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Abstract 
To speed-up clustering algorithms, data summa-
rization methods have been proposed, which first 
summarize the data set by computing suitable 
representative objects. Then, a clustering algo-
rithm is applied to these representatives only, and 
a clustering structure for the whole data set is de-
rived, based on the result for the representatives. 
Most previous methods are, however, limited in 
their application domain. They are in general 
based on sufficient statistics such as the linear 
sum of a set of points, which assumes that the 
data is from a vector space. On the other hand, in 
many important applications, the data is from a 
metric non-vector space, and only distances be-
tween objects can be exploited to construct effec-
tive data summarizations. In this paper, we de-
velop a new data summarization method based 
only on distance information that can be applied 
directly to non-vector data. An extensive per-
formance evaluation shows that our method is 
very effective in finding the hierarchical cluster-
ing structure of non-vector data using only a very 
small number of data summarizations, thus re-
sulting in a large reduction of runtime while trad-
ing only very little clustering quality. 

1. Introduction 
Data Clustering is an important task for knowledge dis-
covery in databases (KDD). The basic goal of a clustering 
algorithm is to partition a set of data objects into groups 
so that similar objects belong to the same group and dis-
similar objects belong to different groups. There are dif-

ferent types of clustering algorithms for different types of 
applications. A common distinction is between partition-
ing and hierarchical clustering algorithms (see e.g. [9]). 
Partitioning algorithms are, for instance, the k-means [10] 
and the k-medoids algorithms [9]. Partitioning algorithms 
decompose a database into a set of k clusters whereas hi-
erarchical algorithms only compute a representation of the 
data set, which reflects its hierarchical clustering struc-
ture, but do not explicitly determine clusters. Examples of 
hierarchical clustering algorithms are the Single-Link 
method [11] and OPTICS [1].  

Clustering algorithms in general, and in particular hi-
erarchical algorithms, do not scale well with the size of 
the data set. On the other hand, very fast methods are 
most desirable for exploratory data analysis, which is 
what clustering is mostly used for.  

To speed-up cluster analysis on large data sets, some 
data summarization methods have been proposed recently. 
Those methods are based on a general strategy that can be 
used to scale-up whole classes of clustering algorithms 
(rather than inventing a new clustering algorithm):  
1) Use a data summarization method that produces “suf-

ficient statistics” for subsets of the data set (using ei-
ther sampling plus a classification of objects to the 
closest sample point, or some other technique such as 
BIRCH [12]). The data summarizations are some-
times also called “micro-clusters” (e.g. in [8]). 

2) Apply (an adapted version of) the clustering algo-
rithm to the data summaries only.  

3) Extrapolate from the clustering result for the data 
summaries a clustering result for the whole data set. 

Different data summarization methods have different ad-
vantages and disadvantages. In [3] it was shown that hier-
archical clustering algorithms such as the Single-Link 
[11] method or OPTICS [1] require special information in 
order to produce high quality results for small numbers of 
data summaries. The proposed data summarizations that 
meet all the requirements for hierarchical clustering were 
called “Data Bubbles”. 

Most techniques to compute data summaries, includ-
ing Data Bubbles, are based on the assumption that the 
data is from a vector space. Typically, they compute sta-
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tistics such as the mean of the set of objects which re-
quires that vector space operations (addition of objects, 
multiplication with scalar values) can be applied.  

For non-vector spaces, the only information that can 
be utilized is a similarity or a dissimilarity distance func-
tion. In this paper we will assume a distance function to 
measure the dissimilarities, i.e., we only have information 
about distances between objects. This makes it difficult or 
at least very expensive to compute the usual sufficient 
statistics used to summarize vector data. However, having 
a data summarization method that allows a very fast (even 
if only approximate) clustering of non-vector data is 
highly desirable since the distance functions for some 
typical and important applications can be extremely com-
putationally expensive (e.g., a sequence alignment for a 
set of RNA or amino acid sequences).  

In this paper, we propose a novel data summarization 
method that can be applied to non-vector data to produce 
high-quality “micro-clusters” to efficiently and effectively 
support hierarchical clustering. The information produced 
for each data summary is related and improves upon the 
information computed for the Data Bubbles proposed in 
[3] in the sense that accurate estimations of the informa-
tion needed by hierarchical clustering algorithms is gener-
ated (in fact, we suggest to use our new version of Data 
Bubbles even for vector data).  

The rest of the paper is organized as follows. We 
briefly review related work in section 2. We present the 
necessary background regarding the original Data Bub-
bles for vector data and the clustering algorithm OPTICS 
in section 3. Section 4 discusses the problems when trying 
to generate summary information for sets of non-vector 
data and introduces our new method. The experimental 
evaluation in section 5 shows that our method allows not 
only very effective and efficient hierarchical clustering of 
non-vector data, but also that it even outperforms the 
original Data Bubbles when applied to vector data. Sec-
tion 6 concludes the paper. 

2. Related Work 
The most basic method to speed-up expensive data min-
ing algorithms such as hierarchical clustering is probably 
random sampling: only a subset of the database is ran-
domly chosen, and the data mining algorithm is applied to 
this subset instead of to the whole database. Typically, if 
the sample size is large enough, the result of the data min-
ing method on the sample will be similar enough to the 
result on the original database.  

More specialized data compression methods have been 
developed to support, in particular, clustering algorithms. 
For k-means type of clustering algorithms, a summary 
statistics called “clustering features”, originally intro-
duced for the Birch method [12], has been used by differ-
ent approaches. Birch incrementally computes compact 
descriptions of subclusters, called Clustering Features, 
which are defined as CF = (n, LS, ss), where LS is the 

linear sum and ss the square sum of the n points in the 
sub-cluster represented by the clustering feature CF.  

The CF-values are sufficient to compute information 
like centroid, radius and diameter of a set of points. They 
also satisfy an additivity condition, that allows the incre-
mental computation of CF-values when inserting points 
into a set: if CF1 = (n1, LS1, ss1) and CF2 = (n2, LS2, ss2) 
are the CFs for sets of points S1 and S2 respectively, then 
CF1 + CF2 = (n1 + n2, LS1 + LS2, ss1 + ss2) is the clustering 
feature for the union of the points in S1 and S2, S1 ∪ S2. 

The CFs are organized in a balanced tree with branch-
ing factor B and a threshold T, where a non-leaf node rep-
resents all objects in the whole sub-tree that is rooted at 
this node. A leaf node has to contain at most L entries and 
the diameter of each entry in a leaf node has to be less 
than T. The generation of a CF-tree is similar to the con-
struction of B+-trees: points p are inserted into the tree by 
finding first the leaf in the current CF-tree that is closest 
to p. If an entry in the leaf can absorb p without violating 
the threshold condition, it is inserted into this entry and 
the corresponding CF value is updated. If p cannot be 
inserted into an existing entry, a new entry is created in 
the leaf node. This may lead to an overflow of the leaf 
node causing it (and possibly its ancestors) to be split in a 
similar fashion as B-trees. A clustering algorithm is then 
applied to the entries in the leaf nodes of the CF-tree. 

In [2], a very specialized compression technique for 
scaling-up k-means and EM clustering algorithms is pro-
posed. This method basically uses the same type of suffi-
cient statistics as Birch, i.e. triples of the form   (n, LS, ss). 
The major difference is only that different sets of data 
items are treated and summarized independently: points 
that are unlikely to change cluster membership in the it-
erations of the clustering algorithm, data summaries that 
represent tight sub-clusters of data points, and a set of 
regular data points which contains all points which cannot 
be assigned to other data summarizations.  

In [4], a general framework for “squashing” data is 
proposed, which is intended to scale up a large collection 
of data mining methods. The method is based on parti-
tioning the dimensions of the data space and grouping the 
points into the resulting regions. For each region, a num-
ber of moments are calculated such as mean, minimum, 
maximum, second order moments such as Xi

2 or XiXj, and 
higher order moments depending on the desired degree of 
approximation. Squashed data items are then created for 
each region in a way that the moments of the squashed 
items approximate those of the original data falling into 
the region. This information can also be used to compute 
clustering features as above for each constructed region in 
order to speed-up k-means type of clustering algorithms. 

In [3] it was also proposed to compute sufficient sta-
tistics of the form (n, LS, ss) based on a random sample 
by partitioning the data set using a k-nearest neighbour 
classification. This method has several advantages over, 
for instance the CF-tree: the number of representative 
objects for a data set can be determined exactly, and no 



other heuristic parameters such as a maximum diameter, 
or a bin-size have to be used in order to restrict the num-
ber of partitions that are represented by triples (n, LS, ss). 
The method was proposed as follows:  
• Draw a random sample of size s from the database to 

initialize s sufficient statistics. 
• In one pass over the database, classify each object o 

to the sampled object p it is closest to and incremen-
tally add o to the sufficient statistics initialized by p, 
using the additivity condition given above. 

Our experiences in [3] showed that the quality of the suf-
ficient statistics obtained by random sampling is much 
better than the CF-values produced by Birch, when used 
to generate the additional information that is needed to get 
satisfactory results with hierarchical clustering algo-
rithms. The runtime to generate those CF values using a 
CF-tree is also significantly larger and make it almost 
impossible to beat even a naïve sampling approach to 
speed-up clustering, given the same resources. If it takes 
too much time to generate data summarizations, naïve 
sampling may just use a larger sample and obtain superior 
results with a much less complex implementation.  

The only other proposal for a data summarization 
method for non-vector data that we are aware of is pre-
sented in [6], and is based on Birch. The authors suggest a 
generalization of a Birch tree that has two instances 
BUBBLE and BUBBLE-FM for non-vector data. Both 
methods keep a number of representatives for each leaf 
node entry in order to approximate the most centrally lo-
cated object in a CF-tree leaf. In non-leaf level entries, 
both methods keep a certain number of sample objects 
from the sub-tree rooted at that entry in order to guide the 
search process when building the tree. The basic differ-
ence between BUBBLE and BUBBLE-FM is that for 
BUBBLE-FM the sample points in the non-leaf node en-
tries are mapped to a d-dimensional Euclidean vector 
space using Fastmap [5]. The image space is then used to 
determine distances between new objects and the CFs, 
thus replacing possibly expensive distance calculations in 
the original space by Euclidean distance computations. 
We will argue that this approach has similar drawbacks as 
the vector version, and we will therefore, base our current 
work for non-vector data on a sampling based approach to 
produce data summarizations. 

3. Data Bubbles for Euclidean Vector Data 
In this section, we briefly review the notion of Data Bub-
bles for Euclidean vector spaces as proposed in [3]. We 
discuss the special requirements that hierarchical cluster-
ing algorithms such as the Single-Link method and 
OPTICS pose on data summarization methods, and we 
illustrate the advantages of Data Bubbles.  

While simple statistics such as clustering features pro-
duced by Birch, are effective for k-means type clustering 
algorithms, they typically are not sufficient to produce 
good results using a hierarchical clustering algorithm. The 

main reason is that hierarchical clustering algorithms are 
based on the distances between sets of data points which 
are not represented well by the distances between only the 
representative objects, especially when the compression 
rate increases. This type of error typically results in a very 
distorted clustering structure based on data summaries. 
The Data Bubbles in [3] have been proposed to solve 
those problems, showing that a data summarization 
method, in order to support hierarchical clustering, has to 
take into account the extension and the point density of 
the data-subset being represented. 

3.1   Basic Definitions 

A Data Bubble was defined in [3] as follows:  
Definition 3.1: A Data Bubble for a set of points X={Xi}, 
1 ≤ i ≤ n, is a tuple BX = (rep, n, extent, nnDist), where  

• rep is a representative object for X, which is as-
sumed to be close to the centre of the set X; 

• n is the number of objects in X;  
• extent is the radius of BX around rep that encloses 

“most” of the objects in X; 
• nnDist(k,BX) is a function that estimates the aver-

age k-nearest-neighbour distances in BX . 
For d-dimensional points from a Euclidean vector data, 
the representative rep, the radius of the Data Bubbles ex-
tent, and the k-nearest-neighbour distances nnDist(k, B) 
can be easily estimated using simple sufficient statistics, 
which can be incrementally computed during the initial 
construction of the Data Bubbles. 

The representative rep is simply computed as the 

mean of the set of objects in X, i.e., rep = nX
ni

i /
...1









∑

=
. 

The radius of BX around rep can be estimated  
by the average pair-wise distances within BX, i.e.,  

extent =
( )

)1(
...1 ...1

2

−⋅

−∑ ∑
= =

nn

XX
ni nj

ji

. This expression can in turn 

be computed from the simpler statistics linear sum LS and 
square sum ss of all objects in X. LS and ss can be incre-
mentally maintained when constructing a Data Bubble (as 
in the construction of cluster features CF in the BIRCH 
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The average k-nearest-neighbour distances can be es-
timated by a simple arithmetic expression if a uniform 
distribution of objects within a Data Bubble is assumed. 
This assumption is quite robust in many applications since 
a Data Bubble only represents a small fraction of a data 
set and the uniformity assumption holds approximately; 

under this assumption: nnDist(k,BX) = extent
n
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3.2   Application to Hierarchical Clustering 

Hierarchical clustering algorithms compute a hierarchical 
representation of the data set, which reflects its possibly 
nested clustering structure.  

The algorithm OPTICS is based on the notions of 
core-distance and reachability-distance with respect to 
parameters Eps and MinPts. The core-distance of a point 
p represents the point density around p; the reachability 
distance is a “smoothed” measure of the distance between 
points that avoids Single-Link effects. Using these dis-
tances, OPTICS computes a “walk” through the data set, 
and assigns to each object p its core-distance and the 
smallest reachability-distance reachDist with respect to an 
object considered before p in the walk. The algorithm 
starts with an arbitrary object assigning it a reachability-
distance equal to ∞. The next object o in the output is then 
always the object that has the shortest reachability dis-
tance d to any of the objects that were “visited” previ-
ously by the algorithm. This reachability-value d is as-
signed to this object o. The output of the algorithms is a 
reachability plot, which is a bar plot of the reachability 
values assigned to the objects in the order they were vis-
ited. An example reachability plot for a 2-dimensional 
data set is depicted in Figure 1. Such a plot is interpreted 
as following: “valleys” in the plot represent clusters, and 
the deeper the “valley”, the denser the cluster. The tallest 
bar between two “valleys” is a lower bound on the dis-
tance between the two clusters. Large bars in the plot, not 
at the border of a cluster represent noise, and “nested val-
leys” represent hierarchically nested clusters.  

 
 
 
 
 

Figure 1. Example reachability plot and dendrogram 

Clusters in a hierarchical clustering representation are in 
general obtained manually (e.g., by cutting through the 
representation). This process is typically guided by a vis-
ual inspection of the diagram – which is why a correct 
representation of the clustering structure is very impor-
tant, especially when applying the algorithm to data sum-
marizations instead of the whole data set.  

The most important issue when applying hierarchical 
clustering to Data Bubbles is the distance function that is 
used to measure dissimilarity between two Data Bubbles. 
In [3] it has been shown that using the distance between 
representatives and the extent of Data Bubbles for vector 
data, a distance between Data Bubbles can be computed 
that dramatically improves the result of hierarchical clus-
tering compared to using only the distance between repre-
sentatives. This notion of distance that is aware of the 
extent of Data Bubbles is depicted in Figure 2. If the Data 
Bubbles do not overlap, it is basically the distance be-
tween the “borders” of the Data Bubbles (distance be-

tween representative objects of the Data Bubbles minus 
the extents of the Data Bubbles plus the 1-nearest 
neighbour distances of the Data Bubbles), otherwise, i.e., 
if they overlap, it is the estimated nearest neighbour dis-
tance of the Data Bubble that has the larger nn-distance.  

 
 
 
 
 
 
 

Figure 2. Illustration of the distance between original 
Data Bubbles for vector data (Fig. adapted from [3]) 

The second important issue in hierarchical clustering of 
data summarizations is the adaptation of the graphical 
result. The reason is that the Data Bubbles typically repre-
sent sets of objects that may contain significantly different 
numbers of objects, and that can have largely differing 
point densities. Including only the representative of a Data 
Bubble in the hierarchical output representation will most 
often lead to a very distorted picture of the true clustering 
structure of a data set. Therefore, for OPTICS, the bar for 
each Data Bubble in the reachability plot is expanded 
using the so-called “virtual reachability”. More precisely, 
for each Data Bubble representing n points, n bars are 
added to the reachability plot. The height of each bar is 
calculated as the virtual reachability of the Data Bubble, 
which corresponds to the estimated average reachability 
distance for points within the Data Bubble (basically the 
estimated MinPts-nearest neighbour distance). Other hier-
archical algorithms such as the Single-Link method can 
be similarly adapted to work with Data Bubbles. Due to 
page limitations, we cannot discuss these extensions here. 

4. Data Bubbles for Non-Vector Spaces 
The only information that can be utilized in a non-vector 
space is the distance function, i.e., information about dis-
tances between objects. Therefore, it is difficult in such 
spaces to get an accurate and at the same time computa-
tionally inexpensive estimation for the important compo-
nents defined for the original Data Bubbles. We cannot 
compute new “artificial” objects such as a mean, which is 
guaranteed to be in the centre of the respective set, and 
hence would be the best representative for the objects in a 
Data Bubble. We also cannot compute statistics like the 
linear sum or the square sum of the objects that would 
allow us to incrementally maintain a good estimation of 
the radius of a Data Bubble around the representative. 
Similarly, there is no inexpensive or incremental way to 
compute an estimation of the average k-nearest-neighbour 
distances in a Data Bubble. We will argue that for these 
reasons the original definition of Data Bubbles has to be 
significantly changed and adapted in order to deal with 
the particular problems of non-vector spaces.  
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The main purpose of Data Bubbles is to support effec-
tive and highly efficient hierarchical clustering based on 
the summary information provided by the Data Bubbles. 
The representative, the extent, and the average k-nearest-
neighbour distances of a Data Bubble serve only the pur-
pose of defining effective distance notions for hierarchical 
clustering. For the algorithm OPTICS, which we will use 
to evaluate our method, these notions are:  
• The notion of a distance between Data Bubbles, 

which has to “be aware” of the extension of the Data 
Bubbles. This is the most important notion for effec-
tive hierarchical clustering. 

• The core-distance of a Data Bubble, which is also 
used to define the “virtual reachability” for objects, 
needed to correctly expand a reachability plot. 

• The reachability-distance of a Data Bubble relative to 
another Data Bubble, which is needed during the 
execution of OPTICS. The appropriateness of the 
reachability-distance is dependent on the previous 
two notions, since it is defined using only core-
distance and the distance between Data Bubbles. 

Errors in estimating a representative, the extent, or the 
average k-nearest-neighbour distances will lead to errors 
when computing the above distances, which in turn will 
produce errors in the clustering result using Data Bubbles. 
To make things worse: errors for different components in 
a Data Bubble may depend on and amplify each other, 
e.g., an error in the estimation of the representative will 
obviously lead to an increased error in the extent around 
the representative, if we keep the original definition of 
extent as a radius around the representative that contains 
most of the objects of the Data Bubble. 

In the following sub-sections we will analyze these 
problems and propose a new and more suitable version of 
Data Bubbles that solves these problems. In order to dis-
cuss the problems, we will assume the following minimal 
procedure to generate s Data Bubbles for non-vector data 
(the complete method will be given later in this section):  
1. Sample s objects from the database randomly. 
2. Assign each object in the database to the closest sam-

ple object from the set of objects obtained in step 1.  
This means that using this procedure, the only information 
we can utilize in our computation of data summarizations 
are the s objects drawn from the database in step 1 (they 
may be used, for instance, as candidates for representative 
objects), and the distances of all objects to all the sample 
objects obtained in step one. These distances have to be 
computed in any case to determine the closest representa-
tive for each object. 

4.1   Representative Objects 

In a non-vector space the representative object for a Data 
Bubble has to be an object from the Data Bubble itself 
since we cannot compute a mean for the set of objects. 
Theoretically, the best representative for a set of objects 
in a non-vector space is a medoid, i.e. an object that is 

located most centrally in the set of objects, in the sense 
that its overall distance to all other objects in the Data 
Bubble is minimal. More formally:  

Definition 4.1 A medoid for a set of objects X is an object 
m ∈ X such that for all p ∈ X: ∑∑

∈∈
≤

XoXo
opdistomdist ),(),( . 

A medoid, although it seems to be the best choice of a 
representative has a severe drawback: determining a me-
doid for a set of n objects is computationally expensive 
(O(n2)), since all pair-wise distances have to be computed. 
Because we want to use very high compression rates in 
practice (i.e., only a very small number of Data Bubbles, 
and hence a very large number of objects represented by 
one Data Bubble on average), it is not feasible to deter-
mine a medoid for a Data Bubble with this exhaustive 
search method. The same amount of computation could be 
better used to cluster a larger subset of objects directly 
without generating Data Bubbles.  

Using our minimal procedure to construct data sum-
marizations, there are basically three alternatives to de-
termine some representative objects for a Data Bubble 
more efficiently but also less optimally – all with advan-
tages and disadvantages:  
1. “Initial sample object”: keep the initial sample object 

that is used to generate a Data Bubble as the repre-
sentative of the Data Bubble.  

2. “Relocation using a sub-sample”: after the generation 
of the Data Bubble, take a small sub-sample from the 
Data Bubble, including the initial sample object, and 
determine an exact medoid only in this subset.  

3. “Maintaining several candidates”: while generating 
the Data Bubble, keep a number of objects as poten-
tial representatives in main memory (e.g. first m ob-
jects assigned to the Data Bubble). When assigning 
objects, compute and sum up distances not only to the 
initial sample object but also to the additional candi-
dates in the Data Bubble. After the generation of the 
Data Bubble, select the candidate with the lowest 
sum of distances.  

The first alternative, keeping the initial sample object, is 
the least expensive, since no additional computation is 
necessary. But, it is also the alternative with the largest 
error. The quality of the representatives found by the sec-
ond alternative obviously depends on the size of the sub-
sample drawn from the Data Bubble. Our experiments 
showed however, that for instance a 5% sub-sample of a 
Data Bubble will result in representatives that are only 
slightly better approximations of a true medoid, and the 
effect on the quality of the clustering result is not signifi-
cant. Taking larger sub-samples, however, is also too ex-
pensive in the same sense as the exhaustive method: in-
stead of taking a sub-sample to relocate the representative, 
we can use a larger sample without bubble generation to 
improve the clustering result. Alternative 3, i.e., maintain-
ing several candidates during the generation of the bub-
bles, has basically the same properties as alternative 2.  



Note that, even in the best case, i.e., if we 
could get an exact medoid for the whole 
set of objects in a Data Bubble, we may 
produce noticeable errors in the cluster-
ing result because there are limits to the 

accuracy of a medoid as being in the centre of the set of 
objects that it represents. This is in fact a drawback for 
any representative object that has to be an element of the 
set itself (opposed to a computed mean in case of vector 
data). The figure to the left depicts an extreme case where 
the data set does not contain an object close to the centre 
of the set. Due to this drawback, even the best selection of 
a representative for a Data Bubble may result in an error 
when estimating the extent of a Data Bubble and conse-
quently in the distance between Data Bubbles to a degree 
that would not occur for vector Data Bubbles.  

Using any of the three alternatives, and keeping the 
original definition of a Data Bubble, we cannot guarantee 
that our representative will be close enough to the “cen-
tre” of the data set to avoid errors. On the other hand, hav-
ing a representative close to the centre of a Data Bubble is 
not an objective in its own for hierarchical clustering. 
Only the above listed distance notions for Data Bubbles 
are important. As we will see in the next subsection, we 
can in fact compensate for a less centred representative by 
applying a new and much more sophisticated distance 
function for Data Bubbles. Representatives that are not 
close to the centre of a data set will only lead to an error 
in the clustering result when using the original idea of 
extent of a Data Bubble around a representative and the 
original definition of distance that is based on this extent.  

Therefore, we choose alternative 1 and keep the initial 
sample object as the representative of a non-vector Data 
Bubble, which has no computational overhead.  

4.2   Average knn-Distances, Core-Distance, and  
        Virtual Reachability Distance 

The estimation of the average k-nearest-neighbour dis-
tances nnDist(k, B) for a Data Bubble B is closely related 
to the core-distance and the virtual reachability distance 
of B. The nearest neighbour distance is also used in the 
original definition of the distance between Data Bubbles.  

Because there is no notion of volume and dimension-
ality in a non-vector space, we cannot apply a simple 
function to calculate the average k-nearest-neighbour dis-
tances as in a vector space. When constructing Data Bub-
bles for non-vector data, we have similar alternatives to 
determine an estimation of the average k-nearest-
neighbour distances as we have for the selection of a rep-
resentative object (using a sub-sample of the objects in a 
Data Bubble and compute the k-nearest-neighbour dis-
tances only in this sub-sample is, however, not an option: 
they would very likely be highly overestimated):  
1. “knn-distances w.r.t. the initial sample object”: when 

assigning objects to Data Bubbles, maintain a list of 
the k smallest distances relative to each initial sample 

object. For each Data Bubble, simply use the k small-
est-distances to its representative as the estimation of 
the average knn-distance in the whole Data Bubble. 

2. “knn-distances w.r.t. several reference objects”: keep 
a number of objects from a Data Bubble in main 
memory (e.g. the first m objects assigned to the Bub-
ble) and compute distances to these objects for all ob-
jects that are assigned to the Data Bubble. For each of 
the reference objects, maintain a list of the k smallest 
distances. After the generation of the Data Bubble, 
compute an estimation of the average k-nearest-
neighbour distances by averaging those values. 

As for the selection of the representative objects, the first 
alternative has no significant computational overhead 
since the distances to the initial sample objects have to be 
computed anyway. The computational cost and the im-
provement in the estimation of the knn-distances for the 
second alternative depend on the number of reference 
object that are kept in main memory. As before, if we 
keep too many reference objects, the gain in accuracy will 
not outweigh the increased number of distance computa-
tions. For the same amount of additional distance compu-
tations, we may be able to get a better result by just taking 
a larger sample size to begin with. 

The important question regarding the average knn-
distances in a Data Bubble is: for which values of k do we 
need the estimation and how accurate do they have to be? 
The most important use of the knn-distances is for esti-
mating the core-distance of a Data Bubble. The core-
distance also defines the virtual reachability value for a 
Data Bubble, which is used when “expanding” a Data 
Bubble in the clustering output. Typically, we don’t want 
to use values for MinPts that are too small, in order to 
avoid single-link effects and to reduce the effect of noise 
(see [1] for details). In practice, we mostly use values 
which are significantly larger than 5 for larger data sets; 
and we may consider MinPts values in the range of 5 only 
for relatively small data sets. To estimate the core- and 
virtual reachability distance of a Data Bubble we there-
fore only need knn-distances for the larger values of 
k=MinPts that we want to use for clustering. Fortunately, 
the larger values of the average knn-distance in a Data 
Bubble can be estimated with an acceptable error using 
only the distances to the initial sample object. In fact, the 
larger k, the more accurate the estimation using only the 
initial sample object (or any other reference object, or the 
average over several reference objects). Only for very 
small values of k, especially for k=1, is the actual value 
nnDist(1, B) for most of the objects in B quite different 
from the average nearest-neighbour distance. The nearest 
neighbour distance in a Data Bubble B, nnDist(1, B), is 
only used in the original definition of distance between 
Data Bubbles, which we will not use for non-vector data 
because of other reasons. Therefore, we don’t need the 
more error prone estimation of nnDist(k, B) for very small 
values of k. And, since the use of only a few reference 
objects does not significantly improve the result for the 



larger values of k, we choose here again the more efficient 
alternative 1 to estimate the knn-distances (up to the 
maximum value of MinPts), i.e., we use only the initial 
sample objects and the distances that we have to compute 
in the construction of Data Bubbles anyway.  

Using the estimation of k-nearest neighbour distances, 
the core-distance of a Data Bubble B (average distance of 
objects in B to the MinPts nearest neighbour – so that they 
are core objects), and virtual reachability distance of B 
(the distance needed for the expansion of the reachability 
plot after clustering) are then defined similarly as in [3]:  

Definition 4.2 Let B be a Data Bubble. The virtual reach-
ability and core-distance of B are defined using the esti-
mated knn-distances, nnDist(k, B), as following: 
    virtualReachability(B)=core-dist(B)=nnDist(MinPts,B). 

4.3   The Distance Between Data Bubbles 

The original distance between Data Bubbles in [3] is 
based on the extents of the Data Bubbles as illustrated 
above in Figure 2. The purpose of the extent of a Data 
Bubble is to be able to define the distance between Data 
Bubbles as the distance between their borders, which are 
approximated by the extents. 

However, the extent as the average pair-wise distance 
in a Data Bubble is expensive to estimate since there is no 
supporting statistics that could be collected incrementally 
while constructing a Data Bubble. The only option to get 
an estimation of the average pair-wise distance would be 
to draw a sub-sample of objects from a Data Bubble and 
compute all pair-wise distances in this sub-sample. The 
accuracy of this approach depends on the size of the sub-
sample. The value could be used as a radius around the 
representative within which most of the objects of the 
Data Bubble are supposed to be located. Since this is the 
intended interpretation of the extent, we could alterna-
tively use only the distances to the representative and 
maintain incrementally a distance around the representa-
tive so that “most” objects of the Data Bubble fall inside 
this radius around the representative (similar to maintain-
ing the knn-distances). The second alternative for estimat-
ing a global extent is much more efficient but also much 
more error-prone since it is very sensitive to outliers. 

To work properly, both approaches have to assume (in 
addition to having a small error) that the representative is 
close to the centre, which we know, we cannot guarantee 
in a non-vector space. In fact, errors in choosing represen-
tatives and errors in the estimation of the extent amplify 
each other, resulting in large errors in the clustering result, 
because the distances between Data Bubbles will be heav-
ily distorted. As a solution, we propose a new definition 
of distance between Data Bubbles, which is based on 
simple statistics that uses only the distances between ob-
jects and sample objects (which are computed when con-
structing a Data Bubble anyway). All the needed notions 
can be maintained incrementally and without significant 
computational overhead.  

Conceptually, in order to compensate for an error in 
the selection of the representatives, we want to distinguish 
the extent of a Data Bubble around its representative in 
different directions – “direction” being defined using only 
distances between the representative and other objects. 
For instance, if a representative is not centreed well in a 
Data Bubble, the distances to the “border” of the Data 
Bubble may be very different in different “directions”. 
Figure 3 illustrates this concept using a 2-dimensional 
Data Bubble B where the extent from the representative 
rB in direction of object O1 is much smaller than the ex-
tent in direction of object O2. The notions required to 
formalize these intuitions will be introduced in the follow-
ing. Please note that all concepts will be defined without 
any reference to vector space properties or operations, and 
that although we will use 2-dimensional point data to il-
lustrate the concepts, the notions are solely based on dis-
tances between objects. 
 

 

 

Figure 3. “Directional extent” of a Data Bubble 

In order to define more accurate distances between Data 
Bubbles, the goal is to find a more accurate representation 
of the “border” of a Data Bubble. However, we only need 
to know the distance between the representative and the 
border, i.e. the extent of a Data Bubble, in the directions 
of the (representatives of) other Data Bubbles. Intuitively, 
given any two Data Bubbles, A and B, and their represen-
tatives, rA and rB, we can divide the Data Bubble B into 
two parts with respect to Data Bubble A: one part contain-
ing the objects in B that are “in the direction of A” in the 
sense that the distance between them and the representa-
tive of A, rA, is smaller than the distance between the two 
representatives rA and rB; the second part of B contains 
the other objects, which are called to be “in the reverse 
direction of A”. Formally:  

Definition 4.3 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively.  

• Bubble(B).InDirection(A):=  
                               {o ∈ B| dist(o, rA) ≤ dist(rA, rB)} 
For each object o ∈ Bubble(B).InDirection(A) we say 
that o lies in the direction of A. 

• Bubble(B).InRevDirection(A):=  
                               {o ∈ B| dist(o, rA) > dist(rA, rB)} 
For each object o ∈ Bubble(B).InRevDirection(A) we 
say that o lies in the reverse direction of A. 

Figure 4 illustrates these notions: all objects o ∈ B that lie 
inside the circle having rA as centre and the distance be-
tween rA and rB as radius, are in direction of A, i.e. in 
Bubble(B).InDirection(A); objects o’ ∈ B which are out-
side the circle lie in “reverse” direction of A, i.e. in     
Bubble(B).InRevDirection(A). 

B 
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Figure 4. Illustration of direction and reverse direction 

Following a similar intuition, the next notion we define is 
the notion of a border distance of a Data Bubble in the 
direction of another Bubble:  

Definition 4.4 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. The border distance of 
B in the direction of A is defined as  

Bubble(B).borderDistInDirection(A):= 
                                        dist(rA,rB) – )),((min rAodist

Bo∈
 

The border distance of B in the direction of A is defined as 
the distance between the two representatives minus the 
distance between the representative of A, rA, and the ob-
ject o in B that is closest to rA. Figure 5 illustrates our 
estimation of the border distance of a Data Bubble B in 
the direction of another Bubble A.  
 

 
 

 

Figure 5. Illustration of border distance 

A consequence of our definition of border distance is that 
– in contrast to what can happen in the original Data Bub-
bles – the extents of two Data Bubbles can never overlap, 
i.e., the distance from a representative rB of a Data Bub-
ble B to its “border”, in the direction of a Data Bubble A 
with representative rA, can never be larger than half the 
distance between the two representatives: 

Lemma 4.1 Given two Data Bubbles A and B with repre-
sentatives rA and rB, respectively. Let  
Bubble(B).borderDistInDirection(A) be the border dis-
tance of B in the direction of A. If the distance function is 
a metric, i.e., satisfies the triangle inequality, then       
Bubble(B).borderDistInDirection(A) ≤ dist(rA, rB)/2. 
Proof. Suppose the border distance is greater than  
dist(rA, rB)/2. It follows that dist(o, rA) < dist(rA, rB)/2, 
where )),((minarg rAodisto

Bo∈
= . And because o ∈ B, by 

construction of B it must be dist(o, rB) ≤ dist(o, rA). But 
then it follows that dist(o, rA) + dist(o, rB) ≤ 2*dist(o, rA) 
< dist(rA, rB), which violates the assumption that the tri-
angle inequality holds. Hence  
Bubble(B).borderDistInDirection(A) ≤ dist(rA, rB)/2. 

Our definition serves well in a “normal” situation of well-
separated bubbles as depicted in Figure 6, where the dis-
tance between the “borders” of the bubbles gives a good 
estimate of the true distance between the point sets.  

 
 

Figure 6. “Normal” Data Bubble separation 

In practice, some situations can occurs where a Data Bub-
ble may contain a “gap” in a particular direction. If the 
Data Bubbles represent points from different clusters but 
their representatives happen to be close enough so that 
one Data Bubble contains points from both clusters. 
Figure 7 illustrates such a case. 
 

 

 

 

Figure 7. A“gap” in Data Bubble B (border distance in 
direction A is larger than in reverse direction of A) 

These situations can lead to errors in the clustering result 
because the difference between the borders, and hence the 
distance between Data Bubbles may be underestimated. 
As a consequence, cluster separations may be lost. For 
vector Data Bubbles, this problem does not occurs as fre-
quently as for non-vector Bubbles, since the extent is es-
timated by the average pair-wise distance, which in the 
case depicted in Figure 7 would still be close to the true 
extent of B (which is much smaller than the depicted di-
rectional border distance of B).  

In order to detect those and similar situations, we 
maintain certain statistics with respect to the distances of 
objects in a Data Bubble B to its representative rB. The 
values we compute when constructing a Data Bubble are: 
1) average distance of the objects in B in direction of each 
other Data Bubble (and reverse directions), 2) the stan-
dard deviation of the distances in all those directions. 
Definition 4.5 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. Let  
BA=Bubble(B).InDirection(A) denote the set of objects in 
B that lie in direction of A and  let  
BrevA= Bubble(B).InRevDirection(A) denote the set of 
objects in B that lie in the reverse direction of A. 

• Bubble(B).aveDistInDirection(A):=
A
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Bubble(B).aveDistInDirection(A) is the average distance 
between the representative of B and the objects in B that 
lie in direction of A. 

• Bubble(B).aveDistInRevDirection(A):=
revA
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Bubble(B).aveDistInRevDirection(A) is the average dis-
tance between the representative of B and the objects in B 
that lie in reverse direction of A. 

rA rB 
A B 

o 

Bubble(B).borderDistInDirection(A)

rA rB 
A B 

rA rB 

A
B 

Bubble(B).borderDistInDirection(A)

A B 

o o’ rA rB



Definition 4.6 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. Let again 
BA=Bubble(B).InDirection(A) and 
BrevA= Bubble(B).InRevDirection(A). Let furthermore,  

)().( AirectionaveDistInDBBubbledist
AB = and  

)(Re).( AvDirectionaveDistInBBubbledist
revAB =  

• Bubble(B).stdevInDirection(A):= 
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Bubble(B).stdevInDirection(A) is the standard devia-
tion of the distances between the representative of B 
and the objects in B that lie in direction of A. 

• Bubble(B).stdevInRevDirection(A):= 

revA
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Bubble(B).stdevInRevDirection(A) is the standard de-
viation of the distances between the representative of 
B and all objects in B lying in reverse direction of A. 

When constructing a Data Bubble B, the defined averages 
and standard deviations of distances relative to other bub-
bles A can be maintained incrementally:  
Lemma 4.2 Given a set of distance values  
D = (d1, d2,  …, dn). Let lsD denote the linear sum of the 
distance values in D, i.e., ∑ == ni idlsD ...1 , and let ssD 
denote the square sum of the distance values in D, i.e., 

∑ == ni idssD ...1
2)( . Then, the average distance dave in D 

can be computed as dave=lsD/n, the standard deviation of  

the distances can be computed as ( )
2

2

n
lsDssDn −⋅

=σ . 

Proof. By simple arithmetic transformations. 
Since a linear sum and a square sum of distances in 

certain directions can be computed incrementally while 
constructing Data Bubbles, it follows that also the average 
and the standard deviation of those distances can be main-
tained incrementally without much computationally over-
head: all needed distances are computed anyway in the 
classification step of the Data Bubble creation.  

The “directional” versions of border distance, average 
distance and standard deviation of the distances help us to 
detect “gaps” in a Data Bubble in many cases. The situa-
tion depicted in Figure 7, e.g., is indicated by the fact that 
the border distance of Bubble B in direction of A is both 
much larger than in the reverse direction and much larger 
than the average distance in direction of A. Two other 
examples of “gaps” in a bubble are given in Figure 8.  
In order to avoid overestimating the extent of a Data Bub-
ble (and consequently underestimating the distance be-
tween Data Bubbles) in the presence of “gaps”, we intro-
duce a refined notion of “directional” border distance, 
which we call “directional extent” of the Data Bubble.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Examples of a “gap” in a Data Bubble B 

Definition 4.7 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. Let Ave, and Stdv be 
the average respectively the standard deviation of the dis-
tances in B in direction of A or the reverse direction of A 
– whichever is smaller. The extent of B in the direction of 
A, Bubble(B).extentInDirection(A), is then defined as  
Bubble(B).extentInDirection(A):= 
  )2),().(min( StdvAveAnInDirectioborderDistBBubble ⋅+  

Basically, the (directional) extent of a Data Bubble is ei-
ther the (directional) border distance, or the (directional) 
average distance plus two times (directional) standard 
deviation – whichever is smaller. Taking the average dis-
tance plus two times standard deviation is a way to esti-
mate a (“directional”) border around the representative 
that will include most of the points within that limit.  

Having a good estimation of the extent of a Data Bub-
ble in a certain direction, we can define the distance be-
tween two Data Bubbles simply as the distance between 
their representatives minus their directional extents. 

Definition 4.8 Let A and B be two sets of objects, repre-
sented by rA and rB, respectively. The distance between A 
and B is defined as  
      dist(A,B)=dist(rA,rB)–Bubble(A).extentInDirection(B) 
                                        –Bubble(B).extentInDirection(A) 
In summary, our new method for constructing a collection 
of s Data Bubbles for non-vector data is as following: 
1. Draw randomly a sample of s objects from the database. 

Each sample object will be the representative object rB 
for one of the s Data Bubbles B. 

2. Classify, i.e., assign each object in the database to the 
closest representative object rB in the set of objects ob-
tained in step 1, and maintain incrementally the follow-
ing information about each Data Bubble B: 
a) The distances to the k-nearest neighbours of the rep-
resentative object rB, up to a value k=MinPts. These k-
nearest-neighbour distances, nnDist(k,B) are used to de-
fine core-dist and virtual reachability as in [3], i.e., 
core-dist(B)=virtualReachability(B)=nnDist(MinPts,B). 

(a) Average distance of B in direction of A is larger 
      than in the reverse direction 

rB 
B 

rA 

A 

(b) Standard deviation of B in direction of A is much 
      larger than in the reverse direction 
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b) Relative to each other Data Bubble A: 
- Bubble(B).borderDistInDirection(A) 
- Average distance and standard deviation in  
  direction of A and in reverse direction of A. 

3. Compute the extent of each Data Bubble B in direction 
of every other Data Bubble A:  

  Ave:=min(Bubble(B).aveInDirection(A), 
                    Bubble(B).aveInRevDirection(A)); 
  Dev:=min(Bubble(B).stdevInDirection(A), 
                     Bubble(B). stdevInRevDirection(A)); 
  Bubble(B).extentInDirection(A):= 
  min(Bubble(B).borderDistInDirection(A), Ave + 2*Dev). 

After the construction of the Data Bubbles and the com-
putation of the directional extent values, hierarchical algo-
rithms such as the Single-Link method can be applied to 
the non-vector Bubbles by using the distance between 
Data Bubbles defined in definition 4.7.  

The clustering algorithm OPTICS is based on the no-
tion of reachability distance. For point objects, the reach-
ability distance of an object o1 relative to an object o2 was 
defined as the maximum of dist(o1, o2) and core-
distance(o2) (see [1] for details). For Data Bubbles, the 
notion of the reachability distance of a Data Bubble B1 
relative to a Data Bubble B2 can be defined analogously: 

Definition 4. 9 Let A and B be two Data Bubbles,. The 
reachability distance of B relative to A is defined as  

reach-dist(B,A)= 
               max(dist(rA,rB), core-dist(A), core-dist(B)). 

This definition is an improved version of the definition 
used in [3], which estimates the reachability distance of a 
hypothetical object o in B1 in direction of B2, relative to 
an object in B2 in direction of B1. Analogously to the defi-
nition of reachability distance for points, if the two bub-
bles are far apart, the reachability distance will be equal to 
the distance between the bubbles. If the bubbles are very 
close to each other, which is indicated by at least one of 
the core-distances being larger than the distance between 
the bubbles, the hypothetical object o can be considered 
as being located at the border of both Data Bubbles, and 
we estimate its core-distance by the larger of the two 
core-distances, which in turn is used as the estimation of 
the reachability distance. The definition given in [3] only 
considers the core-distance of the Bubble A when estimat-
ing the reachability distance of Bubble B relative to A. 
The old definition underestimates the reachability value 
for points at the border of B significantly if A is relatively 
dense in its “centre” and close to a less dense Bubble B 
(resulting in errors in the clustering structure). Further-
more, this definition allows a much easier integration of 
Data Bubbles into OPTICS than the original method. 

5. Performance Evaluation 
In this section, we perform an extensive experimental 
evaluation of our Data Bubbles. The results show that our 

new method is highly scalable, that it produces reliable 
results even for very small numbers of Data Bubbles, that 
it is significantly better than random sampling, and that it 
even has an improved accuracy compared to the original 
Data Bubbles when applied to vector data. 

5.1   Data Sets and Experimental Setup 

We evaluate the performance of our new method for non-
vector Data Bubbles using the following data sets:  

First, a synthetic 2-dimensional point data set, called 
DS-Vector, which is used to show that even for a Euclid-
ean vector space the new version of Data Bubbles (which 
only uses the distance information and none of the vector 
space properties) outperforms the original Data Bubbles 
(for a vector space) proposed in [3]. The reachability plot 
obtained when clustering the whole data set using 
OPTICS is depicted in Figure 9 (left). The data set con-
tains 50000 points distributed over 8 clusters and 4% 
background noise. The eight clusters have similar sizes 
and most of them are located very close to each other as 
can be seen from the relatively low reachability values 
that separate most of them. Therefore, this data set is a 
good test bed for evaluating the new directional definition 
of extent and the heuristics to handle gaps in bubbles.  

The second data set, called DS-Tuple, which we use to 
evaluate the relative performance of our non-vector Data 
Bubbles, is a synthetic set of binary strings. Each object 
of DS-tuple is a 100-bit 0/1 sequence, and the similarity 
between two such sequences s1 and s2 is measured using 
the Jaccard coefficient, i.e. 2121 ssss ∪∩ . 80% of the 
objects form 10 clusters and the remaining 20% are noise. 
Two of the clusters are very small (123 and 218 objects), 
making the problem of finding them very challenging for 
data summarization techniques. The reachability plot ob-
tained when clustering the whole data set using OPTICS 
is depicted in Figure 9 (right) (the two tiny clusters are 
indicated by arrows).  

The third data set used to illustrate the practical rele-
vance of our method is a real data set containing RNA 
sequences. The application and the data set, called DS-
Real, are explained in more detail in section 5.2. 
 
 
 
 
 
 
 

Figure 9. Reachability plots for the whole synthetic 
data sets used for the evaluation 

The values reported in the following sections for the 
synthetic data sets are average values over 1000 repeti-
tions of each experiment. In order to measure the quality 
of the hierarchical clustering results based on data sum-
marizations, we use the following scoring scheme: For 

reach.-plot for DS-Vector reach.-plot for DS-Tuple

very small clusters 



each reachability plot obtained for data summarizations, 
we apply a heuristic to select the best cut-line through the 
diagram. The heuristics evaluates 40 different cut-lines 
through a reachability plot in equidistant intervals. Each 
cut-line is assigned a score based on the number of clus-
ters that are present with respect to this cut through the 
reachability plot. If k clusters are found (0 ≤ k ≤ maxi-
mum number of clusters in the original data set, k_max), 
then the cut-line gets a score of k/k_max. If k is greater 
than k_max, it gets a score of 0. Hence missing clusters, 
finding spurious clusters, and splitting clusters gets pe-
nalities. The intention of this score is to penalize espe-
cially those results where the algorithm produces struc-
tures that are not existent in the original data set and 
which may lead to misinterpretations of a data set. The 
cut-line with the best score is selected as an approxima-
tion of the cut that a user would select as the best one. 

All experiments were performed on an AMD Ath-
lonxp1800+ workstation with 512 MB of memory. 

5.2   Experimental Results 

Comparison with original Data Bubbles  

First, we compare our new method with the original Data 
Bubble method using the vector data set DS-Vector. The 
scores for both methods when increasing the number of 
Data Bubbles are depicted in Figure 10. The results 
clearly show that our new directional definition of extent 
and the heuristics to handle gaps in Data Bubbles leads to 
a better quality of the results, even when not using any of 
the vector space properties.  

 
 
 
 
 
 

Figure 10. New versus old method using vector data 

Comparison with random sampling 

In this section we apply our method to the non-vector data 
set DS-Tuple. We evaluate both the quality and the run-
time benefits of non-vector Data Bubbles. The first set of 
experiments shows the relative performance of our 
method compared to a random sampling approach, which 
just clusters a random sample of the data set and then as-
signs every object in the database to the closest sample 
object. This approach represents a baseline method, which 
is in fact difficult to beat since it is very efficient. If a 
method is computationally relatively expensive in the 
construction of its data summarizations (such as the Birch 
based methods BUBBLE and BUBBLE-FM), random 
sampling can be more effective since it can use the same 
amount of resources to simply cluster a larger sample.  

Figure 11 shows the result of the comparison on DS-
tuple. The quality of plots created by our method is con-

sistently better than that of random sampling. For exam-
ple, when using 50 bubbles/samples, our method is almost 
always able to recover all the significant clusters and finds 
one of the 2 small ones regularly, while random sampling 
recovers only 7 of the 8 big clusters quite consistently. 
Two example plots are depicted in Figure 11 (a).  

Figure 11 (b) shows the average score for both meth-
ods when varying the number of bubbles/samples. We 
obtain an up to 40% better quality when using very high 
compression rates (low numbers of bubbles). In general, 
we consistently obtain a score that can be obtained by 
random sampling only when the number of sample points 
is at least twice the number of Data Bubbles (this rate 
increases with the number of bubbles/samples).  

Figure 11 (c) shows the scale-up of both methods with 
respect to the number of bubbles/samples. Both methods 
scale linearly. They both have the same amount of dis-
tance computation and hence their runtime is very close to 
each other, especially when the sampling rate is low. 
Random sampling is slightly faster when using a large 
sample rate and a relatively cheap distance function (Jac-
card coefficient in this case). In real applications, how-
ever, the distance function is typically much more expen-
sive (e.g., a sequence alignment score as in our real world 
data set DS-Real), and the runtime of both methods will 
be dominated heavily by only the distance computation 
(e.g., 638sec for Data Bubbles versus 635sec for sampling 
on the DS-Real data set).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. non-vector data bubbles vs. random  
sampling on the DS-Tuple data set. 

Figure 12 shows the absolute runtime and the speed-up 
factors (compared to OPTICS on the whole database), 
when varying the database size, using subsets of DS-
Tuple. Our algorithm (100 data bubbles) scales linearly 
with the size of database, and we achieve as expected 
large speed-up values over OPTICS: between 77 and 400. 
Note that this speed-up is also dependent on the distance 
function, and for much more expensive distance functions 
the expected speed-up will be much larger.  
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Figure 12. Scale-up speed-up w.r.t number of objects 

An Application to a Real Data Set 

The RNase P Database [13] is a compilation of ribonucle-
ase P (RNase P) sequences and other information. In the 
last a few years, the number and diversity of RNase P 
RNA sequences available have increased significantly and 
analysing this data set has become an important issue. 
Clusteranalysis can help detecting functional subgroups in 
this data set and help understanding the evolutionary rela-
tionships between the sequences.  

In this application, we used global sequence alignment 
under the standard affine gap penalty scoring scheme 
(used in BLAST) to cluster the sequence database. The 
OPTICS result for the whole data set is shown in Figure 
13(a). Figure 13(b) shows a good result using 50 Data 
Bubbles. It is easy to verify that the results are very 
similar. The clustering structure corresponds mostly to the 
already known evolutionary relationships and matches 
well with the annotations in the database. An exception is 
the Bacteria.Gamma family that is partitioned into two 
sub-groups, which both are mixed with respect to the 
existing annotations of the sequences. This is an 
interesting finding that is currently investigated in more 
detail.  

 
 
 
 
 
 
 
 
(a) Result of OPTICS DS-Real, runtime = 6578 sec 
 
 
 
 
 
 
 
 

(b) Result of OPTICS-Bubbles, runtime = 638 sec 

Figure 13: Results for the RNA data set 

6. Conclusions 
In this paper, we presented a new data summarization 
method for non-vector data. The method uses only dis-
tance information, and introduces the novel concept of a 
directional extent of a set of objects. We show that the 
distance between bubbles based on this notion of extent 
even improves upon Data Bubbles when applied to vector 
data. An extensive performance evaluation also shows 
that our method is more effective than a random sampling 
approach, using only a very small number of data summa-
rizations, and thus resulting in a large reduction of run-
time (up to 400 times) while trading only very little clus-
tering quality. The method allows us to obtain results 
even for data sets where clustering the whole data set is 
infeasible because of the prohibitive cost of the distance 
function.  
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