
The ND-Tree: A Dynamic Indexing Technique for
Multidimensional Non-ordered Discrete Data Spaces

Gang Qian† Qiang Zhu‡ Qiang Xue† Sakti Pramanik†

†Department of Computer Science and Engineering
Michigan State University, East Lansing, MI 48824, USA

{qiangang,xueqiang,pramanik}@cse.msu.edu

‡Department of Computer and Information Science
The University of Michigan - Dearborn, Dearborn, MI 48128, USA

qzhu@umich.edu

Abstract

Similarity searches in multidimensional Non-
ordered Discrete Data Spaces (NDDS) are
becoming increasingly important for applica-
tion areas such as genome sequence databases.
Existing indexing methods developed for
multidimensional (ordered) Continuous Data
Spaces (CDS) such as R-tree cannot be di-
rectly applied to an NDDS. This is because
some essential geometric concepts/properties
such as the minimum bounding region and the
area of a region in a CDS are no longer valid in
an NDDS. On the other hand, indexing meth-
ods based on metric spaces such as M-tree are
too general to effectively utilize the data dis-
tribution characteristics in an NDDS. There-
fore, their retrieval performance is not opti-
mized. To support efficient similarity searches
in an NDDS, we propose a new dynamic in-
dexing technique, called the ND-tree. The key
idea is to extend the relevant geometric con-
cepts as well as some indexing strategies used
in CDSs to NDDSs. Efficient algorithms for
ND-tree construction are presented. Our ex-
perimental results on synthetic and genomic
sequence data demonstrate that the perfor-
mance of the ND-tree is significantly better
than that of the linear scan and M-tree in high
dimensional NDDSs.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

1 Introduction

Similarity searches in multidimensional Non-ordered
Discrete Data Spaces (NDDS) are becoming increas-
ingly important. For example, in genome sequence
databases, sequences with alphabet A = {a, g, t, c}
are broken into substrings (also called intervals)
of some fixed-length d for similarity searches [18].
Each interval can be considered as a vector in a
d-dimensional data space. For example, interval
“aggcggtgatctgggccaatactga” is a vector in the 25-
dimensional data space, where the i-th character is
a letter chosen from alphabet A in the i-th dimension.
The main characteristic of such a data space is that the
data values in each dimension are discrete and have no
ordering. Other examples of non-ordered discrete val-
ues in a dimension of an NDDS are some discrete data
types such as sex, complexion, profession and user-
defined enumerated types. The databases that require
searching information in an NDDS can be very large
(e.g., the well-known genome sequence database, Gen-
Bank, contains over 24 GB genomic data). To support
efficient similarity searches in such databases, robust
indexing techniques are needed.

As we know, many multidimensional indexing
methods have been proposed for Continuous Data
Spaces (CDS), where data values in each dimension are
continuous and can be ordered along an axis. These
techniques can be classified into two categories: data
partitioning-based and space partitioning-based. The
techniques in the first category such as R-tree [15],
R*-tree [3], SS-tree [24], SR-tree [17] and X-tree [2]
divide the data space according to the distribution of
data points in the tree. The techniques in the second
category such as K-D-B tree [21] and LSDh-tree [16],
on the other hand, divide the data space according
to predefined splitting points regardless of data clus-
ters. The Hybrid-tree that incorporates the strengths

of indexing methods in both categories was proposed in
[7]. However, all the above techniques rely on a crucial
property of a CDS; that is, the data values in each di-
mension can be ordered and labeled on an axis. Some
essential geometric concepts such as rectangle, sphere,
area of a region, left corner, etc. are no longer valid in
an NDDS, where data values in each dimension cannot
even be labeled on an (ordered) axis. Hence the above
techniques cannot be directly applied to an NDDS.

If the alphabet for every dimension in an NDDS is
the same, a vector in such space can be considered as
a string over the alphabet. In this case, traditional
string indexing methods, such as Tries [11], Prefix B-
tree [1] and String B-tree [13], can be utilized. How-
ever, most of these string indexing methods like Pre-
fix B-trees and String B-trees were designed for exact
searches rather than similarity searches. Tries does
support similarity searches, but its memory-based fea-
ture makes it difficult to apply to large databases.
Moreover, if the alphabets for different dimensions in
an NDDS are different, vectors in such a space can no
longer be considered as strings over an alphabet. The
string indexing methods are inapplicable in this case.

A number of so-called metric trees have been intro-
duced in recent years [22, 9, 5, 12, 4, 10]. These trees
only consider relative distances of data objects to or-
ganize and partition the search space and apply the
triangle inequality property of distances to prune the
search space. These techniques, in fact, could be ap-
plied to support similarity searches in an NDDS. How-
ever, most of such trees are static and require costly
reorganizations to prevent performance degradation in
case of insertions and deletions [22, 9, 5, 12, 4]. On
the other hand, these techniques are very generic with
respect to the underlying data spaces. They only as-
sume the knowledge of relative distances of data ob-
jects and do not effectively utilize the special charac-
teristics, such as occurrences and distributions of di-
mension values, of data objects in a specific data space.
Hence, even for dynamic indexing techniques of this
type, such as M-tree [10], their retrieval performance
is not optimized.

To support efficient similarity searches in an NDDS,
we propose a new indexing technique, called the ND-
tree. The key idea is to extend the essential geometric
concepts (e.g., minimum bounding rectangle and area
of a region) as well as some effective indexing strategies
(e.g., node splitting heuristics in R*-tree) in CDSs to
NDDSs. There are several technical challenges for de-
veloping an indexing method for an NDDS. They are
due to: (1) no ordering of values on each dimension in
an NDDS; (2) non-applicability of continuous distance
measures such as Euclidean distance and Manhattan
distance to an NDDS; (3) high probability of vectors
to have the same value on a particular dimension in an
NDDS; and (4) the limited choices of splitting points
on each dimension. The ND-tree is developed in such

a way that these difficulties are properly addressed.
Our extensive experiments demonstrate that the ND-
tree can support efficient searches in high dimensional
NDDSs. In particular, we have applied the ND-tree
to genome sequence databases. Performance analysis
shows that the ND-tree is a promising indexing tech-
nique for searching these databases.

Several indexing techniques for genome sequence
databases have recently been suggested in the litera-
ture [20, 6, 14, 8, 18, 25]. They have shown that index-
ing is an effective way to improve search performance
for large genome sequence databases. However, most
genome sequence data indexing techniques that have
been reported to date are quite preliminary. They use
only basic indexing strategies, such as hashing [6, 14]
and inverted files [25], which cannot be efficiently used
for similarity searches [20, 18]. These techniques fo-
cus more on biological criteria rather than develop-
ing effective index structures. The previous work that
is most related to ours, in terms of employing a tree
structure to index genomic data, is the application of
metric trees (GNAT [5] and M-tree [10]) to genome
sequence databases suggested by Chen and Aberer [8].
However, as the authors pointed out, it is very diffi-
cult to select split points for an index tree in a general
metric space. They suggested that more experiments
were needed to verify the feasibility of their proposal
for genome sequence database applications. Further-
more, their approach is restricted to a special scor-
ing function for local alignments that they were using.
Compared to existing indexing techniques for genome
sequence databases, our work focuses on developing a
new efficient index structure for NDDSs with an ap-
plication to genome sequence databases. Our method
exploits efficient high-dimensional indexing strategies.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the essential concepts and notations
for the ND-tree. Section 3 discusses the details of the
ND-tree including the tree structure and its associ-
ated algorithms. Section 4 presents our experimental
results. Section 5 describes the conclusions and future
work.

2 Concepts and Notations

As mentioned above, to develop the ND-tree, some
essential geometric concepts in CDSs need to be ex-
tended to NDDSs. These extended concepts are intro-
duced in this section.

Let Ai(1 ≤ i ≤ d) be an alphabet consisting of a
finite number of letters. It is assumed that there is
no ordering among letters in Ai. A d-dimensional
non-ordered discrete data space (NDDS) Ωd is de-
fined as the Cartesian product of d alphabets: Ωd =
A1 × A2 × ... × Ad. Ai is called the alphabet for the
i-th dimension of Ωd. The area (or size) of space Ωd

is defined as: area(Ωd) = |A1| ∗ |A2| ∗ ... ∗ |Ad|, which
in fact indicates the number of vectors in the space.

Note that, in general, Ai’s may be different for dif-
ferent dimensions. For simplicity, we assume that the
alphabets for all the dimensions are the same for the
following discussions of this paper. However, our dis-
cussions can be easily extended to the general case.

Let ai ∈ Ai (1 ≤ i ≤ d). The tuple α =
(a1, a2, ..., ad) (or simply “a1a2...ad”) is called a vec-
tor in Ωd. Let Si ⊆ Ai (1 ≤ i ≤ d). A discrete
rectangle R in Ωd is defined as the Cartesian product:
R = S1 ×S2 × ...×Sd. Si is called the i-th component
set of R. The length of the edge on the i-th dimension
of R is length(R, i) = |Si|. The area of R is defined
as: area(R) = |S1| ∗ |S2| ∗ ... ∗ |Sd|. Note that a vector
can be considered as a special discrete rectangle when
|Si| = 1 for all 1 ≤ i ≤ d.

Let R = S1 × S2 × ... × Sd and R′ = S′
1 × S′

2 ×
... × S′

d be two discrete rectangles in Ωd. The overlap
R ∩ R′ of R and R′ is the Cartesian product: R ∩
R′ = (S1 ∩ S′

1) × (S2 ∩ S′
2) × ... × (Sd ∩ S′

d). Clearly,
area(R ∩ R′) = |S1 ∩ S′

1| ∗ |S2 ∩ S′
2| ∗ ... ∗ |Sd ∩ S′

d|. If
R = R ∩ R′ (i.e., Si ⊆ S′

i for 1 ≤ i ≤ d), R is said
to be contained in (or covered by) R′. Based on this
containment relationship, the concept of the discrete
minimum bounding rectangle (DMBR) of a set of given
discrete rectangles is straightforward.

The distance measure for vectors in a data space is
important for building a multidimensional index tree.
Unfortunately, those widely-used continuous distance
measures such as the Euclidean distance cannot be
applied to an NDDS. One might think that a simple
solution to this problem is to map the letters in the
alphabet for each dimension to a set of (ordered) nu-
merical values, and then apply the Euclidean distance.
For example, one could map ‘a’, ‘g’, ‘t’ and ‘c’ in the
alphabet for a genome sequence database to numeri-
cal values 1, 2, 3 and 4, respectively. However, this
approach would change the semantics of the elements
in the alphabet. For example, the above mapping for
the genomic bases (letters) would make the distance
between ‘a’ and ’g’ closer than that between ’a’ and
’c’, which is not the original semantics of the genomic
bases. Hence, unless it is for exact match, such a trans-
formation approach is not a proper solution.

One suitable distance measure for NDDSs is the
Hamming distance. That is, the distance between
two vectors in an NDDS is the number of dimensions
on which the corresponding components of the vec-
tors are different. Using the Hamming distance, the
(minimum) distance between two discrete rectangles
R = S1 × S2 × ...×Sd and R′ = S′

1 × S′
2 × ...× S′

d can
be defined as:

dist(R, R′) =
d∑

i=1

f(Si, S
′
i) (1)

where
f(Si, S

′
i) =

{
0 if Si ∩ S′

i 6= ∅
1 otherwise.

Note that, since a vector is considered as a special
rectangle, formula (1) can also be used to measure the
(minimum) distance between a vector and a rectangle.
When both arguments are vectors, formula (1) boils
down to the Hamming distance.

Using the above distance measure, a range query
range(αq, rq) can be defined as { α | dist(αq, α) ≤
rq }, where αq and rq are the given query vector and
search distance (range), respectively. An exact query
is a special case of a range query when rq = 0.

Note that, although the editor distance has been
used for searching genome sequence databases, lately
the Hamming distance is also being used for searching
large genome sequence databases.

Example 1 Consider a genome sequence database.
Assume that the sequences in the database are broken
into overlapping intervals of length 25 for similarity
searches. As we mentioned before, each interval can
be considered as a vector in a 25-dimensional NDDS
Ω25. The alphabets for all dimensions in Ω25 are the
same, i.e., Ai = A = {a, g, t, c}(1 ≤ i ≤ 25). The space
size: area(Ω25) = 425 ≈ 1.126 × 1015. R = {a, t, c} ×
{g, t}× ...×{t, c} and R′ = {g, t, c}×{a, c}× ...×{c}
are two discrete rectangles in Ω25, with areas 3∗2∗...∗2
and 3 ∗ 2 ∗ ... ∗ 1, respectively. The overlap of R
and R′ is: R ∩ R′ = {t, c} × ∅ × ... × {c}. The dis-
tance between R and R′ is: 0+1+...+0. Given vector
α = “aggcggtgatctgggccaatactga” in Ω25, range query
range(α, 2) retrieves all vectors that differ from α on
at most 2 dimensions from the database.

3 The ND-tree

The ND-tree is designed for NDDSs. It is inspired
by some popular multidimensional indexing techniques
including R-tree and its variants (R*-tree in particu-
lar). Hence it has some similarities to the R-tree and
R*-tree. The distinctive feature of the ND-tree is that
it is based on the NDDS concepts such as discrete rect-
angles and their areas and overlaps defined in Section
2. Furthermore, its development has taken some spe-
cial characteristics of NDDSs into consideration as we
will see.

3.1 The Tree Structure

Assume that the keys to be indexed for a database are
the vectors in an NDDS Ωd over an alphabet A. A
leaf node in an ND-tree contains an array of entries of
the form (op, key), where key is a vector in Ωd and
op is a pointer to the object represented by key in the
database. A non-leaf node in an ND-tree contains an
array of entries of the form (cp, dmbr), where cp is
a pointer to a child node in the tree and dmbr is the
discrete minimum bounding rectangle (DMBR) of all
DMBRs of its child nodes. The DMBR of a non-leaf
node is recursively defined as follows: if a letter ap-
pears in the component set for a particular dimension

of the DMBR of one of the child nodes, it also appears
in the component set for the corresponding dimension
of the DMBR of the current (parent) node.

Let M and m (2 ≤ m ≤ dM/2e) be the maximum
number and the minimum number of entries allowed
in each node of an ND-tree, respectively. An ND-tree
is a balanced tree satisfying the following conditions:
(1) the root has at least two children unless it is a leaf,
and it has at most M children; (2) every non-leaf node
has between m and M children unless it is the root;
(3) every leaf node contains between m and M entries
unless it is the root; (4) all leaves appear at the same
level. Figure 1 shows an example of the ND-tree for a
genome sequence database.

{a,g}x{a,t}x... {c}x{a,c,g}x...

{t,c}x{a,c,g,t}x...{a,g}x{a,c,g,t}x...

{a,g}x{g,c}x... {t}x{c,g,t}x...

"ga...""at..." "tc..." "tt..."

......

......

......

Level 1 (root):

Level 2:

Level 3 (leaves):

Figure 1: An example of the ND-tree

3.2 Building the ND-Tree

To build an ND-tree, algorithms to in-
sert/delete/update a data object (vector in Ωd)
into/from/in the tree are needed. A deletion is
basically the reverse of an insertion, while an update
can be implemented by a deletion followed by an
insertion. Due to the space limitation, we only discuss
the insertion issues and its related algorithms in this
paper.

3.2.1 Insertion Procedure

The task of algorithm Insertion is to insert a new
vector α into a given ND-tree. It determines the most
suitable leaf node for accommodating α by invoking
algorithm ChooseLeaf. If the chosen leaf node over-
flows after accommodating α, algorithm SplitNode
is invoked to split it into two new nodes. The split
propagates up the ND-tree if the splitting of the cur-
rent node causes the parent node to overflow. If the
root overflows, a new root is created to accommodate
the two nodes resulting from the splitting of the old
root. The DMBRs of all affected nodes are adjusted
in a bottom-up fashion accordingly.

As a dynamic indexing method, the two algorithms
ChooseLeaf and SplitNode invoked in the above in-
sertion procedure are very important. The strategies
used in these algorithms determine the data organi-
zation in the tree and are crucial to the performance
of the tree. The details of these algorithms will be
discussed in the following subsections.

3.2.2 Choosing Leaf Node

The purpose of algorithm ChooseLeaf is to find an
appropriate leaf node to accommodate a new vector.
It starts from the root node and follows a path to the
identified leaf node. At each non-leaf node, it has to
decide which child node to follow. We have applied
several heuristics for choosing a child node in order to
obtain a tree with good performance.

Let E1, E2, ..., Ep be the entries in the current non-
leaf node N , where m ≤ p ≤ M . The overlap of an
entry Ek (1 ≤ k ≤ p) with other entries is defined as:

overlap(Ek.DMBR) =
p∑

i=1,i6=k

area(Ek.DMBR ∩ Ei.DMBR), 1 ≤ k ≤ p.

One major problem in high dimensional indexing
methods for CDSs is that as the number of dimensions
becomes larger, the amount of overlapping among the
bounding regions in the tree structure increases sig-
nificantly, leading to a dramatic degradation of the
retrieval performance of the tree [2, 19]. Our exper-
iments (see Section 4) have shown that NDDSs also
have the similar problem. Hence we give the highest
priority to the following heuristic:
IH1 : Choose a child node corresponding to

the entry with the least enlargement of
overlap(Ek.DMBR) after the insertion.

Unlike a multidimensional indexing tree in a CDS,
possible values for the overlap of an entry in the ND-
tree (for an NDDS) are limited, which implies that
ties may occur frequently. Therefore, other heuris-
tics should be applied to resolve ties. Based on our
experiments (see Section 4), we have found that the
following heuristics, which are used in some existing
multidimensional indexing techniques [3], are also ef-
fective in improving the performance of an ND-tree:

IH2 : Choose a child node corresponding to
the entry Ek with the least enlargement of
area(Ek.DMBR) after the insertion.

IH3 : Choose a child node corresponding to the entry
Ek with the minimum area(Ek.DMBR).

At each non-leaf node, algorithm ChooseLeaf first
applies heuristic IH1 to determine a child node to fol-
low. If there is a tie, heuristic IH2 is applied. If there
is still a tie, heuristic IH3 is used. If the above three
heuristics are not sufficient to break a tie, a child is
chosen randomly.

3.2.3 Splitting Overflow Node

Let N be an overflow node with a set of M + 1 en-
tries ES = {E1, E2, ..., EM+1}. A partition P of N
is a pair of entry sets P = {ES1, ES2} such that: 1)
ES1 ∪ ES2 = ES; 2) ES1 ∩ ES2 = ∅; and 3) m ≤

|ES1|, m ≤ |ES2|. Let ES1.DMBR and ES2.DMBR
be the DMBRs for the DMBRs of the entries in
ES1 and ES2, respectively. If area(overlap(P)) =
area(ES1.DMBR∩ES2.DNBR) = 0, P is said to be
overlap-free.

Algorithm SplitNode takes an overflow node N
as the input and splits it into two new nodes N1

and N2 whose entry sets are from a partition defined
above. Since there are usually many possible parti-
tions for a given overflow node, a good partition that
leads to an efficient ND-tree should be chosen for split-
ting the overflow node. To obtain such a good par-
tition, algorithm SplitNode invokes two other algo-
rithms: ChoosePartitionSet and ChooseBestPar-
tition. The former determines a set of candidate par-
titions to consider, while the latter chooses an optimal
partition from the candidates based on several heuris-
tics. The details of these two algorithms are given in
the following subsections.

3.2.4 Choosing Candidate Partitions

To find a good partition for splitting an overflow node
N , we need to consider a set of candidate partitions.

One exhaustive way to generate all candidate parti-
tions is as follows. For each permutation of the M + 1
entries in N , first j (m ≤ j ≤ M − m + 1) entries
are put in the first entry set of a partition Pj , and the
remaining entries are put in the second entry set of
Pj . Even for a small M , say 50, this approach would
have to consider 51! ≈ 1.6 × 1066 permutations of the
entries in N . Although this approach is guaranteed to
find an optimal partition, it is not feasible in practice.

We notice that the size of alphabet A for an NDDS
is usually small. For example, |A| = 4 for a genome
sequence database. Let l1, l2, ..., l|A| be the letters of
alphabet A. A permutation of A is a (ordered) list of
letters in A: < li1 , li2 , ..., li|A| > where lik

∈ A and 1 ≤
k ≤ |A|. For example, for A = {a, g, t, c} in a genome
sequence database, < g, c, a, t > and < t, a, c, g > are
two permutations of A. Since |A| = 4, there are only 4!
= 24 permutations of A. Based on this observation, we
have developed the following more efficient algorithm
for generating candidate partitions.

Algorithm 3.2.4.1 : ChoosePartitionSet I
Input: overflow node N of an ND-tree for an NDDS Ωd

over alphabet A.
Output: a set ∆ of candidate partitions.
Method:
1. let ∆ = ∅;
2. for dimension D = 1 to d do
3. for each permutation β :< l1, l2, ..., l|A| > of A do
4. set up an array of buckets (lists): bucket[1..4 ∗ |A|];

// bucket[(i − 1) ∗ 4 + 1], ..., bucket[(i − 1) ∗ 4 + 4]
// are for letter li (1 ≤ i ≤ |A|)

5. for each entry E in N do
6. let li be the foremost letter in β that the D-th

component set (SD) of the DMBR of E has;
7. if SD contains only li then
8. put E into bucket[(i − 1) ∗ 4 + 1];
9. else if SD contains only li and li+1 then

10. put E into bucket[(i − 1) ∗ 4 + 4];
11. else if SD contains both li and li+1 together

with at least one other letter then
12. put E into bucket[(i − 1) ∗ 4 + 3];
13. else put E into bucket[(i − 1) ∗ 4 + 2];

// SD has li and at least one non-li+1 letter
14. end if;
15. end for;
16. sort entries within each bucket alphabetically

by β based on their D-th component sets;
17. concatenate bucket[1], ..., bucket[4 ∗ |A|]

into one list PN : < E1, E2, ..., EM+1 >;
18. for j = m to M − m + 1 do
19. generate a partition P from PN with entry sets:

ES1 = {E1, ..., Ej} and ES2 = {Ej+1, ..., EM+1};
20. let ∆ = ∆ ∪ {P};
21. end for;
22. end for;
23. end for;
24. return ∆.

For each dimension (step 2), algorithm 3.2.4.1 de-
termines one ordering of entries in the overflow node
(steps 4 - 17) for each permutation of alphabet A (step
3). Each ordering of entries generates M −2m+2 can-
didate partitions (steps 18 - 21). Hence a total number
of d ∗ (M − 2m + 2) ∗ (|A|!) candidates partitions are
considered by the algorithm. Since |A| is usually small,
this algorithm is much more efficient than the exhaus-
tive approach. In fact, only half of all permutations of
A need to be considered since a permutation and its
reverse will yield the same set of candidate partitions
by the algorithm. Using this fact, the efficiency of the
algorithm can be further improved.

Given a dimension D, to determine the ordering of
entries in the overflow node based on a permutation β
of A, we employ a bucket ordering technique (steps 4
- 17). The goal is to choose an ordering of entries that
has a better chance to generate good partitions (i.e.,
small overlap). Greedy strategies are adopted here to
achieve this goal. Essentially, the algorithm groups
the entries according to their foremost (based on β)
letters in their D-th component sets. The entries in
a group sharing a foremost letter li are placed before
the entries in a group sharing a foremost letter lj if
i < j. In this way, if the splitting point of a parti-
tion is at the boundary of two groups, it is guaranteed
that the D-th component sets of entries in the second
entry set ES2 of the partition do not have the fore-
most letters in the D-th component sets of entries in
the first entry set ES1. Furthermore, each group is di-
vided into four subgroups (buckets) according to the
rules implemented by steps 7 - 14. The greedy strategy
used here is to (1) put entries from the current group
that contain the foremost letter of the next group as
close to the next group as possible, and (2) put entries
from the current group that contain only its foremost
letter close to the previous group. In this way, a par-
tition with the splitting point at the boundary of two
buckets in a group is locally optimized with respect to
the current as well as its neighboring groups. The al-
phabetical ordering (based on the given permutation)

is then used to sort entries in each bucket based on
their D-th component sets. Note that the last and
the second last groups have at most one and two non-
empty subgroups (buckets), respectively. Considering
all permutations for a dimension increases the chance
to obtain a good partition of entries based on that
dimension, while examining all dimensions increases
the chance to obtain a good partition of entries across
multiple dimensions.

For the comparison purpose, we also tested the ap-
proach to use the alphabetical ordering to sort all en-
tries directly and found that it usually also yields a
satisfactory performance. However, there are cases in
which the bucket ordering is more effective.

Example 2 Consider an ND-tree for a genome se-
quence database in the 25-dimensional NDDS with
alphabet A = {a, g, t, c}. The maximum and mini-
mum numbers of entries allowed in a tree node are 10
and 3, respectively. Assume that, for a given over-
flow node N with 11 entries E1, E2, ..., E11, algorithm
3.2.4.1 is checking the 5th dimension (step 2) at the
current time. The 5th component sets of the DMBRs
of the 11 entries are listed as follows, respectively:
{t}, {gc}, {c}, {ac}, {c}, {agc}, {t}, {at}, {a}, {c}, {a}

The total number of permutations of alphabet A
is |A|!=24. As mentioned before, only half of all the
permutations need to be considered. Assume that the
algorithm is checking one of the 12 permutations, say
< c, a, t, g > (step 3). The non-empty buckets ob-
tained from steps 4 - 16 are:

bucket[1] = {E3, E5, E10}, bucket[2] = {E2},
bucket[3] = {E6}, bucket[4] = {E4},
bucket[5] = {E9, E11}, bucket[8] = {E8},
bucket[9] = {E1, E7}, unlisted bucket = ∅.

Thus the entry list obtained from step 17 is shown
in Figure 2. Based on the entry list, steps 18 - 21

< E3 E5 E10 E2 E6 E4 E9 E11 E8 E1 E7 >

P1 P2 P3 P4 P5 P6

Figure 2: Entry list and partitions

generate candidate partitions P1 ∼ P6 whose splitting
points are also illustrated in Figure 2. For example,
partition P2 consists of ES1 = {E3, E5, E10, E2} and
ES2 = {E6, E4, E9, E11, E8, E1, E7}. These partitions
comprise part of result set ∆ returned by algorithm
3.2.4.1. Note that if we replace the 5th component
set {at} of E8 with {t}, P6 would be an overlap-free
partition.

Note that algorithm 3.2.4.1 not only is efficient but
also possesses a nice optimality property, which is
stated as follows:

Proposition 3.1 If there exists at least one optimal
partition that is overlap-free for the overflow node, al-
gorithm 3.2.4.1 will find such a partition.

Proof. Based on the assumption, there exists an
overlap-free partition PN = {ES1, ES2}. Let
ES1.DMBR = S11×S12×...×S1d and ES2.DMBR =
S21 × S22 × ... × S2d. Since area(ES1.DMBR ∩
ES2.DMBR) = 0, there exists a dimension D (1 ≤
D ≤ d) such that S1D ∩ S2D = ∅. Since algo-
rithm 3.2.4.1 examines every dimension, dimension D
will be checked. Without loss of generality, assume
S1D ∪ S2D = A, where A is the alphabet for the un-
derlying NDDS.

Consider the following permutation of A: PA =<
l11, ..., l1s, l21, ..., l2t > where l1i ∈ S1D (1 ≤ i ≤ s),
l2j ∈ S2D (1 ≤ j ≤ t), and s + t = |A|. Enumerate
all entries of the overflow node based on PA in the
way described in steps 4 - 17 of algorithm 3.2.4.1. We
have the entry list EL =< E1, E2, ..., EM+1 > shown
in Figure 3. Since S1D ∩ S2D = ∅, all entries in Part 1

E 1.DMBR: x { l11, ...} x

E 2 ,...} x11l.DMBR: x {

E j .DMBR: x { l1s , ...} x

E M+1 .DMBR: x { l2t , ...} x

, ...} xE j+1 21l.DMBR: x {

......Part 1

......Part 2

D−th dimension of the DMBRs

Figure 3: A permutation of entries (1 ≤ j ≤ M + 1)

do not contain letters in S2D on the D-th dimension,
and all entries in Part 2 do not contain letters in S1D

on the D-th dimension. In fact, Part1 = ES1 and
Part2 = ES2, which yields the partition PN . Since
the algorithm examines all permutations of A, such a
partition will be put into the set of candidate parti-
tions.

It is possible that alphabet A for some NDDS is
large. In this case, the number of possible permuta-
tions of A may be too large to be efficiently used in
algorithm 3.2.4.1. We have, therefore, developed an-
other algorithm to efficiently generate candidate parti-
tions in such a case. The key idea is to use some strate-
gies to intelligently determine one ordering of entries in
the overflow node for each dimension rather than con-
sider |A|! orderings determined by all permutations of
A for each dimension. This algorithm is described as
follows:

Algorithm 3.2.4.2 : ChoosePartitionSet II
Input: overflow node N of an ND-tree for an NDDS Ωd

over alphabet A.
Output: a set ∆ of candidate partitions
Method:
1. let ∆ = ∅;
2. for dimension D = 1 to d do
3. auxiliary tree T = build aux tree(N,D);
4. D-th component sets list CS = sort csets(T);
5. replace each component set in CS with its associated

entries to get entry list PN ;
6. for j = m to M − m + 1 do
7. generate a partition P from PN with entry sets:

ES1 = {E1, ..., Ej} and ES2 = {Ej+1, ..., EM+1};
8. let ∆ = ∆ ∪ {P};
9. end for;

10. end for;
11. return ∆.

For each dimension (step 2), algorithm 3.2.4.2
first builds an auxiliary tree by invoking function
build aux tree (step 3) and then uses the tree to sort
the D-th component sets of the entries by invoking
function sort csets (step 4). The order of each entry
is determined by its D-th component set in the sorted
list CS (step 5). Using the resulting entry list, the al-
gorithm generates M − 2m + 2 candidate partitions.
Hence the total number of candidate partitions con-
sidered by the algorithm is d ∗ (M − 2m + 2).

The algorithm also possesses the nice optimality
property; that is, it generates an overlap-free partition
if there exists one. This property is achieved by build-
ing an auxiliary tree in function build aux tree. Each
node T in an auxiliary tree has three data fields: T.sets
(i.e., the group (set) of the D-th component sets rep-
resented by the subtree rooted at T), T.freq (i.e., the
total frequency of sets in T.sets, where the frequency
of a (D-th component) set is defined as the number of
entries having the set), and T.letters (i.e., the set of
letters appearing in any set in T.sets). The D-th com-
ponent set groups represented by the subtrees at the
same level are disjoint in the sense that a component
set in one group do not share a letter with any set in
another group. Hence, if a root T has subtrees T1, ...,
Tn (n > 1) and T.sets = T1.sets∪ ...∪Tn.sets, then we
find the disjoint groups T1.sets, ..., Tn.sets of all D-th
component sets. By placing the entries with the com-
ponent sets in the same group together, an overlap-free
partition can be obtained by using a splitting point at
the boundary of two groups. The auxiliary tree is ob-
tained by repeatedly merging the component sets that
directly or indirectly intersect with each other, as de-
scribed as follows:

Function auxiliary tree = build aux tree(N,D)
1. find set L of letters appearing in at least one D-th

component set;
2. initialize forest F with single-node trees, one tree T

for each l ∈ L and set T.letters = {l}, T.sets = ∅,
T.freq = 0;

3. sort all D-th component sets by size in ascending
order and break ties by frequency in descending
order into set list SL;

4. for each set S in SL do
5. if there is only one tree T in F such that

T.letters ∩ S 6= ∅ then
6. let T.letters = T.letters ∪ S, T.sets = T.sets ∪ {S},

T.freq = T.freq + frequency of S;
7. else let T1, ..., Tn (n > 1) be trees in F whose

Ti.letters ∩ S 6= ∅ (1 ≤ i ≤ n);
8. create a new root T with each Ti as a subtree;
9. let T.letters = (∪n

i=1Ti.letters) ∪ S,
T.sets = (∪n

i=1Ti.sets) ∪ {S},
T.freq = (

∑n

i=1
Ti.freq) + frequency of S;

10. replace T1, ..., Tn by T in F ;
11. end if;
12. end for;
13. if F has 2 or more trees T1, ..., Tn (n > 1) then
14. create a new root T with each Ti as a subtree;
15. let T.letters = ∪n

i=1Ti.letters, T.sets = ∪n
i=1Ti.sets,

T.freq =
∑n

i=1
Ti.freq;

16. else let T be the unique tree in F ;
17. end if;
18. return T .

Using the auxiliary tree generated by function
build aux tree, algorithm 3.2.4.2 invokes function
sort csets to determine the ordering of all D-th com-
ponent sets.

To do that, starting from the root node T ,
sort csets first determines the ordering of the com-
ponent set groups represented by all subtrees of T and
put them into a list ml with each group as an element.
The ordering decision is based on the frequencies of
the groups/subtrees. The principle is to put the groups
with smaller frequencies in the middle of ml to increase
the chance to obtain more diverse candidate partitions.
For example, assume that the auxiliary tree identifies
4 disjoint groups G1, ..., G4 of all component sets with
frequencies 2, 6, 6, 2, respectively, and the minimum
space requirement for the ND-tree is m = 3. If list
< G1, G2, G3, G4 > is used, we can obtain only one
overlap-free partition (with the splitting point at the
boundary of G2 and G3). If list < G2, G1, G4, G3 > is
used, we can have three overlap-free partitions (with
splitting points at the boundaries of G2 and G1, G1

and G4, and G4 and G3, respectively).
There may be some component sets in T.sets that

are not represented by any of its subtrees (since they
may contain letters in more than one subtree). Such
a component set is called a crossing set. If current list
ml has n elements (after removing empty group ele-
ments if any), there are n + 1 possible positions for a
crossing set e. After e is put at one of the positions,
there are n gaps/boundaries between two consecutive
elements in the list. For each partition with a split-
ting point at such a boundary, we can calculate the
number of common letters (i.e., intersection on the D-
th dimension) shared between the left component sets
and the right component sets. We place e at a posi-
tion with the minimal sum of the sizes of above D-th
intersections at the n boundaries.

Each group element in ml is represented by a sub-
tree. To determine the ordering among the component
sets in the group, the above procedure is recursively
applied to the subtree until the height of a subtree is 1.
In that case, the corresponding (component set) group
element in ml is directly replaced by the component
set (if any) in the group. Once the component sets
within every group element in ml is determined, the
ordering among all component sets is obtained.

Function set list = sort csets(T)
1. if height of tree T = 1 then
2. if T.sets 6= ∅ then
3. put the set in T.sets into list set list;
4. else set set list to null;
5. end if;
6. else set lists L1 = L2 = ∅;
7. let weight1 = weight2 = 0;
8. while there is an unconsidered subtree of T do
9. get such subtree T ′ with highest frequency;

10. if weight1 ≤ weight2 then
11. let weight1 = weight1 + T ′.freq;
12. add T ′.sets to the end of L1;
13. else let weight2 = weight2 + T ′.freq;
14. add T ′.sets to the beginning of L2;
15. end if;
16. end while;
17. concatenate L1 and L2 into ml;
18. let S be the set of crossing sets in T.sets;
19. for each set e in S do
20. insert e into a position in ml with the minimal

sum of the sizes of all D-th intersections;
21. end for;
22. for each subtree T ′ of T , do
23. set list′ = sort csets(T ′);
24. replace group T ′.sets in ml with set list′;
25. end for;
26. set list = ml;
27.end if;
28.return set list.

Since the above merge-and-sort procedure allows al-
gorithm 3.2.4.2 to make an intelligent choice of candi-
date partitions, our experiments demonstrate that the
performance of an ND-tree obtained from this algo-
rithm is comparable to that of an ND-tree obtained
from algorithm 3.2.4.1 (see Section 4).

Example 3 Consider an ND-tree with alphabet A =
{a, b, c, d, e, f} for a 20-dimensional NDDS. The max-
imum and minimum numbers of entries allowed in a
tree node are 10 and 3, respectively. Assume that, for
a given overflow node N with 11 entries E1, E2, ..., E11,
algorithm 3.2.4.2 is checking the 3rd dimension (step
2) at the current time. The 3rd component sets of the
DMBRs of the 11 entries are listed as follows, respec-
tively:

{c}, {ade}, {b}, {ae}, {f}, {e}, {cf}, {de}, {e}, {cf}, {a}
The initial forest F generated at step 2 of function

build aux tree is illustrated in Figure 4.

1

 1.letters: { a} , 1.freq: 0, 1.sets:
 2.letters: { b} , 2.freq: 0, 2.sets:

2 3 4
T1 T2 T3 T4

F:
T5

6
T6

 ...
 6.letters: { f} , 6.freq: 0, 6.sets:

5

Figure 4: Initial forest F

The auxiliary tree T obtained by the function is
illustrated in Figure 5. Note that non-leaf node of T
is numbered according to its order of merging.

Using auxiliary tree T , recursive function sort csets
is invoked to sort the component sets. List ml in
function sort csets evolves as follows:
<f{a}, {e}, {ae}, {de}, {ade}g, f{b}g, f{c}, {f}, {cf}g>;

< {de}, {ade}, {e}, {ae}, {a},f{b}g, f{c}, {f}, {cf}g>;

< {de}, {ade}, {e}, {ae}, {a}, {b},f{c}, {f}, {cf}g>;

< {de}, {ade}, {e}, {ae}, {a}, {b}, {c}, {cf}, {f} >.

Based on the set list returned by function
sort csets, step 5 in algorithm 3.2.4.2 pro-
duces the following sorted entry list PN :
< E8, E2, E6, E9, E4, E11, E3, E1, E7, E10, E5 >.

8

 1.letters: { a} , 1.freq: 1, 1.sets: {{ a} }
 2.letters: { b} , 2.freq: 1, 2.sets: {{ b} }
 3.letters: {c}, 3.freq: 1, 3.sets: {{ c} }
 4.letters: { d} , 4.freq: 0, 4.sets:
 5.letters: {e}, 5.freq: 2, 5.sets: {{ e} }
 6.letters: { f} , 6.freq: 1, 6.sets: {{ f} }
 7.letters: {cf}, 7.freq: 4, 7.sets: {{ c},{ f},{ cf} }
 8.letters: {ae}, 8.freq: 4, 8.sets: {{ a},{ e},{ ae} }
 9.letters: {ade}, 9.freq: 6, 9.sets: {{ a},{ e},{ ae},{ de},{ ade} }
 10.letters: {abcdef}, 10.freq: 11, 10.sets: all sets that appears

4 3 6

T:

9 7

1 5

2

10

Figure 5: Final auxiliary tree T

Based on PN , algorithm 3.2.4.2 generates candidate
partitions in the same way as Example 2, which com-
prise part of result set ∆ returned by algorithm 3.2.4.2.
Note that the two partitions with splitting points at
the boundary between E11 and E3 and the boundary
between E3 and E1 are overlap-free partitions.

3.2.5 Choosing the Best Partition

Once a set of candidate partitions are generated. We
need to select the best one from them based on some
heuristics. As mentioned before, due to the limited size
of an NDDS, many ties may occur for one heuristic.
Hence multiple heuristics are required. After evaluat-
ing heuristics in some popular indexing methods (such
as R*-tree, X-tree and Hybrid-tree), we have identified
the following effective heuristics for choosing a parti-
tion (i.e., a split) of an overflow node of an ND-tree in
an NDDS:

SH1 : Choose a partition that generates a minimum
overlap of the DMBRs of the two new nodes after
splitting (“minimize overlap”).

SH2 : Choose a partition that splits on the dimension
where the edge length of the DMBR of the over-
flow node is the largest (“maximize span”).

SH3 : Choose a partition that has the closest edge
lengths of the DMBRs of the two new nodes on the
splitting dimension after splitting (“center split”).

SH4 : Choose a partition that minimizes the total area
of the DMBRs of the two new nodes after splitting
(“minimize area”).

From our experiments (see Section 4), we observed
that heuristic SH1 is the most effective one in an
NDDS, but many ties may occur as expected. Heuris-
tics SH2 and SH3 can effectively resolve ties in such
cases. Heuristic SH4 is also effective. However, it is
expensive to use since it has to examine all dimen-
sions of a DMBR. In contrast, heuristics SH1 - SH3

can be met without examining all dimensions. For ex-
ample, SH1 is met as long as one dimension is found
to have no overlap between the corresponding compo-
nent sets of the new DMBRs; and SH2 is met as long as
the splitting dimension is found to have the maximum

edge length |A| for the current DMBR. Hence the first
three heuristics are suggested to be used in algorithm
ChooseBestPartition to choose the best partition
for an ND-tree. More specifically, ChooseBestPar-
tition applies SH1 first. If there is a tie, it applies
SH2. If there is still a tie, SH3 is used.

3.3 Range Query Processing

After an ND-tree is created for a database in an NDDS,
a range query range(αq, rq) can be efficiently evalu-
ated using the tree. The main idea is to start from
the root node and prune away the nodes whose DM-
BRs are out of the query range until the leaf nodes
containing the desired vectors are found.

4 Experimental Results

To determine effective heuristics for building an ND-
tree and evaluate its performance for various NDDSs,
we conducted extensive experiments using real data
(bacteria genome sequences extracted from the Gen-
Bank of National Center for Biotechnology Informa-
tion) and synthetic data (generated with the uniform
distribution). The experimental programs were imple-
mented with Matlab 6.0 on a PC with PIII 667 MHz
CPU and 516 MB memory. Query performance was
measured in terms of disk I/O’s.

4.1 Performance of Heuristics for ChooseLeaf
and SplitNode

One set of experiments were conducted to determine
effective heuristics for building an efficient ND-tree.
Typical experimental results are reported in Tables
1 ∼ 3. A 25-dimensional genome sequence data set
was used in these experiments. The performance data
shown in the tables is based on the average number (io)
of disk I/O’s for executing 100 random test queries.
rq denotes the Hamming distance range for the test
queries. key# indicates the number of database vec-
tors indexed by the ND-tree.

Table 1 shows the performance comparison among
the following three versions of algorithms for choosing

rq = 1 rq = 2 rq = 3
key# io io io io io io io io io

Va Vb Vc Va Vb Vc Va Vb Vc

13927 14 18 22 48 57 68 115 129 148
29957 17 32 52 67 108 160 183 254 342
45088 18 47 80 75 161 241 215 383 515
56963 21 54 103 86 191 308 252 458 652
59961 21 56 108 87 198 323 258 475 685

Table 1: Performance effect of heuristics for choosing insertion
leaf node

a leaf node for insertion, based on different combina-
tions of heuristics in the order given to break ties:

• Version Va: using IH1, IH2, IH3;
• Version Vb: using IH2, IH3;
• Version Vc: using IH2

From the table, we can see that all the heuristics
are effective. In particular, heuristic IH1 can sig-
nificantly improve query performance (see the perfor-
mance difference between Va (with IH1) and Vb (with-
out IH1)). In other words, the increased overlap in an
ND-tree may greatly degrade the performance. Hence
we should keep the overlap in an ND-tree as small as
possible. It is also noted that the larger the database
size, the more improved is the query performance.

Table 2 shows the performance comparison be-
tween algorithm 3.2.4.1 (permutation approach) and

rq = 1 rq = 2 rq = 3
key# io io io io io io

permu. m&s permu. m&s permu. m&s

29957 16 16 63 63 171 172
45088 18 18 73 73 209 208
56963 20 21 82 83 240 242
59961 21 21 84 85 247 250
68717 21 22 88 89 264 266
77341 21 22 90 90 271 274

Table 2: Performance comparison between permutation and
merge-and-sort approaches

algorithm 3.2.4.2 (merge-and-sort approach) to choose
candidate partitions for splitting an overflow node.
From the table, we can see that the performance of
the permutation approach is slightly better than that
of the merge-and-sort approach since the former takes
more partitions into consideration. However, the per-
formance of the latter is not that much inferior and,
hence, can be used for an NDDS with a large alphabet
size.

Table 3 shows the performance comparison among
the following five versions of algorithms for choosing

key# io io io io io
V1 V2 V3 V4 V5

13927 181 116 119 119 105
29957 315 194 185 182 171
45088 401 243 224 217 209
56963 461 276 254 245 240
59961 477 288 260 255 247

Table 3: Performance effect of heuristics for choosing best
partition for rq = 3

the best partition for algorithm SplitNode based on
different combinations of heuristics with their corre-
spondent ordering to break ties:

• Version V1: using SH1;
• Version V2: using SH1, SH4;
• Version V3: using SH1, SH2;
• Version V4: using SH1, SH2, SH3;
• Version V5: using SH1, SH2, SH3, SH4.

Since the overlap in an ND-tree may greatly degrade
the performance, as seen from the previous experi-
ments, heuristic SH1 (“minimize overlap”) is applied
in all the versions. Due to the space limitation, only
the results for rq = 3 are reported here. From the
table we can see that heuristics SH2 ∼ SH4 are all
effective in optimizing performance. Although version

V5 is most effective, it may not be feasible in prac-
tice since heuristic SH4 has a lot of overhead as we
mentioned in Section 3.2.5. Hence the best practical
version is V4, which is not only very effective but also
efficient.

4.2 Performance Analysis of the ND-tree

We also conducted another set of experiments to eval-
uate the overall performance of the ND-tree for data
sets in different NDDSs. Both genome sequence data
and synthetic data were used in the experiments. The
effects of various dimension and alphabet sizes of an
NDDS on the performance of an ND-tree were exam-
ined. As before, query performance is measured based
on the average number of I/Os for executing 100 ran-
dom test queries for each case. The disk block size
is assumed to be 4096 bytes. The minimum utiliza-
tion percentage of a disk block is set to 30%. To save
space for the ND-tree index, we employed a compres-
sion scheme where a bitmap technique is used to com-
press non-leaf nodes and a binary-coding is used to
compress leaf nodes.

Performance Comparison with Linear Scan
To perform range queries on a database in an NDDS,
a straightforward method is to employ the linear scan.
We compared the performance of our ND-tree with
that of the linear scan. To give a fair comparison, we
assume that the linear scan is well-tuned with data
being placed on disk sequentially without fragments,
which boosts its performance by a factor of 10. In
other words, the performance of the linear scan for
executing a query is assumed to be only 10% of the
number of disk I/O’s for scanning all the disk blocks of
the data file. This benchmark was also used in [7, 23].
We will refer to this benchmark as the 10% linear scan
in the following discussion.

Figure 6 shows the performance comparison of the

0 2 4 6 8 10 12 14

x 10
5

0

200

400

600

800

1000

1200

number of indexed vectors

nu
m

be
r o

f I
/O

s

10% linear
ND−tree (query range=1)
ND−tree (query range=2)
ND−tree (query range=3)

Figure 6: Performance comparison between ND-tree and 10%
linear scan for genomic data

two search methods for the bacteria genomic data set
in an NDDS with 25 dimensions. From the figure, we
can see that the performance of the ND-tree is usually
better than the 10% linear scan. For a range query

with a large rq, the ND-tree may not outperform the
10% linear scan for a small database, which is normal
since no indexing method works better than the linear
scan when the query selectivity is low (i.e., yielding a
large result set) for a small database. As the database
size becomes larger, the ND-tree is more and more effi-
cient than the 10% linear scan as shown in the figure.
In fact, the ND-tree scales well with the size of the
database (e.g., the ND-tree, on the average, is about
4.7 times more efficient than the 10% linear scan for
a genomic data set with 1,340,634 vectors). Figure 7
shows the space complexity of the ND-tree. From the

0 2 4 6 8 10 12 14

x 10
5

0

1

2

3

4

5

6

7
x 10

4

number of indexed vectors

sp
ac

e
co

m
ple

xit
y (

in
KB

yte
s)

data set
ND−tree

Figure 7: Space complexity of ND-tree

figure, we can see that the size of the tree is about
twice the size of the data set.

Performance Comparison with M-tree
As mentioned in Section 1, the M-tree which is a dy-
namic metric tree proposed recently [10], can also be
used to perform range queries in an NDDS. We im-
plemented the generalized hyperplane version of the
mM RAD 2 of the M-tree, which was reported to have
the best performance [10]. We have compared it with
our ND-tree. Figures 8 and 9 show the performance
comparisons between the ND-tree and the M-tree for

0 1 2 3 4 5 6 7

x 10
5

0

500

1000

1500

2000

2500

number of indexed vectors

nu
m

be
r o

f I
/O

s

M−tree (query range=1)
ND−tree (query range=1)
M−tree (query range=2)
ND−tree (query range=2)
M−tree (query range=3)
ND−tree (query range=3)

Figure 8: Performance comparison between ND-tree and M-
tree for genomic data

range queries on a 25-dimensional genome sequence
data set as well as a 20-dimensional binary data set
with alphabet: {0, 1}. From the figures, we can see
that the ND-tree always outperforms the M-tree (the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0

200

400

600

800

1000

1200

number of indexed vectors

nu
m

be
r o

f I
/O

s

M−tree (query range=1)
ND−tree (query range=1)
M−tree (query range=2)
ND−tree (query range=2)
M−tree (query range=3)
ND−tree (query range=3)

Figure 9: Performance comparison between ND-tree and M-
tree for binary data

ND-tree, on the average, is 11.21 and 5.6 times more
efficient than the M-tree for the genome sequence data
and the binary data, respectively, in the experiments).
Furthermore, the larger the data set, the more is the
improvement in performance achieved by the ND-tree.
As pointed out earlier, the ND-tree is more efficient,
primarily because it makes use of more geometric in-
formation of an NDDS for optimization. However, al-
though the M-tree demonstrated poor performance for
range queries in NDDSs, it was designed for a more
general purpose and can be applied to more applica-
tions.

Scalability of the ND-tree for Dimensions and
Alphabet Sizes
To analyze the scalability of the ND-tree for dimen-
sions and alphabet sizes, we conducted experiments
using synthetic data sets with various parameter val-
ues for an NDDS. Figures 10 and 11 show experimen-
tal results for varying dimensions and alphabet sizes.

From the figures, we see that the ND-tree scales

20 40 60 80 100 120
40

60

80

100

120

140

160

180

number of dimensions

nu
m

be
r o

f I
/O

s

10% linear
ND−tree (query range = 2)

alphabet size: 10
of indexed vectors: 100,000

Figure 10: Scalability of ND-tree on dimension

well with both the dimension and the alphabet size.
For a fixed alphabet size and data set size, increasing
the number of dimensions for an NDDS slightly re-
duce the performance of the ND-tree for range queries.
This is due to the effectiveness of the overlap-reducing
heuristics used in our tree construction. However, the
performance of the 10% linear scan degrades signifi-
cantly since a larger dimension implies larger vectors

0 5 10 15 20 25 30 35
40

50

60

70

80

90

100

110

120

alphabet size

nu
m

be
r o

f I
/O

s

10% linear
ND−tree (query range = 2)

of dimensions: 40
of indexed vectors: 100,000

Figure 11: Scalability of ND-tree on alphabet size

and hence more disk blocks. For a fixed dimension and
data set size, increasing the alphabet size for an NDDS
affects the performance of both the ND-tree and the
10% linear scan. For the ND-tree, as the alphabet
size increases, the number of entries in each node of
the tree decreases, which causes the performance to
degrade. On the other hand, since a larger alphabet
size provides more choices for the tree building algo-
rithms, a better tree can be constructed. As a result,
the performance of the ND-tree demonstrates an up
and then down curve in Figure 11. As the alphabet
size becomes large, the ND-tree is very efficient since
the positive force dominates the performance. In con-
trast, the performance of the 10% linear scan degrades
non-linearly as the alphabet size increases.

5 Conclusions

There is an increasing demand for supporting efficient
similarity searches in NDDSs from applications such
as genome sequence databases. Unfortunately, exist-
ing indexing methods either cannot be directly ap-
plied to an NDDS (e.g., the R-tree, the K-D-B-tree
and the Hybrid-tree) due to lack of essential geometric
concepts/properties or have suboptimal performance
(e.g., the metric trees) due to their generic nature. We
have proposed a new dynamic indexing method, i.e.,
the ND-tree, to address these challenges in this paper.

The ND-tree is inspired by several popular multidi-
mensional indexing methods including the R*-tree, the
X-tree and the Hybrid tree. However, it is based on
some essential geometric concepts/properties that we
extend from a CDS to an NDDS. Development of the
ND-tree takes into consideration some characteristics,
such as limited alphabet sizes and data distributions,
of an NDDS. As a result, special strategies such as
the permutation and the merge-and-sort approaches to
generating candidate partitions for an overflow node,
the multiple heuristics to break frequently-occurring
ties, the efficient implementation of some heuristics,
and the space compression scheme for tree nodes are
incorporated into the ND-tree construction. In partic-
ular, it has been shown that both the permutation and
the merge-and-sort approaches can guarantee genera-

tion of an optimal overlap-free partition if there exists
one.

A set of heuristics that are effective for indexing
in an NDDS are identified and integrated into the
tree construction algorithms. This has been done af-
ter carefully evaluating the heuristics in existing mul-
tidimensional indexing methods via extensive exper-
iments. For example, minimizing overlap (enlarge-
ment) is found to be the most effective heuristic to
achieve an efficient ND-tree, which is similar to the
case for indexing trees in a CDS. On the other hand,
minimizing area is found to be an expensive heuristic
for an NDDS although it is also effective.

Our extensive experiments on synthetic and ge-
nomic sequence data have demonstrated that:
• The ND-tree significantly outperforms the linear

scan for executing range queries in an NDDS. In
fact, the larger the data set, the more is the im-
provement in performance.

• The ND-tree significantly outperforms the M-tree
for executing range queries in an NDDS. In fact,
the larger the data set, the more is the improve-
ment in performance.

• The ND-tree scales well with the database size,
the alphabet size as well as the dimension for an
NDDS.

In summary, our study shows that the ND-tree is quite
promising in providing efficient similarity searches in
NDDSs. In particular, we have applied the ND-tree
in genome sequence databases and found it to be an
effective approach.

However, our work is just the beginning of the
research to support efficient similarity searches in
NDDSs. In future work, we plan to develop a cost
model to analyze the performance behavior of simi-
larity searches in NDDSs. We will also extend the
ND-tree technique to support more query types such
as nearest neighbor queries.

References
[1] R. Bayer and K. Unterauer. Prefix B-trees. In ACM

TODS, 2(1): 11-26, 1977.

[2] S. Berchtold, D. A. Keim and H.-P. Kriegel. The X-
tree: an index structure for high-dimensional data. In
Proc. of VLDB, pp. 28–39, 1996.

[3] N. Beckmann, H.P. Kriegel, R. Schneider and B.
Seeger. The R*-tree: an efficient and robust access
method for points and rectangles. In Proc. of ACM
SIGMOD, pp. 322–331, 1990.

[4] T. Bozkaya and M. Ozsoyoglu. Distance-based index-
ing for high-dimensional metric spaces. In Proc. of
ACM SIGMOD, pp. 357–368, 1997.

[5] S. Brin. Near neighbor search in large metric spaces.
In Proc. of VLDB, pp. 574–584, 1995.

[6] A. Califano and I. Rigoutsos. FLASH: a fast look-up
algorithm for string homology. In Proc. of IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition, pp. 353–359, 1993.

[7] K. Chakrabarti and S. Mehrotra. The Hybrid
Tree: an index structure for high dimensional feature
spaces. In Proc. of IEEE ICDE, pp. 440–447, 1999.

[8] W. Chen and K. Aberer. Efficient querying on ge-
nomic databases by using metric space indexing tech-
niques (extended abstract). In Proc. of Int’l Workshop
on DEXA, pp. 148–152, 1997.

[9] T. Chiueh. Content-based image indexing. In Proc.
of VLDB, pp. 582–593, 1994.

[10] P. Ciaccia, M. Patella and P. Zezula. M-tree: an
efficient access method for similarity search in metric
spaces. In Proc. of VLDB, pp. 426–435, 1997.

[11] J. Clement, P. Flajolet and B. Vallee. Dynamic
sources in information theory: a general analysis of
trie structures. In Algorithmica, 29(1/2): 307–369,
2001.

[12] C. Faloutsos and K.-I. Lin. FastMap: a fast algo-
rithm for indexing, data-mining and visualization of
traditional and multimedia datasets. In Proc. of ACM
SIGMOD, pp. 163–174, 1995.

[13] P. Ferragina and R. Grossi. The String B-tree: a
new data structure for string search in external mem-
ory and its applications. In J. ACM, 46(2): 236–280,
1999.

[14] C. Fondrat and P. Dessen. A rapid access motif
database (RAMdb) with a search algorithm for the re-
trieval patterns in nucleic acids or protein databanks.
In Computer Applications Biosciences, 11(3): 273–
279, 1995.

[15] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proc. of ACM SIGMOD, pp.
47–57, 1984.

[16] A. Henrich. The LSDh-tree: an access structure for
feature vectors. In Proc. of IEEE ICDE, pp. 362–369,
1998.

[17] N. Katayama and S. Satoh. The SR-tree: an in-
dex structure for high-dimensional nearest neighbor
queries. In Proc. of ACM SIGMOD, pp. 369–380,
1997.

[18] W. J. Kent. BLAT — the BLAST-like aligment tool.
In Genome Research, 12: 656–664, 2002.

[19] J. Li. Efficient similarity search based on data distri-
bution properties in high dimension. In Ph.D. Disser-
tation, Michigan State University, 2001.

[20] B. C. Orcutt and W. C. Barker. Searching the protein
database. In Bulletin of Math. Biology, 46: 545–552,
1984.

[21] J. T. Robinson. The K-D-B-Tree: a search structure
for large multidimensional dynamic indexes. In Proc.
of ACM SIGMOD, pp. 10–18, 1981.

[22] J. K. Uhlmann. Satisfying general proxim-
ity/similarity queries with metric trees. In Inf. Proc.
Lett., 40(4): 175 – 179, 1991.

[23] R. Weber, H.-J. Schek and S. Blott. A quantita-
tive analysis and performance study for similarity-
search methods in high-dimensional spaces. In Proc.
of VLDB, pp. 357–367, 1998.

[24] D. White and R. Jain. Similarity indexing with the
SS-tree. In Proc. of IEEE ICDE, pp. 516–523, 1996.

[25] H. E. Williams and J. Zobel. Indexing and retrival for
genomic databases. In IEEE Trans. on Knowl. and
Data Eng., 14(1): 63–78, 2002.

