against the (small) exception table.

Steps 1 and 2 are always executed in BHUNT. Steps 3 and
4 are executed whenever BHUNT is used for query opti-
mization. In this latter setting, Steps 1–3 are executed prior
to query processing in much the same way as statistics-
collection utilities are invoked in order to populate the sys-
tem catalog. Step 4 is executed either when a query is com-
piled or run. BHUNT is flexible in that it does not require



any particular physical organization of the data, and is au-
tonomic in that it does not require any user intervention.

For BHUNT to provide a net benefit, it is crucial that
the preceding steps be executed as efficiently as possible.
BHUNT will typically be applied to databases comprising
many tables with many columns in each table. Because the
number of candidate column pairs can grow quadratically
with the total number of columns, inexpensive candidate
pruning heuristics are key to efficient execution. BHUNT
also depends heavily on modern DBMS query sampling
and parallel processing technology to deal with the massive
amounts of data typically found modern warehouses. Other
key elements of the BHUNT scheme include data mining
and statistical techniques for identifying the algebraic con-
straints, and query optimization methods for exploiting the
discovered constraints during query processing.

1.4 Related Work

Previous work on automatic methods for learning about
data relationships can be categorized according to whether
the learning technique is query- or data-driven, and accord-
ing to the type of information discovered. Query-driven
techniques have the nice property that the mined informa-
tion is, by definition, directly relevant to the user’s needs
and interests. This narrowed focus often leads to high accu-
racy. On the other hand, query-driven techniques can result
in poor performance during the “warm-up” stage of query
processing in which not enough queries have been seen yet.
Similar problems arise when the workload starts to change,
or when processing a query that is unlike any query pre-
viously seen. Indeed, use of query-driven techniques can
cause a learning optimizer to “careen towards ignorance”
by preferring query plans about which less is known, even
if the plans are actually quite inefficient. The reason for
this preference is that, in the absence of solid information,
an optimizer usually underestimates the cost of a plan, for
example, by making unrealistic independence assumptions.
Data-driven techniques, though often less precise, com-
plement query-driven techniques and can ameliorate their
shortcomings.

One useful type of information about relationships in
data is the multidimensional distribution of a set of at-
tributes. A variety of data-driven techniques have been de-
veloped for producing “synopses” that capture such distri-
butions in a compressed form; see, for example, [2, 5, 6, 13]
and references therein. These methods are based on a scan
or sample of the database, which can be initiated by the
user or by the system. The methods have somewhat less
of an autonomic feel than query-driven methods, because
typically the user must specify which attributes to include
in each synopsis.

A number of researchers have provided methods for
maintaining useful statistics on intermediate query results
such as partial joins. The LEO learning optimizer, for ex-
ample, improves cardinality estimates for intermediate re-
sults by observing the data returned by user queries [18].
Techniques proposed by Bruno and Chaudhuri [4] deter-

mine the “most important” statistics on intermediate query
expressions (SITs) to maintain based on a workload analy-
sis.

The information provided by the foregoing techniques
is used by the optimizer to improve the cost estimates of
the various access plans under consideration. An alterna-
tive set of techniques provides information to the optimizer
in the form of rules or constraints. The optimizer can di-
rectly use such information to consider alternative access
paths. Important types of constraints includefunctional de-
pendencies, multi-valued dependencies, semantic integrity
constraints, and the algebraic constraints considered in the
current paper.

Two columnsa1 anda2 of categorical data obey a func-
tional dependency if the value ofa1 determines the value of
a2. A typical example of a functional dependency occurs
whena1 contains car models anda2 contains car makes.
E.g., a car model value ofCamry implies a car make value
of Toyota. A multi-valued dependency is a generalization
of a functional dependency that in effect provides a neces-
sary and sufficient condition under which a relation can be
decomposed into smaller normalized relations. Mining of
functional and multi-valued dependencies is discussed, for
example, in [3, 9, 12, 23]. BHUNT’s notion of “fuzzy”
algebraic constraints is in the spirit of the “approximate”
functional dependencies discussed in [9]. Unlike [9], how-
ever, BHUNT need only provide probabilistic guarantees
on the degree of fuzziness.

Semantic integrity constraints arise in the setting of se-
mantic query optimization. Siegel et al. [17] and Yu and
Sun [24], for example, consider query-driven approaches
for discovering constraints of the formA → B andJC →
(A → B), whereJC is a join condition analogous to our
pairing rule, andA → B is a rule such ass.city =
chicago → t.weight > 200. In contrast, we con-
sider algebraic relationships between numerical attributes;
an algebraic constraint can be viewed as implying an in-
finite family of semantic integrity constraints. Moreover,
unlike [17, 24], BHUNT’s techniques are data-driven, the
discovered constraints need not hold for all of the data, and
disjunctive constraints are handled naturally and easily.

As indicated previously, the techniques required for gen-
eration of candidates in Step 1 of BHUNT are closely re-
lated to techniques used in reverse engineering and discov-
ery of entity-relationship (ER) models for legacy databases;
see, for example, [3, 12] and references therein. Many
of these algorithms rely on information contained in the
schema definition — such as primary-key declarations —
or in a set of workload queries. Algorithms such as those
in [3, 12] execute a sequence of queries involving joins
and COUNT(DISTINCT) operations to discoverinclusion
dependencies — an inclusion dependency exists between
columnsa1 anda2 if every value that appears ina2 also
appears ina1. Our approach incorporates many of these
techniques — a key difference lies in our extensive use of
sampling and the concomitant decrease in processing-time
requirements. BHUNT can use sampling because, in the



context of query optimization, there is no obligation to per-
fectly capture every possible inclusion dependency.

1.5 Organization of Paper

The remainder of the paper is organized as follows. In Sec-
tions 2–4 we describe the steps of the BHUNT scheme in
detail, emphasizing applications to query optimization. We
then relate (Section 5) our experience with a prototype im-
plementation of BHUNT when run against a large database.
In Section 6 we give our conclusions and describe potential
extensions of the technology.

2 Generating Candidates
The first step in the BHUNT scheme is to generate candi-
dates of the formC = (a1, a2, P,⊕). Such a candidate
corresponds to the set of numbers

ΩC = { r.a1 ⊕ r.a2 : r ∈ R }
when the pairing ruleP is a trivial rule∅R and

ΩC =
{

r.a1 ⊕ s.a2 : r ∈ R, s ∈ S,

and(r, s) satisfiesP
}
,

whenP is a join predicate between tablesR andS. We
call ΩC the induced set for C. In Examples 1 and 2, it is
the points inΩC that are histogrammed in Figure 2. We
assume that the user has specified a setO ⊆ {+,−,×, / }
of allowable algebraic operators.

There is a tension between the desire to be as thorough
as possible in identifying candidates and the desire to be as
efficient as possible by not examining too many candidates.
BHUNT deals with this tension by combining a thorough
search strategy with the continual use of pruning heuristics.
The precise set of heuristics is flexible and can depend on
the goal of the BHUNT analysis. For example, BHUNT
can be used for query optimization or for mining; a user
would likely employ a more stringent set of heuristics for
the former purpose than for the latter.

BHUNT proceeds by first generating a setP of pairing
rules. For each pairing ruleP ∈ P BHUNT systematically
considers possible attribute pairs(a1, a2) and operators⊕
with which to construct candidates. At each stage of the
process, the pruning heuristics alluded to above are used to
keep the number of candidates under control.

2.1 Generating Pairing Rules

BHUNT initializes P to be the empty set and then adds
a trivial pairing rule of the form∅R for each tableR in
the database schema.1 BHUNT then generates nontrivial
pairing rules.

The main heuristic underlying the generation of the non-
trivial rules is that they should “look like” key-to-foreign-
key join predicates, since such joins are the most common

1BHUNT can actually search for algebraic constraints over multiple
schemas by simply dealing with the union of the schemas.

type encountered in practice. Specifically, BHUNT first
generates a setK of “key-like” columns from among all
of the columns in the schema. For each columna ∈ K,
BHUNT then tries to identify suitable “foreign-key-like”
matching columns from among all of the columns in the
schema. That is, BHUNT tries to find all columns related
to columna via an inclusion dependency. Ifn (> 0) such
columnsb(1), b(2), . . . , b(n) are found, then BHUNT adds
the pairing rulesP1, P2, . . . , Pn to P, wherePi denotes
the predicate “a = b(i)” for 1 ≤ i ≤ n.

The columns inK comprise all of the declared primary
key columns, all of declared unique key columns, and any
columna not of these two types such that

#rows(a)
#distinctValues(a)

≤ 1 + ε.

We call the latter type of column anundeclared key. Here
ε is a pre-specified parameter of BHUNT and the quanti-
ties #rows(a) and #distinctValues(a) are obtained from the
system catalog. BHUNT additionally requires that the data
type of each column inK belong to a user-specified setT
of types, where each type inT is suitable for use in equality
predicates (e.g., not floating point or BLOB data).

Given a columna ∈ K, BHUNT examines every other
column in the schema to find potential matches. A column
b is considered a match for columna if the following con-
ditions hold:

1. The data in columnsa andb are of the same type.

2. Either

(a) columna is a declared primary key and column
b is a declared foreign key for the primary key,
or

(b) every data value in a sample from columnb has
a matching value in columna.

The sample used to check the condition in 2(b) need not be
large; in our implementation the sample size was set at a
few hundred rows.

BHUNT actually can deal with the case in which a de-
clared primary key or declared unique key inK is a com-
pound key of the forma = (a1, . . . , am) ∈ Tm for some
m > 1. In this case, given a compound key(a1, . . . , am) ∈
K, BHUNT considers as a match every compound attribute
b = (b1, . . . , bm) such that columnsb1, . . . , bm are in the
same table and type(ai) = type(bi) for 1 ≤ i ≤ m.
Then the conditions in 2(a) and 2(b) are checked to deter-
mine whether or nota matchesb; of course, “column” now
means “compound column,” “match” now means “compo-
nentwise match,” and the pairing rule is a predicate of the
form

a1 = b
(i)
1 AND · · · AND am = b(i)

m .

To avoid combinatorial explosion of the search space,
BHUNT typically does not look for undeclared compound
keys.



As discussed previously, BHUNT applies an adjustable
set of pruning rules to limit the number of candidates. The
goal of these heuristics is to restrict the set of candidates to
those that are likely to generate useful algebraic constraints
— a constraint is useful if it can be identified quickly, will
arise frequently in practice, and will result in a significant
performance improvement. We have found the following
set of heuristics for pruning a pairing ruleP to be useful
in the context of query optimization. (For simplicity, we
describe the heuristics when the elements ofK are simple,
not compound, keys.)

• Rule 1: P is of the formR.a = S.b or of the form∅R,
and the number of rows in eitherR or S lies below
a specified threshold value. The motivation for this
rule is that we only want to look at tables that are im-
portant to query performance. Maintaining exception
tables over tables that are small initially is probably
not a good use of resources. This rule is equivalent
to restricting the scope of BHUNT to theM largest
tables in the scheme as indicated by system catalog
statistics, whereM is specified by the user.

• Rule 2: P is of the formR.a = S.b with a ∈ K,
and the number of distinct values inS.b divided by the
number of values inR.a lies below a specified thresh-
old value. In practice, pairing rules that satisfy this
condition are likely to be spurious.

• Rule 3: P is of the formR.a = S.b, and one or both of
R andS fails to have an index on any of its columns.
This rule is checked when inserting columns into the
setK and prior to identifying matches for an element
of K. The idea is to preclude columns for which the
computational cost of checking the inclusion condi-
tion in 2(b) above is high.

• Rule 4: P is of the formR.a = S.b with a ∈ K, and
S.b is a system-generated key. In this case the pairing
rule will be spurious.

2.2 Turning Pairing Rules Into Candidates

For each pairing ruleP generated as described above,
BHUNT attempts to construct one or more candidates
of the form C = (a1, a2, P,⊕). If P is a triv-
ial rule of the form ∅R or is a nontrivial pairing
rule that corresponds to a self join of tableR, then
BHUNT considers every pair of columns in the set
{ (a1, a2) : a1, a2 ∈ A(R) anda1 	= a2 }. HereA(R) de-
notes the set of columns (i.e., attributes) ofR. If P
is a nontrivial pairing rule that corresponds to a join
of distinct tablesR and S, then BHUNT considers ev-
ery pair { (a1, a2) : a1 ∈ A(R) anda2 ∈ A(S) }. Each
pair (a1, a2) is considered in conjunction with the set of
possible operators in the user-specified setO. A triple
(a1, a2,⊕) is combined with the pairing ruleP to form
a candidateC = (a1, a2, P,⊕) if the following conditions
hold:

1. a1 anda2 can be operated on by⊕. E.g.,a1 anda2

arefloat or integer types and⊕ ∈ O, or they
are bothdate types and⊕ ∈ {+,−} (sincedate
types cannot be multiplied or divided).

2. If the pairing ruleP is nontrivial, thena1 anda2 can-
not correspond to the columns referred to in the pair-
ing rule, since thenr.a1 = s.a2 wheneverr and s
satisfyP , and any algebraic constraint based on the
(a1, a2) pairs will be useless.

As when generating pairing rules, additional heuristics can
be used to prune the final set of candidates. Examples of
useful heuristic pruning rules include the following.

• Rule 1: a1 anda2 are not of the exact same data type
(casting is required).

• Rule 2: The fraction of NULL values in eithera1 or
a2 exceeds a specified threshold. The idea is that even
if each column has a sufficient number of rows (as in
pairing-rule pruning heuristic), the effective number
of rows may be small because of NULLs.

• Rule 3: Either columna1 or a2 is not indexed. The
reasoning here is that if there are no indexes, then the
database designer probably did not consider columns
a1 anda2 to be important for query processing per-
formance, so an algebraic constraint based on these
columns is not likely to be useful.

3 Identifying Fuzzy Constraints
For each candidateC = (a1, a2, P,⊕) that has been gener-
ated using the techniques described in Section 2, BHUNT
employs a sampling-based approach to construct a fuzzy al-
gebraic constraintAC = (a1, a2, P,⊕, I1, . . . , Ik), where
k ≥ 1. Specifically, BHUNT takes a small sampleWC

of the induced setΩC and constructs a set of disjoint in-
tervalsI1, . . . , Ik such that every point inWC falls within
one of the intervals. The sample size is chosen so that with
high probability the fraction of points inΩC that do not fall
within one of the intervals lies below a specified threshold
— this small fraction of points corresponds to the set of
exception records. We often refer to theIj ’s as “bump in-
tervals” because they correspond to bumps in a histogram
such as the one in Figure 2. We first describe how bump
intervals are constructed from a sample and then describe
the sampling process.

3.1 Constructing Bump Intervals

To obtain the bump intervals, BHUNT sorts then data
points in the sampled setWC in increasing order as
x1 ≤ x2 ≤ · · · ≤ xn, and then divides this sequence
into disjoint segments. A segmentationS can be speci-
fied as a vector of indices

(
i(1), i(2), . . . , i(k)

)
that de-

lineate the right endpoints of the segments. That is, the
first segment isx1, x2, . . . , xi(1), the second segment is
xi(1)+1, xi(1)+2, . . . , xi(2), and so forth — we takei(0) =



Figure 4:Segmentation of points inWC

0 andi(k) = n. We sometimes call such a segmentation
a k-segmentation to emphasize the number of segments.
In terms of the foregoing notation, thejth bump interval
(1 ≤ j ≤ k) is given by Ij = [xi(j−1)+1, xi(j)]. In
other words, the two data points that delineate the segment
also delineate the endpoints of the bump interval; see Fig-
ure 4. The length ofIj , denotedLj , is therefore given by
Lj = xi(j) − xi(j−1)+1. (As discussed below, BHUNT
actually adjusts the interval endpoints slightly.)

The optimal-segmentation approach rests on the fact
that there is typically a trade-off between thefiltering
power and complexity of an algebraic constraint predicate,
where we define filtering power as the sum of the bump
interval lengths divided by the range∆ = maxx∈ΩC

x −
minx∈ΩC

x of values for the points inΩC . At one extreme,
an algebraic constraint comprising many short bump inter-
vals often leads to very selective query predicates that can
speed up query processing by cutting down on the number
of accesses to the base tables. If the number of intervals
becomes too large, however, processing times can start to
increase because the manyOR clauses in the constraint be-
come expensive to evaluate and, moreover, the query op-
timization process becomes more complex and hence time
consuming. Ideally, BHUNT should choose a segmenta-
tion to minimize the overall cost. Unfortunately, it appears
hard to quantify the tradeoffs precisely.

As a first cut to this problem, we consider a more
ad hoc solution in which we optimize a weighted av-
erage of the number of bump intervals and the filtering
power of the constraint. That is, for a segmentationS =(
i(1), i(2), . . . , i(k)

)
, we set

c(S) = wk + (1 − w)
[

1
∆

k∑
j=1

Lj

]
, (5)

and find a segmentationS that minimizes the functionc.
Herew is a fixed weight between 0 and 1. Ifw is close
to 0 then the optimal segmentation will produce an alge-
braic constraint with many short intervals; ifw is close
to 1 then the constraint will comprise a small number of
long intervals. The simplest approach to estimating the
range∆ is to simply observe the sorted sampled data val-
uesx1, x2, . . . , xn and set∆ = xn − x1. The resulting
estimate will be low however. A more complicated ap-
proach is as follows. Suppose, for example, that we have
a candidateC = (a1, a2, P,⊕) in which⊕ is the division
operator and all data values are positive. LetaM

1 andam
1

Figure 5:Histogramming method for segmentation

be the maximum and minimum values in columna1, and
similarly defineaM

2 andam
2 ; such parameters (or approx-

imations thereof) can either be obtained from the system
catalog or estimated by using the maximum and minimum
a1 anda2 values in the sample. Then we can estimate∆
as∆ ≈ (aM

1 /am
2 ) − (am

1 /aM
2 ). In any case, oncew and

∆ are fixed, an optimal segmentation can be easily deter-
mined using the following result.

Theorem 1 Let c be defined as in (5). Then a segmentation
that minimizes c is defined by placing adjacent points xl

and xl+1 in the same segment if and only if xl+1−xl < d∗,
where d∗ = ∆

(
w/(1 − w)

)
.

Proof. Denote byS∗ the segmentation described in the the-
orem, and letS be an arbitrary segmentation. Observe that
S can be transformed toS∗ through a sequence of steps in
which we split and merge segments. Specifically, we ex-
amine successive pairs(xl, xl+1). If xl+1 −xl < d∗ butxl

andxl+1 are in two different (adjacent) segments, then we
place these points in the same segment by merging the two
segments. Such a merge decreases the number of bump in-
tervals by 1 and increases the sum of the interval lengths by
xl+1 − xl. Thus the change in the cost function is

cnew− cold = −w + (1 − w)
xl+1 − xl

∆

< −w + (1 − w)
d∗

∆
= 0.

Similarly, if xl+1−xl ≥ d∗ butxl andxl+1 are in the same
segment, then we place these points in different segments
by splitting the original segment. In this case the change in
the cost function is

cnew− cold = w − (1 − w)
xl+1 − xl

∆

≤ w − (1 − w)
d∗

∆
= 0.

Since the cost is nonincreasing at each step, it follows that
c(S∗) ≤ c(S). SinceS is arbitrary, the desired result fol-
lows.

When dealing with discrete data types such as DAY or IN-
TEGER, BHUNT actually uses the valuemax(d∗, 1 + ε)
for segmentation, whereε is a small positive constant.

An alternative approach to segmenting the values inWC

is to identify “natural” clusters of the points, using any of



the many well known clustering techniques available; see
Section 14.3 in [8]. In this context, the “gap statistic” of
Tibshirani [19] can be used to choose the number of seg-
ments. The drawback of such an approach is the high com-
putational cost involved — since BHUNT generates many
candidate algebraic constraints, it is important to keep the
cost of computing each constraint very low.

One inexpensive natural clustering method that has
worked well in experiments is based on a histogramming
approach. The idea is for BHUNT to construct a histogram
using an appropriate bucket width. Adjacent nonempty
buckets are then merged to form an initial set of bump in-
tervals, and then each of these intervals is trimmed if nec-
essary so that the interval endpoints each coincide with one
of the xi’s; see Figure 5. We use2h(n) buckets, where
h(n) = (2n)1/3 is the “oversmoothing” lower bound as de-
scribed in Section 3.3 of [16]. Use of this number of buck-
ets approximately minimizes the “asymptotic mean inte-
grated squared error” of the histogram when the histogram
is viewed as an estimator of the underlying density func-
tion of the data. Other methods, such as those in [7], can
be used to determine the number of buckets, but at a sig-
nificantly higher cost. If the histogramming method cre-
ates a segment consisting of a single point, then BHUNT
adds to the algebraic constraint a bump interval centered
around the data point and having a width corresponding to
the oversmoothing rule.2

In general, BHUNT can specify an upper limit on the
number of bumps allowed. If this limit is exceeded, then
BHUNT greedily merges the closest bump intervals, then
the closest bump intervals of those remaining, and so forth.

For real-valued data, it is beneficial to expand the inter-
val widths by a few percent (merging any bumps that over-
lap after the expansion). To see the reason for this, suppose
that we have taken a sample and consider the right endpoint
of the rightmost bump interval. This point corresponds to
the maximum value seen in the sampleWC . Ideally, the
right endpoint should correspond to the maximum value
in ΩC . Typically, the observed maximum value grows as
the logarithm of the sample size, so a good deal of addi-
tional sampling is required to increase the right endpoint to
the correct value. Directly expanding the endpoint slightly
achieves the same effect with much less effort. Similar rea-
soning applies to the other bump-interval endpoints.

Note that for each bump interval we can use the fraction
of sample points inWC that lie within the interval as an es-
timate of the fraction of all points inΩC that lie within the
interval. These “selectivities” can be used by the optimizer
for purposes of cost estimation. Standard techniques can
be used to estimate the precision of the selectivities.

2We do not simply ignore such a data point because, with high prob-
ability, this sample point “represents” many points inΩC . Moreover, the
penalty for accidentally basing a constraint on an outlier point is small, at
least in the context of query optimization.

Figure 6:A low quality segmentation

3.2 Choosing the Sample Size

As mentioned previously, BHUNT computes algebraic
constraints based on small samples of the data. For a can-
didateC = (a1, a2, P,⊕), the specific type of sampling
depends on the form of the pairing ruleP . If P is a trivial
rule of the form∅R, BHUNT samples the data by obtain-
ing randomly-selected rows fromR. If P is a join predicate
between a key-like columna1 in R and a foreign-key-like
columna2 in S, then BHUNT samples by obtaining ran-
domly selected rows fromS — for each sampled row ofS,
BHUNT then obtains the matching row ofR as determined
by P .

BHUNT tries to choose the sample size so as to con-
trol the number of exceptions, and hence the size of the
exception tables. Unfortunately, the segmentation methods
that BHUNT uses are so complicated that the distribution
of the number of exceptions is extremely hard to compute.
BHUNT’s approach is to compute the target sample size
based on the behavior of a “randomized” approximation to
the actual segmentation algorithm. This randomized algo-
rithm takes as input parameters a target number of bump
intervalsk and a sample sizen. The randomized algorithm
takes a simple random sample ofn points fromΩC with
replacement, and then chooses ak-segmentation randomly
and uniformly from among all possiblek-segmentations.
The idea is that the target sample size for the actual algo-
rithm should be comparable to the ideal sample size for the
randomized algorithm. In fact, the latter sample size should
be a rough upper bound for the former sample size, because
the randomized algorithm is likely to yield somewhat less
effective bump intervals. This loss of effectiveness arises
because the randomized algorithm will sometimes choose
a low quality segmentation such as the one in Figure 6; for
the displayed segmentation, the region around the mode of
the true distribution (displayed above the horizontal axis)
is not covered by a bump interval.

The distribution of the number of exceptions for the ran-
domized algorithm is given by Theorem 2 below. Recall
that the beta distribution with parametersα andβ is de-
fined by

Beta(t;α, β) =
Γ(α + β)
Γ(α)Γ(β)

∫ t

0

uα−1(1 − u)β−1 du,

for t ≥ 0, whereΓ is the standard gamma function given



by Γ(t) =
∫ ∞
0

xt−1e−x dx.

Theorem 2 Let F be the random fraction of elements of
ΩC that lie outside of the set of bump intervals I =
I1 ∪ · · · ∪ Ik produced by the randomized algorithm from a
sample of n data points. Then

P {F > x } ≤ Beta(1 − x;n − k, k + 1). (6)

Proof. The randomized algorithm is statistically equiva-
lent to an algorithm in which we first randomly choose
a segmentation and then sample the data points; we an-
alyze this latter version of the algorithm. First consider
the conditional distribution ofF , given thek-segmentation.
Let X1,X2, . . . , Xn be the simple random sample of size
n drawn with replacement fromΩC and sorted so that
X1 ≤ X2 ≤ · · · ≤ Xn. Also letS =

(
i(1), i(2), . . . , i(k)

)
be a fixed segmentation ofX1, . . . , Xn so the bump inter-
vals are defined byIj = [Xi(j−1)+1,Xi(j)] for 1 ≤ j ≤ k.
If X1,X2, . . . , Xn were independent and identically dis-
tributed (iid) random variables with a common continuous
distribution function, then a result due to Tukey [21] would
imply thatP {F > x | S } = Beta(1−x;n−k, k+1). By
an argument essentially as in [15], we can drop the conti-
nuity assumption provided that we replace “=” with “ ≤” in
the foregoing equality. The intuitive reasoning behind this
latter argument is that discrete data accumulates at a rela-
tively small set of locations, so that the probability that a
data point falls outside a specified collection of intervals is
lower than in the case of continuous data. Since the case of
a discontinuous distribution function corresponds precisely
to simple random sampling with replacement from a finite
population, we have shown that

P {F > x | S } ≤ Beta(1 − x;n − k, k + 1)

for the randomized algorithm. Now observe that the right
side of the above expression does not depend on the specific
form of thek-segmentation. The desired conclusion now
follows by unconditioning onS.

Suppose that we wish to use the randomized algorithm
to construct an algebraic constraint havingk bump inter-
vals, and we want to be assured that, with probability at
leastp, the fraction of points inΩC that lie outside the
bump intervals is at mostf . It follows from Theorem 2
that the constraint should be based on at leastn∗ samples,
wheren∗ solves the equation

Beta(1 − f ;n − k, k + 1) = 1 − p.

In the following, we denote this solution byn∗ = n∗(k)
to emphasize the dependence on the number of bump inter-
vals. We can determinen∗(k) somewhat painfully by solv-
ing the above equation numerically. Alternatively, Scheffé
and Tukey [14] have developed an approximation to the in-
verse of the beta distribution which leads to the following
approximation forn∗(k):

n∗(k) ≈ χ2
1−p(2 − f)

4f
+

k

2
. (7)

Hereχ2
α is the100α% percentage point of theχ2 distri-

bution with 2(k + 1) degrees of freedom — this quantity
can be quickly and easily computed using, e.g., formulas
26.4.17 and 26.2.23 in [1]. Scheffé and Tukey assert that
the error in the approximation is at most 0.1%; our own
experiments indicated that the maximum error is at most
0.2%, but this degree of accuracy is more than sufficient
for our purposes.

For the actual segmentation algorithm, we usen∗(k) as
our target sample size for creating an algebraic constraint
with k bumps. Of course, we do not knowa priori the value
of k. The fact thatn∗(k) is increasing ink, however, sug-
gests the following iterative sample size procedure, given
prespecified values off andp:

1. (Initialization) Seti = 1 andk = 1.

2. Select a sample sizen = n∗(k) as in (7).

3. Obtain the sample and compute an algebraic con-
straint. Observe the numberk′ of bump intervals.

4. If n ≥ n∗(k′) or i = imax, then exit; else setk = k′
andi = i + 1, and go to step 2.

The quantityimax is a parameter of the algorithm. In our
experiments, the sample size always converged within two
or three iterations. The actual algorithm used by BHUNT
is slightly more complicated in that it takes NULLs into
account: we maintain an estimate of the fractionq of NULL
values ofa1 ⊕ a2 and scale up the sample size by a factor
of 1/q.

In many commercial database systems, rows are sam-
pled using a Bernoulli sampling scheme. For row-level
Bernoulli sampling at ratep, each row is included in the
sample with probabilityp and excluded with probability
1 − p, independently of the other rows. When there are a
total of N rows in the table, the resulting sample size is
random but equal toNp on average; the standard deviation

of the sample size is
(
Np(1− p)

)1/2
. Page-level Bernoulli

sampling is similar, except that entire pages of rows are in-
cluded or excluded. For the low sampling rates typical of
BHUNT applications, the Bernoulli sampling schemes be-
have almost identically to simple random sampling with re-
placement, so that the foregoing development still applies.
In this connection, we note that at first glance there may
be cause for concern about the applicability of Theorem 2
when page-level Bernoulli sampling is employed and the
data in columna2 is “clustered” on disk, so that there is
a strong relationship between the value in columna2 and
the page on which the corresponding row is located. In
practice, however, the resulting values ofa1 ⊕ a2 in ΩC

are rarely clustered, so that clustering does not pose a real
problem to our methodology.

Our implementation of BHUNT uses a conservative pro-
cedure to guard against samples that are too small due to
Bernoulli fluctuations in the sample size. The idea is to
boost the Bernoulli sampling rate so that, under the boosted
rate, the target sample size lies three standard deviations



CREATE TABLE exceptions(
CHAR(3) o-oid, CHAR(3) d-oid,
DATE o-sdate, DATE d-ddate, TIME d-dtime)

INSERT INTO exceptions AS
(SELECT orders.orderID, deliveries.orderID,

orders.shipDate, deliveries.deliveryDate,
deliveries.deliveryTime

FROM orders, deliveries
WHERE orders.orderID = deliveries.orderID
AND NOT (

(deliveryDate BETWEEN shipDate + 2 DAYS
AND shipDate + 5 DAYS)

OR (deliveryDate BETWEEN shipDate + 12 DAYS
AND shipDate + 19 DAYS)

OR (deliveryDate BETWEEN shipDate + 31 DAYS
AND shipDate + 35 DAYS))

)

Figure 7:Creating the exception table for Example 1

below the expected sample size. Thus the probability of
seeing a sample size below the target size is very small. If
p is the target sampling rate, then the boosted rate is given
by q ≈ p + 3(p/N)1/2, whereN is the number of either
rows or pages, depending on whether row-level or page-
level Bernoulli sampling is used, respectively.

For the various reasons outlined above, the sample size
procedure tends to be conservative, especially for data with
many duplicate values, such as integers or dates. In prelimi-
nary experiments, the mean fraction of exceptions was less
than or equal to the user-specified fraction in virtually all
cases. In the case of discrete data, we were able to reduce
the target size by a factor of 5 and still keep the number of
exceptions at or below the target valuef .

4 Exploiting the Constraints
As discussed previously, the algebraic constraints found by
BHUNT can be used in multiple ways, such as for data
mining and for improving query processing performance.
In the latter context, for example, the constraints can be
passed to a system-configuration tool, so that the DBA re-
ceives guidance on how to reconfigure the data, or the sys-
tem can perform the reconfiguration automatically. We fo-
cus here on the direct use of discovered constraints by the
query optimizer.

In query optimization mode, BHUNT automatically par-
titions the data into “normal” data and “exception” data. In
general, this can be done in a variety of ways, for exam-
ple by physically partitioning the data or by using partial
indexes. In our initial implementation, BHUNT creates ex-
ception tables.

TheWHERE clause in an SQL statement for creating the
exception table contains the predicate (if present) in the
pairing ruleP , as well as the logical negation of the alge-
braic constraint predicate. For example, the exception table
for the constraint in Example 1 might be specified as shown
in Figure 7. To reduce the costs incurred during optimiza-
tion and query processing, it may be desirable to maintain
a single exception table for all constraints that involve a
specified pairing ruleP .

Because of resource limitations, it may be necessary
to retain only the “most important” constraints when con-

Figure 8:Experimental results

structing the exception tables. One way to rank the alge-
braic constraints — especially appropriate when⊕ is the
subtraction operator — is to arrange them in decreasing or-
der of (estimated) filtering power as defined previously.

During query processing, each query is modified, if pos-
sible, to incorporate the discovered constraints. The modi-
fied query is run against the original data, the original query
is run against the data in the exception table, and the two
sets of results are combined. The implementation details
for the optimization process are rather involved, and a de-
tailed description is beyond the current scope of the paper.
We simply note here that the algorithm builds on standard
query processing technology.

5 Empirical Results

In this section we describe our experience running a proto-
type implementation of BHUNT against a large database.
The database exceeds 2.3Tb in size and a schema similar to
the TPC-D schema described in [20]. The largest table had
in excess of 13.8 billion rows while the next biggest table
had in excess of 3.45 billion rows.

For the test database, which contains 7 years of (syn-
thetic) retail data, the most notable constraints that BHUNT
discovered are:

lineitems.shipDate BETWEEN orders.orderDate
AND orders.orderDate + 4 MONTHS

lineitems.received BETWEEN lineitems.shipDate
AND lineitems.shipDate + 1 MONTH

Other constraints are implied by the two above, and none
of the discovered constraints were fuzzy. The time to dis-
cover the algebraic constraints was approximately 4 min-
utes. Figure 8 shows the performance impact of BHUNT
on 20 different queries. For each query, the figure shows
the ratio of the elapsed processing time without BHUNT to
the elapsed time with BHUNT.

As can be seen, there is a performance improvement for
half of the queries, with significant improvements for 25%
of the queries. There were no significant performance de-
creases for any of the queries. The most dramatic speedup
— by a factor of 6.83 — occurred for Query 4. For this lat-



ter query, the number of accesses to the largelineitem
table were reduced by a factor of about 100.

6 Conclusions and Future Work

We have presented BHUNT, a new data-driven min-
ing technique for discovering fuzzy hidden relationships
among the data in a RDBMS. BHUNT provides the dis-
covered relationships in the form of constraint predicates
that can be directly used by a query optimizer. In this
context, the BHUNT technique can be used to automati-
cally create data structures and modify queries to obtain
speedups. Preliminary experiments on a large database
show that BHUNT can potentially provide significant per-
formance improvements when processing massive amounts
of data; further experimentation is currently in progress.

In future work, we plan to improve the basic algorithm
in a number of ways. To improve scalability and perfor-
mance, we plan to incorporate techniques as in [3] to ex-
ploit the transitivity of the inclusion relationship and re-
duce the number of sampling queries when searching for
pairing rules. We also plan to combine techniques similar
to those in [3] with more elaborate heuristics to reduce the
likelihood of generating spurious pairing rules caused by
the presence of system-generated keys.3 Finally, we plan
to consider operators other than the simple algebraic ones.

We are also investigating various extensions of the ba-
sic technology. One potential extension is to discover
(fuzzy) functional dependencies. Recall our example: car
model determines car make. To apply BHUNT to this
problem, we can hash the values ofa1 and a2 into a
very large set of numbers. Then we look at the values
of a1 − a2. In our example, the histogram ofx values
will have a spike at#(Toyota) − #(Camry) but not at
#(Toyota) − #(Explorer). If the number of spikes is
much less than the number of distinct values ina1 times
the number of distinct values ina2, then a functional de-
pendency is indicated. The locations of the spikes provide
information about the specific nature of the dependency.

Another extension is to handle data organizations other
than relational. For example, it may be possible to discover
useful schema and data relationships in XML repositories
using our approach.
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