
A Shrinking-Based Approach for Multi-Dimensional Data
Analysis

Yong Shi, Yuqing Song and Aidong Zhang
Department of Computer Science and Engineering

State University of New York at Buffalo
Buffalo, NY 14260�

yongshi, ys2, azhang � @cse.buffalo.edu

Abstract

Existing data analysis techniques have difficulty
in handling multi-dimensional data. In this paper,
we first present a novel data preprocessing tech-
nique called shrinking which optimizes the inner
structure of data inspired by the Newton’s Uni-
versal Law of Gravitation[22] in the real world.
This data reorganization concept can be applied
in many fields such as pattern recognition, data
clustering and signal processing. Then, as an im-
portant application of the data shrinking prepro-
cessing, we propose a shrinking-based approach
for multi-dimensional data analysis which con-
sists of three steps: data shrinking, cluster de-
tection, and cluster evaluation and selection. The
process of data shrinking moves data points along
the direction of the density gradient, thus gener-
ating condensed, widely-separated clusters. Fol-
lowing data shrinking, clusters are detected by
finding the connected components of dense cells.
The data-shrinking and cluster-detection steps are
conducted on a sequence of grids with different
cell sizes. The clusters detected at these scales are
compared by a cluster-wise evaluation measure-
ment, and the best clusters are selected as the final
result. The experimental results show that this ap-
proach can effectively and efficiently detect clus-
ters in both low- and high-dimensional spaces.

1 Introduction
With the advance of modern technology, the generation of
multi-dimensional data has proceeded at an explosive rate

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

in many disciplines. Data preprocessing procedures can
greatly benefit the utilization and exploration of real data.
In this paper, we first present a novel data preprocessing
technique called shrinking; then, as an important appli-
cation of the data shrinking preprocessing, we propose a
shrinking-based approach for multi-dimensional data anal-
ysis.

1.1 Related work

Commonly used as a preliminary data mining practice,
data preprocessing transforms the data into a format that
will be more easily and effectively processed for the pur-
pose of the users. There are a number of data preprocess-
ing techniques[21, 8]: data cleaning, data integration, data
transformation and data reduction.

The need to cluster large quantities of multi-dimensional
data is widely recognized. Cluster analysis is used to
identify homogeneous and well-separated groups of ob-
jects in databases. It plays an important role in many
fields of business and science. Existing clustering algo-
rithms can be broadly classified into four types [14]: par-
titioning [13, 15, 20], hierarchical [27, 10, 11], grid-based
[25, 24, 2], and density-based [9, 12, 4] algorithms. Par-
titioning algorithms start with an initial partition and then
use an iterative control strategy to optimize the quality of
the clustering results by moving objects from one group
to another. Hierarchical algorithms create a hierarchical
decomposition of the given data set of data objects. Grid-
based algorithms quantize the space into a finite number
of grids and perform all operations on this quantized space.
Density-based approaches are designed to discover clusters
of arbitrary shapes. These approaches hold that, for each
point within a cluster, the neighborhood of a given radius
must exceed a defined threshold.

Each of the existing clustering algorithms has both ad-
vantages and disadvantages. The most common problem is
rapid degeneration of performance with increasing dimen-
sions [12], particularly with approaches originally designed
for low-dimensional data. To solve the high-dimensional
clustering problem, dimension reduction methods [2, 1, 23]

have been proposed which assume that clusters are located
in a low-dimensional subspace. However, this assumption
does not hold for many real-world data sets. The difficulty
of high-dimensional clustering is primarily due to the fol-
lowing characteristics of high-dimensional data:

1. High-dimensional data often contain a large amount
of noise (outliers). The existence of noise results in
clusters which are not well-separated and degrades the
effectiveness of the clustering algorithms.

2. Clusters in high-dimensional spaces are commonly of
various densities. Grid-based or density-based algo-
rithms therefore have difficulty choosing a proper cell
size or neighborhood radius which can find all clus-
ters.

3. Clusters in high-dimensional spaces rarely have well-
defined shapes, and some algorithms assume clusters
of certain shapes.

4. The effectiveness of grid-based approaches suffer
when data points are clustered around a vertex of the
grid and are separated in different cells, as shown in
Figure 1. In the � -dimensional space ��� , there may
be � � points distributed in this manner. The cluster
formed by these points will be ignored because each
of the cells covering the cluster is sparse.

b

d

a

c

Figure 1: Points ���	�
�	�
� and � are located near a vertex of
the grid and are separated in four neighboring cells. The
four neighboring cells contain no other points.

In particular, there are several algorithms which are re-
lated to the data analysis method we will present in this
paper as an application of the data shrinking preprocess-
ing. However, each of them differs from our algorithm
in a certain way. DENCLUE[12] concentrates on local
maxima of density functions called density-attractors and
uses a flavor of gradient hill-climbing technique for finding
them. Cowen etc.[16] applied a randomized non-linear pro-
jections to uncover high-dimensional structure, preserving
cluster separability. CURE[10] represents each cluster by a
certain fixed number of points that are generated by select-
ing well scattered points from the cluster and then shrinking
them toward the center of the cluster by a specified fraction.
The moving concept in our data analysis method is differ-
ent from some well known algorithms such as K-Means
and SOM. Both the centroids of the clusters in K-Means
and the nodes of the low-dimensional layout in SOM can
be regarded as having some moving actions iteratively. On
the other hand, the movement of our preprocessing concept
is based on each data point instead of on only a few “repre-
sentative” ones.

Many approaches [6, 17, 18, 19] have been proposed for
evaluating the results of a clustering algorithm. M. Halkidi

et al. [17] presented a clustering validity procedure which
defines a validity index containing the information of the
average degree of scatter within clusters and the average
number of points between the clusters. C.F. Chen et al. [6]
introduced a fuzzy validity function to measure the overall
average compactness and separation of the fuzzy partition.
These clustering validity measurements evaluate clustering
algorithms by measuring the overall quality of the clusters.
However, each clustering algorithm has its advantages and
disadvantages. For a data set with clusters of various size,
density, or shape, different clustering algorithms are best
suited to detecting clusters of different types in the data set.
No single approach combines the advantages of these var-
ious clustering algorithms while avoiding their disadvan-
tages.

1.2 Proposed approach

In this paper, we first present a novel data preprocessing
technique which optimizes the inner structure of data by
simulating the Newton’s Universal Law of Gravitation[22]
in the real world. This data reorganization concept can
be applied in many fields such as pattern recognition, data
clustering and signal processing.

Then, as an important application of the data shrink-
ing preprocessing, we propose a shrinking-based approach
for multi-dimensional data analysis to address the inade-
quacies of current clustering algorithms in handling multi-
dimensional data. This clustering method is combined with
a cluster-wise evaluation measurement to select the best
clusters detected at different scales.

The proposed algorithm consists of three steps which
are data shrinking, cluster detection, and cluster evaluation
and selection. In the data-shrinking step, data points move
along the direction of the density gradient simulating the
Newton’s Universal Law of Gravitation, leading to clusters
which are condensed and widely-separated. Following data
shrinking, clusters are detected by finding the connected
components of dense cells. The data-shrinking and cluster-
detection steps are grid-based. Instead of choosing a grid
with a fixed cell size, we use a sequence of grids of dif-
ferent cell sizes. Our technique also proposes a method to
avoid the problem caused by points clustered near a ver-
tex of a grid and separated in different cells, as shown in
Figure 1. For each cell size, the processes of data shrink-
ing and cluster detection are performed on two interleaved
grids. Then, in the cluster evaluation and selection step, we
evaluate clusters detected at different scales via a cluster-
wise evaluation measurement and select the best clusters as
the final result.

This paper offers the following primary contributions:

� We present a novel data preprocessing technique
which optimizes the inner structure of data.

� We propose a data-shrinking process as an impor-
tant implementation of the data preprocessing tech-
nique. It yields clusters which are condensed and
well-separated. This data-shrinking steps can be used

as a preprocessing procedure for any cluster-detection
algorithm. We will demonstrate how it will improve
the performance of existing clustering algorithms in
the experimental part.

� After the data-shrinking process, clusters are detected
on the basis of density of cells. The algorithm is noise-
insensitive and can detect clusters of any shape.

� Clusters are detected at different scales. The proposed
multi-scale gridding scheme avoids the problem of de-
termining a proper cell size and offers advantages for
handling data sets with clusters of various densities.

� We propose a cluster-wise evaluation measurement to
compare clusters at different scales and select the best
as the final result. This approach can be used to unify
multiple clustering algorithms, exploiting their advan-
tages and avoiding their disadvantages.

The remainder of this paper is organized as follows.
Section 2 introduces the concept of data shrinking prepro-
cessing. From Section 3 on, we present the application of
shrinking preprocessing to multi-dimensional data analy-
sis. Section 3 introduces methods for the selection of mul-
tiscale grids for use in data shrinking and cluster detec-
tion. Section 4 discusses the data-shrinking process. In
Section 5, a simple grid-based cluster detection method is
presented. In Section 6, we discuss our definition of com-
pactness as pertains to evaluating and selecting clusters.
Section 7 presents experimental results, and concluding re-
marks are offered in Section 8.

2 Data shrinking preprocessing
We present a novel data preprocessing technique which op-
timizes the inner structure of data by simulating the New-
ton’s Universal Law of Gravitation[22] which states that
any two objects exert a gravitational force of attraction on
each other. The direction of the force is along the line join-
ing the objects. The magnitude of the force is proportional
to the product of the gravitational masses of the objects,
and inversely proportional to the square of the distance be-
tween them:

���������
	��
�� � � (1)

where
���

is the gravitational force, m1 and m2 are the
masses of the two objects, r is the separation between the
objects, and G is the universal gravitational constant.

Our data shrinking preprocessing computes a simulated
movement of each data point in a dataset that reflects its
“attraction” to neighboring data points. The degree of at-
traction is inversely proportional to the distance between
points. This kind of data movement makes data points in
the original dataset properly move to the center of grav-
ity of the data group it belongs to. In this way the densi-
ties of the data groups are increased, and the outliers are
further isolated. We can also refer to the concept of in-
filtration mechanism[26] in which materials such as water

move from denser area to sparser one whereas in our case,
the data point will move to the denser area nearby. Those
data points which are far away should basically have no ef-
fect on the target data point and can be ignored. By only
aggregating the gravitation (or effect) surrounding the tar-
get data point, proper direction and distance the target data
point should move along can be acquired.

This data reorganization concept can be applied in many
fields such as pattern recognition, data clustering and sig-
nal processing to facilitate a large amount of data analysis
catetories.

3 Application of shrinking preprocessing to
multi-dimensional data analysis

To demonstrate the advantages of the data shrinking pre-
processing, we applied it to the multi-dimensional cluster-
ing problem which plays an important role in many fields
of business and science. We propose a grid-based approach
to data shrinking and cluster detection.
Choosing grids: Grid-based clustering methods depend
heavily on the proper selection of grid-cell size. Without
prior knowledge of the structure of an input data set, proper
grid-cell size selection is problematical. We propose a mul-
tiscale gridding technique to address this problem. Instead
of choosing a grid with a fixed cell size, we use a sequence
of grids of different cell sizes. Data shrinking and cluster
detection are conducted on these grids, the detected clus-
ters compared, and those clusters with the best quality are
selected as the final result.

Throughout this paper, we assume that the input data set�
is �������� 	 � �� � ������� � ������ �

which is normalized to be within the hypercube � � ��� � �
!
� � .

One straightforward solution for the acquirement of
multiscales is that we use a sequence of grids of exponen-
tially increasing cell sizes. Let "$#&% � and "'#)(+* be the min-
imal and maximal side lengths of grid cells, respectively.
Let , �

be the factor used for increasing cell sizes. Then
the side lengths of cells for the grids are, respectively,

"'#&% � �-"$#.% ��/ , � �0�1��� �$"$#.% ��/32 , � �54 � "'#)(+* �76�8 �.9 8 �
:<;>=@? �
(3)

The minimal side length of grid cells "$#&% � depends on the
granularity of the data, which is determined by the shortest
distance between two different points in the data.

However, the acquirement of the granularity of the data
is non-trivial. We should compute the distance between all
the point pairs in high dimensional data space which is far
beyond efficiency, and the exponential increase of the grid
scale may result in losing important grid scale candidates
which may yield good clustering results.

We applied a simple histogram-based approach to get
reasonable grid scales for data-shrinking process. We
scanned the input � -dimensional data set

�
once and get

the set of histograms, one for each dimension:A����CB 	 � B � �����1� � B �
� �

Each bin of each histogram denotes the number of data
points in a certain segment on this histogram.

We set up a number � as a quantity threshold. It is used
in the following algorithm to help generate Density Spans.
Here we give the definition of density span which will
help understand our approach:

Definition 1: A density span is a combination of con-
secutive bins’ segments on a certain dimension in which
the amount of data points exceeds � .

For each histogram
B % , i=1,...,d, we sort its bins based

on the number of data points they contain in descending
order. Then we start from the first bin of the ordered bin set,
merge it with its neighboring bins until the total amount of
data points in these bins exceeds � . Thus a density span is
generated as the combination of the segments of these bins.
The operation is continued until all the non-empty bins of
this histogram is in some density spans. Each histogram
has a set of density spans.

Figure 2: An example of density span acquirement

Figure 2 shows an example of this density span genera-
tion operation. Here we just demonstrate two density spans
on this histogram although there are more. Bin 21 is the one
with largest amount of data points. We start from Bin 21,
merge it with its neighbors until the amount of data points
included exceeds � . Thus density span 1 is generated. Bin
7 has the second largest amount of data points. Density
span 2 is generated starting from bin 7.

We regard density spans with similar sizes as identical
density spans. Once we get the set " of all the density
spans from all the histograms, we sort them based on their
frequencies in set " . We choose first " � density spans as
the multiple scales for the following procedure. In other
words, those density spans which appear often in set " are
chosen. Algorithm 1 describes the procedure of the density
span generation on a certain dimension.

Algorithm 1 (Density span generation)
Input: histogram

B %
Output: Density span set of

B %
1) Sort the bins of

B % in the descending order;
2) Beginning from the first bin of the ordered

bin set, merge it with its neighbors until the
total amount of data points included exceeds � ;

3) Repeat step 2 until all non-empty bins are in
some Density Spans;

4) Output the density span set.

The value � depends on the size of the input data set�
. Normally it can be set as a certain percentage of the

amount of total data points in
�

. There is a balance in
choosing a value for " � : a smaller " � can increase the pre-
cision of cluster detection, while a larger " � can save time.
The time complexity for this method is determined by the
dimensionality � of

�
and the amount of bins � �

in each
histogram. The time required to perform Algorithm 1 is� 2 � ������� � � � .

The proposed multiscale gridding scheme not only facil-
itates the determination of a proper cell size but also offers
advantages for handling data sets with clusters of various
densities. For example, the data set in Figure 3 has three
clusters. The two clusters on the left have higher densi-
ties than the cluster on the right. The grid with a smaller
cell size (shown in solid lines) can distinguish the left two
clusters but fails to detect the right cluster, while the con-
verse is true for the grid with a larger cell size (shown in
dashed lines). For data sets of this kind, a multiscale grid-
ding method is needed to distinguish all clusters.

Figure 3: A data set with three clusters

4 Data Shrinking

In the data-shrinking step of the proposed method, each
data point moves along the direction of the density gradient
and the data set shrinks toward the inside of the clusters.
Points are “attracted” by their neighbors and move to create
denser clusters. This process is repeated until the data are
stabilized or the number of iterations exceeds a threshold.

The neighboring relationship of the points in the data
set is grid-based. The space is first subdivided into grid
cells. Points in sparse cells are considered to be noise or
outliers and will be ignored in the data-shrinking process.
Assume a dense cell 	 with neighboring cells surrounding
	 . Data shrinking proceeds iteratively; in each iteration,
points in the dense cells move toward the data centroid of
the neighboring cells. The iterations terminate if the aver-
age movement of all points is less than a threshold or if the
number of iterations exceeds a threshold.

The major motivation for ignoring sparse cells is com-
putation time. If the grid cells are small, the number of
non-empty cells can be

� 2�
 � , where

is the number of
data points. The computation of data movement for all non-

empty cells takes a length of time quadratic to the number
of non-empty cells, which is

� 2�
 � � . By ignoring sparse
cells in the data movement, dramatic time savings can be
realized.

4.1 Space subdivision

Given the side length
	� of grid cells, the hypercube � � � � � �

is subdivided into � � cells:
� 	 2�� 	 � � � �����1� � � � �

� �
� 	� �

� 	�� �� ��� �
� �� �

� ��� �� ��� ���1�
� �
�
�� �

�
� � �� �
	 � 	 � � � ���1��� � � � = � � � � �����1� � ��� � � � � (5)

Each cell 	 2�� 	 � � � ���1��� � � � � has a unique ID:2�� 	 � � � ���1��� � � � � . Two distinct cells 	 2�� 	 � � � ������� � � � � and
	 2�
 	 �
 � ������� �
 � � are neighboring cells if 	 ��� �
�� 	�� � for
all � � � �	� ���1��� � or � . The neighboring cells of a cell 	 are
also called the surrounding cells of 	 . This arrangement is
shown in Figure 4.

C

Figure 4: Surrounding cells (in gray) of the cell 	 (in
black)

For each data point
�� % , the cell containing the point can

be easily found; this cell is denoted as 	 :
��� 2 �� %5� . We then
sort the data points into their cells to find all nonempty cells
and the points contained by each. For each nonempty cell,
we compute its density, defined as a fraction of the number
of points in the cell over the volume of the cell. A cell
is called a sparse/dense cell if its density is less/not less
than a density threshold � �

� 	 . The selection of the density
threshold � �

� 	 will be discussed in Subsection 4.4, below.
Points in sparse cells are considered to be noise or outliers
and will be ignored in the data-shrinking process. We then
denote the set of dense cells as� :
 9 : 	 :
��� " :�� ��� 	 	 � 	 � ������� � 	 # � � (6)

For each dense cell 	 , the centroid of its points is com-
puted: � � � � 	 :
 � � 8 � � 2 	 � ���

���� 	 �� %��
� � (7)

where
���� % � �

���� 	 is the set of points in the cell. It is called
the data centroid of the cell 	 . Each dense cell contains its
own points and data centroid. The computational process
involved in finding the dense cells, their points, and their
centroids takes time

� 2�
 ��� �
 � . The space occupied by
the dense cells is

� 2�
 � . The process of space subdivision is
repeated at the beginning of each data-movement iteration.

In high-dimensional spaces, ignoring the sparse cells
can be problematical. Figure 5(a) illustrates four points in
a two-dimensional grid. The four points are clustered near
a vertex of the grid and are separated in four neighboring
cells. In the � -dimensional Euclidean space � � , there may

be � � points distributed in a similar manner. These points
should have an influence on the data-shrinking process but
will be ignored because they are separated in different cells.
To address this issue, we choose two interleaved grids for
a given cell size. An example of such interleaved grids is
given in Figure 5(a) and (b). The data-shrinking process is
conducted alternately on the two grids.

b

d

a

c

(a) (b) (c)

Figure 5: (a) Points � � � � �
� and � are located near a ver-
tex of the grid and are separated in four neighboring cells;
(b) another grid with the same cell size; (c) the two grids
(shown respectively by solid and dashed lines) in the same
plane

4.2 Data movement in a single iteration

Data movement is an iterative process intended to move
data gradually toward a goal of increased cluster density.
This data-movement process is conducted alternately on
two interleaved grids in alternating iterations.

In each iteration, points are “attracted” by their neigh-
bors and move toward the inside of the clusters. Each point
in a cell 	 has neighboring points in 	 or in the cells sur-
rounding 	 . The movement of a point can be intuitively
understood as analogous to the attraction of a mass point
by its neighbors, as described by Newton’s Law of Univer-
sal Gravitation. Thus, the point moves toward the centroid
of its neighbors. However, data movement thus defined can
cause an evenly-distributed data set to be condensed in a
piece-wise manner. For example, for each point in Figure
6(a), the centroid of its neighbors is in the center of a grid
cell, causing all points to be attracted to the centers of the
grid cells. After the data-movement procedure, the data set
in Figure 6(a) becomes the isolated points shown in Figure
6(b).

(a)

(b)

Figure 6: A part of a data set (a) before movement and (b)
after movement. The arrows in (a) indicate the direction of
motion of the points. The grid cells are shown in dashed
lines.

Our solution to the above problem is to treat the points in
each cell as a rigid body which is pulled as a unit toward the
data centroid of those surrounding cells which have more
points. Therefore, all points in a single cell participate in
the same movement. This approach not only solves the
problem of piece-wise condensing but also saves time.

Formally, suppose the data set at the beginning of
�
th

iteration becomes ���� %	 � �� %� ���1��� � �� %� � �
and the set of dense cells is� :
 9 : 	 :
��� " :�� % ��� 	 %	 � 	 %� �����1� � 	 %# � � (9)

Respectively, we assume that the dense cells have
 	 �
 � ���1��� �
 # �

points and their data centroids are�� 	 � �� � ���1��� � �� # � (11)

For a dense cell 	 %� , we suppose that its surrounding dense
cells are 	 %��� for � � � � � �����1� ��� . Then the data centroid of
these surrounding cells is

��� � � 	
 � � � �� � �
� � � � 	
 ��� � (12)

which is denoted as
����� . The movement for cell 	 %� in the�

th iteration is

	 8�
 :��
:
 � 2 	 %� � �
�
 � ����� � �� � � 6�� ����� � �� � ��� ��#�� � 	�

�
 � ��� � � 	
 �����
 ���
� 8 � B : � � � 9 : � (13)

where � ����� � �� � � is the distance between the two centroids����� and
�� � , ��#�� is a threshold to ensure that the movement

is not too small, and
	� is the side length of grid cells, as dis-

cussed in last subsection. �'#�� is usually a number between
� ��� and � ��� ��� � . Formula 13 states that, if the distance
between

�� �� and
�� � is not too small and the surrounding

cells have more points, then cell 	 %� will be translated such
that its data centroid is moved to the data centroid of the
surrounding dense cells; otherwise, cell 	 %� remains static.
The movement for each cell indicates the approximate di-
rection of the density gradient around the cell. After move-
ment, a data point

��
in cell 	 %� is moved to

�� � ����� � �� � .
To compute the movement for a dense cell 	 %� , we

browse the set of dense cells to find its surrounding cells
and then calculate the movement. The computation takes� 2 � � time. It then takes

� 2�
 � � time to update the points
in the cell. Therefore in the

�
th iteration, the time used to

move all points is
� 2 � � �
 � . Thus, the time required for

the
�
th iteration is

� 2 � � �
 � � �
 � , where
� 2�
 �����
 � time

is used for the subdivision of space.
Two examples are given in Figure 7. Geometrically, the

data movement which occurs in a single iteration has two
effects. For a data set covering a manifold 1 with a bound-
ary in the � -dimensional Euclidean space � � , data move-
ment squeezes the manifold from its boundary (see Figure
7(a)). For the interior of a manifold covered by a data set,
data movement smoothes out the corners (see Figure 7(b)).

1A manifold is a topological space which is locally Euclidean.

(b)(a) A grid cell

Figure 7: Movement of two data sets which cover (a) a
region and (b) a closed line, respectively.

4.3 Termination of shrinking

Ideally, for a data set covering a manifold with a boundary,
the shrinking process pushes the boundary points inward
until the manifold is reduced to its skeleton. If the skeleton
is also a manifold with a boundary, it is skeletonized again.
This process is repeated until a manifold with no bound-
ary is produced, as shown in Figure 8. However, most data
sets from real-world applications do not have well-defined
shapes in high-dimensional spaces. The data sets resulting
from the shrinking process may also not have well-defined
shapes. In general, the shrinking process produces indi-
vidual clusters which are condensed and therefore widely
separated, facilitating cluster detection.

Figure 8: Repeated skeletonization

The average movement of all points in each iteration is
checked to determine the stability of the data set. Suppose
that in the

�
th iteration, the movements for the

points are�
 	 � �
 � ���1��� � �
 � , respectively. Then the average movement is����! #"%$'&� � $� . If the average movements for two consecutive

iterations are both less than �$(#�� � 	� , where �$(#�� is a
threshold, then the data set is considered stabilized and the
shrinking process is terminated.

4.4 Time and space analysis

Throughout the shrinking process, we need to keep track
of the locations of all points, which collectively occupy� 2�
 � space. Data points are assigned to grid cells. Each
dense grid cell serves as a container for its points, together
with their centroid and movement. The data structure rep-
resented by the dense cells occupies

� 2�
 � space; therefore,
the total space needed is

� 2�
 � . The time required for each
iteration is

� 2 � � �
 �����
 � , where � is the number of
dense cells. Since the maximum number of iterations is
��%)(, the total running time is

� 2 �'%*(2!	 � �
 ��� �
 ��� , where	
is the maximum number of dense cells in all iterations.
The value M, representing the maximum number of

dense cells, has a significant impact on running time. M
can be controlled through the selection of a density thresh-
old � �

� 	 . The number of data points in a dense cell must
be no less than the product of � �

� 	 and the volume of the
cell, or � �

� 	 � 2 	� � � . Thus the number of dense cells must
not exceed

�+-, � "�.�/ "021 , . Given a desired value 3	 , we can

choose a value � �
� 	 such that

�+-, � "4.5/ "021 , � 3	 , thus en-

suring that the number of dense cells will not exceed 3	 .
However, if the densities of most cells happen to fall below
a threshold � �

� 	 chosen via this method, the data-shrinking
process will be unproductive. Alternatively all non-empty
cells can be sorted by the number of data points they con-
tain. The density threshold � �

� 	 is then chosen so that the
first 3	 cells are dense cells. Cases may occur where, for
a given grid-cell side length 	� , most non-empty cells will
be very sparse, containing only one or two points each. In
such instances, the side length

	� is too small and a larger-
scale grid should be used.

5 Cluster detection
Since the data-shrinking process generates individual clus-
ters which are condensed and widely separated, it can be
used as a preprocessing with any cluster-detection algo-
rithm. In this paper, we use a simple grid-based cluster-
detection method to test the data-shrinking process.

For a given cell-side length
	� , after the data-shrinking

process is performed on the input data set, we find the dense
cells. Neighboring dense cells are connected and a neigh-
boring graph of the dense cells is constructed. Each con-
nected component of the neighboring graph is a cluster.

The cluster-detection method is conducted on two in-
terleaved grids. This avoids the problem caused by points
clustered near a vertex of a grid and separated in dif-
ferent cells, as discussed in Subsection 4.1. Let � �

� �
be a density threshold. A cell in either of the two in-
terleaved grids is called a dense cell if its density is no
less than � �

� � . Let
� 	 	 and

� 	 � be the dense cell
sets of the two interleaved grids, respectively. Two cells
	 	 = � 	 	 and 	 � = � 	 � are called neighbors if
	 	�� 	 ������

. The neighboring graph of dense cells,�
, is a pair

� ��� � 	 		� � 	 � � , � , where , is the
set of neighboring pairs in

� 	 		� � 	 � . The edge set
, can be represented by a matrix. Let 	 � 	 	 	 � � 	 ,
	 � 	 � 	 � ��� , and

� 	 		� � 	 � � � 	 % � # "�
$#
�% � 	 . Then, � 2 , % � � / # "
'# � 1 .�/ # "
'# � 1 , where

, % � ��� � if 	.% and 	 � are neighbors;� otherwise. (14)

We then run a breadth-first search algorithm (see pages
469-472 in [7]) to find the components of graph

�
.

The time and space required for the breadth-first search
algorithm are both

� 2 	 � 	 	�� � 	 � 	 � 	 , 	 � . To construct
graph

�
, the time and space needed are

� 2�2 � 	 � �
� � � � .
The total time and space required for the cluster-detection
algorithm are therefore

� 2�2 � 	�� �
� � � � . Since the data-
shrinking process is performed first, the number of dense
cells, defined as � 	 �@�
� , is greatly reduced, which makes
our cluster-detection algorithm particularly useful for real
data sets of large size.

6 Cluster evaluation and selection
Most conventional clustering validity measurements [6, 17,
18, 19] evaluate clustering algorithms by measuring the

overall quality of the clusters. However, each clustering
algorithm has its advantages and disadvantages. For a data
set with clusters of various sizes, densities, or shapes, dif-
ferent clustering algorithms are best suited to detecting the
clusters of different types in the data set. No single ap-
proach combines the advantages of the various clustering
algorithms while avoiding their disadvantages. In this sec-
tion, we introduce a cluster-wise measurement which pro-
vides an evaluation method for individual clusters.

A cluster in a data set is a subset in which the included
points have a closer relationship to each other than to points
outside the cluster. In the literature [6, 17], the intra-
cluster relationship is measured by compactness and the
inter-cluster relationship is measured by separation. Com-
pactness is a relative term; an object is compact in compar-
ison to a looser surrounding environment. We use the term
compactness to measure the quality of a cluster on the basis
of intra-cluster and inter-cluster relationships. This defini-
tion of compactness is used to evaluate clusters detected at
different scales and to then select the best clusters as the
final result.

6.1 Compactness graphing

We first define compactness using a weighted graph. In this
subsection, let

� ����� � , � be a fixed graph, where
�

is the vertex set and , is the edge set. Let ��� ,�� �

be a weight function on the edge set. We use the terms in-
ternal connecting distance (ICD) and external connecting
distance (ECD) to measure the closeness of the internal and
external relationships, respectively. Compactness is then
defined as the ratio of the external connecting distance over
the internal connecting distance.

Definition 2: For a connected subset " of
�

, let	 " � 2 " � be a minimum spanning tree of the minimal sub-
graph containing " . The internal connecting distance
(ICD) of " , denoted as � 	 � 2 " � � � � � , is defined as the
length of a longest edge of

	 " � 2 " � .2 The external con-
necting distance (ECD) of " , denoted as , 	 � 2 " � � � � � ,
is defined as the length of a shortest edge connecting" and

� � " . The compactness of " , denoted as
	-8 ��� � � �
 : 9 9 2 " � � ��� � , is defined as

	-8 ��� � � �
 : 9 9 2 " � � ��� � � , 	 � 2 " � � ��� �� 	 � 2 " � � � ��� � (15)

" is called a compact vertex set if its compactness is
greater than one.

The definition of the external connecting distance is
quite straightforward. The internal connecting distance can
be interpreted as the shortest distance which maintains a
connected set. For a connected subset " of

�
, if we re-

move all edges longer than � 	 � 2 " � � ��� � from
�

, then" remains connected because none of the edges of a min-
imum spanning tree

	 " � 2 " � containing " is longer than� 	 � 2 " � � ��� � ; if we remove all edges not shorter than

2It can be proved that, for two minimum spanning trees of a given
graph, their longest edges are equal in length.

� 	 � 2 " � � ��� � from
�

, then " will be disconnected. To
evaluate a data set in a low-dimensional Euclidean space,
we first construct its Delaunay graph [3]. Compactness is
then defined on the Delaunay graph. There is no efficient
way to construct Delaunay graphs for data sets in high-
dimensional spaces. However, we can define compactness
on the complete graphs of these data sets if they are of mod-
erate size.

6.2 Grid-based compactness

The definition of compactness offered above suffers from
two drawbacks. First, it is sensitive to noise. For exam-
ple, the compactness of the two clusters in Figure 9 is low-
ered by the scatter of the noisy points. Second, as noted
above, Delaunay graphs can not be efficiently constructed
for high-dimensional spaces. In these instances, compact-
ness must be defined on complete graphs, a process which
requires quadratic space and time. These two problems can
be easily remedied with a grid-based approach. Given an
input data set and a defined scale, we first find the dense
cells of two interleaved grids at this scale. Compactness is
then defined on the complete graph of the dense cells. Be-
cause the sparse cells are ignored, running time is reduced
and the result is not noise-sensitive.

Figure 9: Two clusters with noisy points in between

A more detailed description of the determination of
compactness is as follows. We first condense the input data
by running the shrinking process with a selected cell size.
Then, as we discussed in Section 5, clusters are detected
as the connected components of the neighboring graph of
the dense cells. Let

� 	 be the set of dense cells produced
by the shrinking process. We define the complete graph of� 	 as

�>� ��� � 	 � , � , where , is the set of pairs of
cells in

� 	 . The length of each edge in , is defined as the
Euclidean distance between the data centroids of the two
cells connected by the edge. The compactness of each de-
tected cluster is defined on the complete graph

�>�
. Com-

pactness as defined in this process is the compactness of
the clusters of the data set after shrinking, termed compact-
ness after shrinking. However, this measure of compact-
ness may not truly represent the quality of the clusters in
the original data. As an alternative, we can map the clus-
ters to their original locations in the space and then measure
their compactness, giving a measure of compactness before
shrinking.

To compute the compactness of each cluster, we first
compute its internal and external connecting distances. To
compute the internal connecting distance of a specific clus-
ter with
 cells, first construct the minimum spanning tree
of the cluster using Prim’s algorithm (see pages 505-510 in
[7]). We then browse the edge set of the minimum spanning
tree to find the internal connecting distance. The computa-
tion takes

� 2
 � � time. To compute the external connecting

distance, we compute the shortest distance connecting cells
in the cluster with cells outside the cluster. The computa-
tion takes

� 2
 � 2 	 � 	 	 �
 ��� . The time required to compute
the compactness of the cluster is

� 2
 � 	 � 	 	 � , and the to-
tal time to compute the compactness of all clusters is thus� 2 	 � 	 	 � � .
6.3 Evaluation and selection of multiscale clusters

In evaluating a given data set, we run the data-shrinking
and cluster-detection processes using a sequence of grids of
selected cell sizes as mentioned in Section 3. We compute
the compactness-before-shrinking of the clusters detected
at all scales. Those clusters with compactness exceeding a
specified threshold will be output as the final result.

Within the final result, a cluster can be a subset of an-
other cluster. For example, the clusters of the data set in
Figure 10(a) form a tree in Figure 10(c). For all clusters to
form a tree, one of the following must be true for any two
clusters 	 	 and 	 � : 	 	�� 	 � , 	 ��� 	 	 , or 	 		� 	 � � �

.
Furthermore, for any graph

� ��� � � , � with a weight
function � on the edge set, if two subsets " 	 and " � of�

have compactnesses greater than one, we can prove that" 	�� " � , " ��� " 	 , or " 		� " � � �
. In situations where an

inclusive relationship exists, all compact vertex sets form a
tree.

A B C

B

A

C

(a) A data set (b) Clusters (c) Cluster tree

Figure 10: The cluster tree of a data set

Our definition of compactness can be used to unify mul-
tiple clustering algorithms, exploiting their advantages and
avoiding their disadvantages. Multiple clustering algo-
rithms can be run on a dataset, the compactness of the de-
tected clusters compared, and the best clusters output.

7 Experiments

Comprehensive experiments were conducted to assess the
accuracy and efficiency of the proposed approach. Our ex-
periments were run on SUN ULTRA 60 workstations with
the Solaris 5.8 system. To demonstrate the functioning
of the shrinking process, we will first discuss experiments
conducted using a 2D data set. Trials using data sets from
real-world applications comparing to other algorithms such
as CURE and OPTICS are offered as a demonstration of the
accuracy of the proposed approach. Finally, experiments
are conducted to demonstrate how the shrinking prepro-
cessing solely will improve the performance of well known
algorithms such as OPTICS, CURE and BIRCH.

In our experiments, �'#�� is set at � ��� � � � , where �
is the number of dimensions. � �

� 	 is defined dynamically
as one-third of the average density of the nonempty cells

in each iteration; � �
� � is defined similarly. Other parame-

ters are optimized as follows. For each parameter, we se-
lect several candidates, run the algorithm on the candidate
parameters, and compare the compactness of the detected
clusters. The best candidates are then selected as the values
for these parameters.

7.1 Experiments on 2D datasets

We first conducted experiments on 2-dimensional data sets
as intuitive demonstrations for data shrinking preprocess-
ing procedure. Due to the space limitation, here we just
present the shrinking result on one data set

� " 	 which has
2682 points including noisy data. There are two clusters
in the data with one is half-embraced by the other. The
shrinking process generates two well-separated clusters of
arbitrary shape and filters outliers, thus facilitating cluster
detection.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11: Shrinking process on the data set
� " 	 with cell

size � ��� �0� � � . (a) 2-dimensional data set
� " 	 , (b) the data

set after the shrinking process

7.2 Experiments on real data

Finally, we demonstrate that our algorithm has been found
to yield encouraging results in real-world clustering prob-
lems. We tested our approach on three data sets from real
applications and demonstrate its accuracy for clustering
compared to CURE and OPTICS. The accuracy of a de-
tected cluster was measured according to precision and re-
call. For a detected cluster 	 �% and a real cluster 	��% , we

define the precision of 	 �% with respect to 	��% as
� ����	� ��
� �� � �� �

and the recall as
� ������ ��
� �� �
� � . 	 �% is called a corresponding

cluster of 	 �% if the precision and recall of 	 �% with respect
to 	
�% are high.

7.2.1 Algorithms

CURE: We used the implementation of CURE provided to
us by Michael Steinbach from University of Minnesota. It
requires three input parameter options: -k option is for the
number of clusters, - � is for alpha parameter of CURE, and
-r is the number of representative points of the cluster. To
compare CURE with our algorithm fairly, we applied dif-
ferent values of those parameters extensively and adopted
the best clustering results. Since we used CURE mainly to
compare the accuracy of its clustering result with ours, we
didn’t take consideration of the partition number parameter� for speedup mentioned in [10].

OPTICS: We adopted the implementation of OPTICS
provided by Peer Kroeger. OPTICS does not produce a

clustering of a data set explicitly. It instead creates an aug-
mented ordering of the data set representing its density-
based clustering structure. We can roughly estimate the
generated clusters by the observation of its results. Since
OPTICS claims that the reachability-plot is rather insen-
sitive to the input parameters (the generating distance eps
and the value for MinPts)[4], we set the parameter values
for OPTICS just to be “large” enough to yield a good result.

BIRCH: We also used the implementation of
BIRCH[27] to show how shrinking preprocessing will
affect the performance of BIRCH. The implementation
performs preclustering and then uses a centroid-based
hierarchical clustering algorithm. The parameter values
are set to the default values suggested in [27].

Our algorithm: Our clustering version is based on the
algorithm described in previous sections which includes
Data Shrinking, Cluster Detection and Cluster Evaluation
and Selection. First the testing data sets are shrunk so that
natural clusters become more condensed, resulting in po-
tentially much easier and more efficient cluster detection.
Then clusters are detected at different scales. A cluster-
wise evaluation measurement is applied to compare clus-
ters at those scales and the final result is acquired.

7.2.2 Data sets and clustering results

The three data sets were obtained from UCI Machine
Learning Repository [5]. The first data set, Wine Recog-
nition data, contains the results of a chemical analysis of
wines grown in the same region in Italy but derived from
three different cultivars. It contains 178 instances, each
of which has 13 features, including alcohol, magnesium,
color intensity, etc. The data set has three clusters, labelled
as 	
�% , with

� � � �	� ��� . Our algorithm detected three cor-
responding clusters, labelled as 	 �% , with

� � � �	� ��� . Table
1 shows the clustering results of our algorithm.

i=1 i=2 i=3
	 ���� 	 59 71 48
	 ����
	 53 52 46
	 ���� ������ 	 53 51 43
precision(%) 100 98.08 93.48
recall(%) 89.83 71.83 89.58

Table 1: Clustering results of our algorithm for Wine data

We applied CURE algorithm on the Wine Recognition
data set, setting parameter values to different values exten-
sively. We set the cluster number parameter k to 3 based on
the ground truth of the Wine Recognition data set, set the
shrinking factor � to the set of [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1], and set the number of representative points
r to the set of [2, 4, 5, 10, 20, 30, 40, 50, 60]. We found that
the clustering result is best when the (� , r) pair is (0.3, 30),
(1, 20), (0.9, 10) or (0.5, 40). Because of space limitation,
here we just present one of the best results of CURE. Table
2 shows the clustering results of CURE algorithm when �
is equal to 0.3, and r is 30.

Figure 12(a) shows the cluster-ordering of OPTICS for
the Wine data. From the figure we can see there are roughly

i=1 i=2 i=3
	 ���� 	 59 71 48
	 ����
	 72 50 46
	 ���� � ���� 	 54 41 26
precision(%) 75.00 82.00 56.52
recall(%) 91.52 57.77 54.16

Table 2: Clustering result of CURE for Wine data as � =0.3
and r=30

70

80

90

100

110

120

130

140

150

160

170

0 20 40 60 80 100 120 140 160

"wine.oo.ascii" using 0:5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300

"ecoli.oo.ascii" using 0:5

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

"pendigits.oo.ascii" using 0:5

(a) (b) (c)
Figure 12: Testing result of OPTICS for (a) Wine data with
eps=200 and MinPts=10, for (b) Ecoli data with eps=100
and MinPts=10 and for (c) Pendigits data with eps=1000
and MinPts=100.

9 clusters generated.
We can see that our algorithm’s accuracy for clustering

is better than that of CURE based on the comparison be-
tween table 1 and 2.

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8� ������
143 77 52 35 20 5 2 2� ���� �
135 22 68 49 11 N/A N/A N/A� � ����	������
130 22 43 32 10 N/A N/A N/A

precision(%) 96.30 100 63.24 65.31 90.91 N/A N/A N/A

recall(%) 90.91 28.57 82.69 91.43 50.00 N/A N/A N/A

Table 3: Clustering result of our algorithm for Ecoli data

The second data set, Ecoli, contains data regarding Pro-
tein Localization Sites. This set is made up of 336 in-
stances, with each instance having seven features. Table
3 presents the clustering results. The real clusters
��
 ,
��� ,
and
��� do not have corresponding clusters detected by our
algorithm. These clusters have few points, located in sparse
cells, and thus are ignored and discarded in the shrinking
and cluster-detection processes of our algorithm.

We applied CURE algorithm on the Ecoli data set, set-
ting parameter values to different values extensively. Ac-
cording to the ground truth of the Ecoli data set, there are
8 clusters in it. However, three of the clusters are too small
which have only 2, 3 and 5 data points in them respectively.
So we set the cluster number parameter k to 5(we also set
k to 8 and found that the clustering result is not as good as
those with k as 5), set the shrinking factor � to the set of
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1], and set the
number of representative points r to the set of [2, 4, 6, 8,
10, 15, 20, 30, 40, 50, 60, 70]. We found that the clustering
result is best when the (� , r) pair is (0.2, 30), (0.9, 15) or
(0.8, 20). Because of space limitation, here we just present
one of the best results of CURE. Table 4 shows the cluster-
ing results of CURE algorithm when � is equal to 0.2, and
r is 30.

Our algorithm’s accuracy for clustering on Ecoli data
is also better than that of CURE based on the comparison

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8� � �� �
143 77 52 35 20 5 2 2� ���� �
120 67 32 N/A N/A 3 N/A N/A� ���� �	� �� �
115 41 30 N/A N/A 3 N/A N/A

precision(%) 95.83 61.19 93.75 N/A N/A 100 N/A N/A

recall(%) 80.41 53.24 57.69 N/A N/A 60.00 N/A N/A

Table 4: Clustering result of CURE for Ecoli data as � =0.2
and r=30

between table 3 and 4.
Figure 12(b) shows the cluster-ordering of OPTICS for

the Ecoli data. From the figure we can see there are roughly
12 clusters generated.

The third data set is Pendigits, or Pen-Based Recogni-
tion of Handwritten Digits. It was created by collecting
250 samples from 44 writers. It has two subsets used,
respectively, for training and testing. For the purpose of
this experiment, we have combined these two subsets, re-
sulting in a combined dataset with 10992 instances, each
containing 16 attributes. The data set has ten clusters,
���
for ��������������� ���!��" . Our algorithm detected eight clus-
ters
�#� for �$�%�������&� � ���(' . The first six detected clusters,

 #) through
 #
 , correspond to
 �) through
 �
 respectively.
The seventh detected cluster,
$#� , corresponds to
��� and

��� ; and the last detected cluster,
$#� , corresponds to
��*
and
 �),+ . Table 5 shows the clustering results for this data
set. These results demonstrate that our approach can effec-
tively detect clusters in data sets from real applications.

We applied CURE algorithm on the Pendigits data set,
setting parameter values to different values extensively. We
set the cluster number parameter k to 10, set the shrinking
factor � to the set of [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1], and set the number of representative points r to
the set of [2, 5, 8, 10, 20, 30, 50, 70, 100, 200, 300, 500].
We found that the clustering results are best when the (� ,
r) is set to (0.4, 50), (0.9, 5) or (0.9 8). Because of space
limitation, here we just present one of the best results of
CURE. Table 6 shows the best clustering results of CURE
algorithm.

Again our algorithm’s accuracy for clustering on
Pendigits data is better than that of CURE based on the
comparison between table 5 and 6.

Figure 12(c) shows the cluster-ordering of OPTICS for
the Pendigits data. From the figure we can see there are
roughly 8 clusters generated which is similar to the clus-
tering result of our algorithm. However, the sizes of the
clusters do not match the ground truth very well.

7.3 Experiments on how shrinking preprocessing im-
proves clustering algorithms

Finally, we will demonstrate how the shrinking preprocess-
ing will solely improve the performance of well known
clustering algorithms.

OPTICS: First we will show the difference between the
testing results of OPTICS on wine data and pendigits data.

From Figure 13 we can see that after shrinking prepro-
cessing, the cluster-ordering is much more significant than
that without shrinking preprocessing. And the curve shown

i=1 i=2 i=3 i=4 i=5 i=6 � ��� � ��� � ��� � � ���
j=1 j=2 j=3 j=4 j=5 j=6 � ��� � ��� � ��� � ���

	 ���� 	 1143 1144 1055 1056 1055 1055 1143 1055 1144 1142
	 ���� 	 1098 1179 629 1051 480 833 2379 2379 2376 2376
	 � �� � � �� 	 1094 1084 625 1046 480 606 709 1049 1132 912
precision(%) 99.63 91.94 99.36 99.52 100 72.75 29.80 44.09 47.64 38.38
recall(%) 95.71 94.76 59.24 99.05 45.50 57.44 62.03 99.43 98.95 79.86

Table 5: Clustering result of our algorithm for Pendigits data. For the last four columns, the corresponding relationship is
two-to-one: two real clusters correspond to one detected cluster.

i=1 i=2 i=3 i=4 i=5 i=6 � ��� � ��� � ��� � � ���
j=1 j=2 j=3 j=4 j=5 j=6 � ��� � ��� � ��� � ���

	 ���� 	 1143 1144 1055 1056 1055 1055 1143 1055 1144 1142
	 ���� 	 897 758 462 835 125 28 4121 4121 4121 4121
	 � �� � � �� 	 897 715 461 835 125 28 816 885 954 780
precision(%) 100 94.32 99.78 100 100 100 19.80 21.47 23.14 18.92
recall(%) 78.47 62.50 43.69 79.07 11.84 2.65 71.39 83.88 83.39 68.30

Table 6: Clustering result of CURE for Pendigits data as � =0.4 and r=50 . For the last four columns, the corresponding
relationship is four-to-one: four real clusters correspond to one detected cluster.

70

80

90

100

110

120

130

140

150

160

170

0 20 40 60 80 100 120 140 160

"wine.oo.ascii" using 0:5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160

"wine_shrink.oo.ascii" using 0:5

(a) (b)
Figure 13: Testing result of OPTICS for Wine data (a) with-
out shrinking preprocessing (b) after shrinking preprocess-
ing

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

"pendigits.oo.ascii" using 0:5

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

"pendigits_shrink.oo.ascii" using 0:5

(a) (b)
Figure 14: Testing result of OPTICS for Pendigits data (a)
without shrinking preprocessing (b) after shrinking prepro-
cessing

on Figure 13 (b) matches the ground truth (3 clusters of 59,
71, 48 data points) much better than the original curve on
Figure 13 (a). The reason is that after shrinking prepro-
cessing, the clusters are more condensed and outliers are
further isolated which make the clustering algorithms more
efficient and more effective.

Figure 14 shows the curve difference of cluster-ordering
without shrinking preprocessing and after shrinking pre-
processing. Again after shrinking preprocessing, the
cluster-ordering is much more significant than that without
shrinking preprocessing.

CURE: We tested the CURE algorithm on several data
sets after shrinking preprocessing to see its effect. Table 7
shows the clustering results of CURE algorithm on Wine
data after shrinking preprocessing when � is equal to 0.3,
and r is 30. Comparing Table 7 to the original clustering re-

sult Table 2, we can see that the recalls of the clusters gen-
erated from CURE on the Wine data after shrinking prepro-
cessing are comparable to those generated from CURE on
the original Wine data, while the precisions of the clusters
are much better than the original ones.

Table 8 shows the clustering results of CURE algorithm
on Ecoli data after shrinking preprocessing when � is equal
to 0.2, and r is 30. The qualities of the clusters generated
from CURE on the Ecoli data after shrinking preprocessing
are better than those of the original clusters(see Table 4).

i=1 i=2 i=3
	 ���� 	 59 71 48
	 ����
	 48 43 29
	 ���� � ���� 	 48 43 28
precision(%) 100 100 96.55
recall(%) 81.25 60.56 58.33

Table 7: Clustering result of CURE for Wine data after
shrinking preprocessing as � =0.3 and r=30

BIRCH: We also used the implementation of BIRCH
provided to us by the authors of [27] to show how shrink-
ing preprocessing will affect the performance of BIRCH
on different data. Due to the space limitation, here we just
show the testing result on ecoli data mentioned in previous
sections. The ground truth is that the ecoli data contains 8
natural clusters, with the sizes of 143, 77, 52, 35, 20, 5, 2,
2. First we applied the BIRCH algorithm directly on the
data, resulting in 8 clusters with the sizes of 133, 93, 74,
24, 6, 3, 2, 1. Then we applied BIRCH again on the data
with shrinking preprocessing, and get 8 clusters with the
sizes of 145, 100, 70, 9, 6, 3, 2,1. From the comparison
of the two different clustering results, we can see that the
major clusters generated from the shrinking preprocessing
involved version match the ground truth better than those
generated from the original BIRCH algorithm.

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8
	 ���� 	 143 77 52 35 20 5 2 2
	 ����
	 109 72 36 N/A 4 N/A N/A N/A
	 ���� � ���� 	 105 44 34 N/A 4 N/A N/A N/A
precision(%) 96.33 61.11 94.44 N/A 100 N/A N/A N/A
recall(%) 73.42 57.14 65.38 N/A 20.00 N/A N/A N/A

Table 8: Clustering result of CURE for Ecoli data after shrinking preprocessing as � =0.2 and r=30

8 Conclusion and discussion
In this paper, we first presented a novel data preprocess-
ing technique called 9 B � �
 � �
�� which optimizes the inner
structure of data inspired by the Newton’s Universal Law
of Gravitation. Then, we applied it and proposed a novel
data analysis method which consists of three steps: data
shrinking, cluster detection, and cluster evaluation and se-
lection. The method can effectively and efficiently detect
clusters of various densities or shapes in a noisy data set of
any dimensions.

The data-shrinking process still poses many open issues.
As discussed above, the shrinking process as applied to a
data set of well-formed shape is a repeated skeletonizing
process which transforms the data set into a shape with
no boundary. However, most real-world, high-dimensional
data sets do not have well-defined shapes. It is therefore
of both theoretical and practical interest to fully understand
how the shape of a real data set is transformed during the
shrinking process. This understanding would provide in-
sights into the geometrical and topological properties of
high-dimensional data sets. An analytical method is also
needed to estimate the number of iterations necessary for
real data to reach stability during the shrinking process.
Such a method could open the way to a faster shrinking
process.

References
[1] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park. Fast

algorithms for projected clustering. In Proceedings of the ACM
SIGMOD CONFERENCE on Management of Data, pages 61–72,
Philadelphia, PA, 1999.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
subspace clustering of high dimensional data for data mining appli-
cations. In Proceedings of the ACM SIGMOD Conference on Man-
agement of Data, pages 94–105, Seattle, WA, 1998.

[3] N. Ahuja. Dot pattern processing using voronoi neighborhoods.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
4(3):336–343, May 1982.

[4] Ankerst M., Breunig M. M., Kriegel H.-P., Sander J. OPTICS: Or-
dering Points To Identify the Clustering Structure. Proc. ACM SIG-
MOD Int. Conf. on Management of Data (SIGMOD’99), Philadel-
phia, PA, pages 49–60, 1999.

[5] S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. Univer-
sity of California, Irvine, Department of Information and Computer
Science.

[6] Chi-Farn Chen, Jyh-Ming Lee . The Validity Measurement of Fuzzy
C-Means Classifier for Remotely Sensed Images. In Proc. ACRS
2001 - 22nd Asian Conference on Remote Sensing, 2001.

[7] T. H. Cormen, C. E. Leiserson, , and R. L. Rivest. Introduction to
Algorithms. The MIT Press, 1990.

[8] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. H. Heller-
stein, Y. Ioannidis, H. V. Jagadish, T. Johnson, R. Ng, V. Poosala, K.

A. Ross, and K. C. Servcik. The New Jersey data resuction report.
Bulletin of the Technical Committee on Data Engineering, 1997.

[9] M. Ester, K. H.-P., J. Sander, and X. Xu. A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining, 1996.

[10] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering
algorithm for large databases. In Proceedings of the ACM SIG-
MOD conference on Management of Data, pages 73–84, Seattle,
WA, 1998.

[11] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algo-
rithm for categorical attributes. In Proceedings of the IEEE Confer-
ence on Data Engineering, 1999.

[12] A. Hinneburg and D. A.Keim. An efficient approach to clustering
in large multimedia databases with noise. In Proceedings of the
Fourth International Conference on Knowledge Discovery and Data
Mining, pages 58–65, New York, August 1998.

[13] J. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability. Volume I,Statistics.,
1967.

[14] A. Jain, M. Murty, and P. Flyn. Data clustering: A review. ACM
Computing Surveys, 31(3), 1999.

[15] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an In-
troduction to Cluster Analysis. John Wiley & Sons, 1990.

[16] L.J. Cowen, C.E. Priebe. Randomized non-linear projections un-
cover high-dimensional structure. pages 319–331, 1997.

[17] Maria Halkidi, Michalis Vazirgiannis. A Data Set Oriented Ap-
proach for Clustering Algorithm Selection. In PKDD, 2001.

[18] Maria Halkidi, Michalis Vazirgiannis. Clustering Validity Assess-
ment: Finding the Optimal Partitioning of a Data Set. In ICDM,
2001.

[19] Maria Halkidi,Yannis Batistakis, Michalis Vazirgiannis. Clustering
Algorithms and Validity Measures. In SSDBM, 2001.

[20] R. T. Ng and J. Han. Efficient and Effective Clustering Methods for
Spatial Data Mining. In Proceedings of the 20th VLDB Conference,
pages 144–155, Santiago, Chile, 1994.

[21] T. Redman. Data Quality: Management and Technology. Bantam
Books, 1992.

[22] Rothman, Milton A. The laws of physics. New York, Basic Books,
1963.

[23] T. Seidl and H. Kriegel. Optimal multi-step k-nearest neighbor
search. In Proceedings of the ACM SIGMOD conference on Man-
agement of Data, pages 154–164, Seattle, WA, 1998.

[24] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A
multi-resolution clustering approach for very large spatial databases.
In Proceedings of the 24th International Conference on Very Large
Data Bases, 1998.

[25] W. Wang, J. Yang, and R. Muntz. STING: A Statistical Information
Grid Approach to Spatial Data Mining. In Proceedings of the 23rd
VLDB Conference, pages 186–195, Athens, Greece, 1997.

[26] Warren Viessman Jr., Gary L. Lewis. Introduction to Hydrology, 4/e.
Prentice Hall, 1996.

[27] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient
Data Clustering Method for Very Large Databases. In Proceedings
of the 1996 ACM SIGMOD International Conference on Manage-
ment of Data, pages 103–114, Montreal, Canada, 1996.

