
VIPAS: Virtual Link Powered Authority Search in the Web

Chi-Chun Lin
Electrical Engineering Department

National Taiwan University
Taipei, Taiwan, ROC

megaa@arbor.ee.ntu.edu.tw

Ming-Syan Chen
Electrical Engineering Department

National Taiwan University
Taipei, Taiwan, ROC

mschen@cc.ee.ntu.edu.tw

Abstract

With the exponential growth of the World Wide
Web, looking for pages with high quality and rel-
evance in the Web has become an important re-
search field. There have been many keyword-
based search engines built for this purpose. How-
ever, these search engines usually suffer from the
problem that a relevant Web page may not contain
the keyword in its page text. Algorithms exploit-
ing the link structure of Web documents, such as
HITS, have also been proposed to overcome the
problems of traditional search engines. Though
these algorithms perform better than keyword-
based search engines, they still have some defects.
Among others, one major problem is that links
in Web pages are only able to reflect the view
of the page authors on the topic of those pages
but not that of the page readers. In this paper,
we propose a new algorithm with the idea of us-
ing virtual links which are created according to
what the user behaves in browsing the output list
of the query result. These virtual links are then
employed to identify authoritative resources in the
Web. Specifically, the algorithm, referred to as al-
gorithm VIPAS (standing for virtual link powered
authority search), is divided into three phases. The
first phase performs basic link analysis. The sec-
ond phase collects statistics by observing the user
behavior in browsing pages listed in the query re-
sult, and virtual links are then created according
to what observed. In the third phase, these vir-
tual links as well as real ones are taken together
to produce an updated list of authoritative pages
that will be presented to the user when the query

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

with similar keywords is encountered next time.
A Web warehouse is built and the algorithm is in-
tegrated into the system. By conducting experi-
ments on the system, we have shown that VIPAS
is not only very effective but also very adaptive
in providing much more valuable information to
users.

1 Introduction
The World Wide Web has become the most important com-
munication channel on the Internet since its first introduc-
tion in 1989. After more than 10 years’ development, the
Web now consists of billions of pages which provide us
with an enormous amount of information. The type, format
and category of information available in the Web ranges
from the entertainment to technological news, from sim-
ple texts to audio-video clips, and from casual writings to
academic research reports. The Web is undoubtedly one
of the greatest inventions in the last century, and is gain-
ing increasing attention for years to come. However, the
Web is loosely structured and lacks of means for efficient
storage management and retrieval. While the amount of
documents is growing at rapid pace, the issue of devising a
method to well manage this rich data source is of increasing
importance.

The purpose of data mining [8, 10] is to discover knowl-
edge from large databases, using various mining algorithms
such as association rule mining [8], classification [22],
clustering, sequential pattern mining, etc. Since the Web
can be viewed as a huge document database, the idea of
applying data mining techniques to the Web, referred to as
Web mining [15, 24], was explored by many researchers.
Briefly speaking, the field of Web mining can be divided
into three categories: Web content mining [18], Web struc-
ture mining [11, 20] and Web usage mining [21]. Unlike
many previous studies that aimed merely at one of the three
Web mining fields, the focus of this paper is a combination
of Web structure and usage mining. To be more specific,
we are interested in the problem of looking for Web pages
that match the user’s interest. It is noted that there have
been many search engines [1, 9, 12, 17, 23] that can be
used for this purpose. However, these search engines uti-



lize keyword-based search method and often return a long
list of search results, many of which are not necessarily
what the user wants, thus likely leading to a tedious process
for the users to run through all links of the list to find the
truly relevant information. One way to reduce the number
of search results is to provide more keywords and concept
constraints to narrow down the scope of searching. The
drawback of this approach is that an ordinary user is not
always able to compose precise constraints for searching.
Moreover, sometimes even though the keywords do effec-
tively constrain the search space, the results may still not
be satisfactory. This is because relevant contents do not
necessarily contain the keywords in their page text. For
an example adopted from [14], Netscape’s homepage does
not contain the phrase “Web browser” even though it is a
software company for the famous Netscape browser.

Consequently, alternatives to keyword-based searching
have arisen. Researchers have proposed algorithms such
as HITS [7, 14], ARC [6], PageRank [4] and WebQuery
[5] that use link analysis to determine the authority of Web
pages. In the HITS analysis, a “base set” of pages, which
is obtained from an ordinary search engine with a keyword-
based query and then expanded according to links con-
tained in the documents, is taken as the input to the algo-
rithm. The output is an authority and a hub score for each
page. The authority score of a page serves as the indica-
tion of quality or relevance to the keywords for itself. After
the computation of scores, pages with high authority scores
will be placed at the top of search results for the user to ex-
amine first. Algorithms of this sort can in many cases iden-
tify pages that are most relevant to the user’s need. Though
being generally better than keyword-based ones, such algo-
rithms still have some shortcomings. Among others, one
major problem is that links in Web pages are only able to
reflect the view of the page authors on the topic of those
pages but not that of the page readers. Moreover, these al-
gorithms are not adaptive in that once the authority scores
are computed, they are fixed unless the link structure of the
Web has changed and scores are re-computed. After all,
the problem of relevant information seeking in the Web is
still a research field worthy of exploring.

In order to remedy the difficulties stated above, we pro-
pose a new algorithm with the idea of using virtual links
which are created according to what the user behaves in
browsing the output list of the query result. These virtual
links are then employed to identify authoritative resources
in the Web. A Web warehouse will be built and utilized
in searching for relevant pages that a user is interested in.
Specifically, the algorithm, referred to as algorithm VIPAS
(standing for virtual link powered authority search), is di-
vided into three phases. The first phase, called the initial-
ization phase, performs basic link analysis for each key-
word and stores the initial result in the warehouse. When
a user comes to the system and issues a query, we record
the submitted keyword and show the pre-computed author-
ity list to the user. We then observe in the second phase
(called the virtual link collection phase) the user behav-

ior on how he/she clicks the listed URLs in the query re-
sult. In light of the statistics observed, we create virtual
links going to pages that are deemed most relevant to users’
need. A weight determined by the sequence by which the
user clicked the URLs in the query result list is assigned
to each virtual link. These steps concerning the creation
and weight determination of virtual links are what the sec-
ond phase of VIPAS includes. Finally in the third phase
(called the refinement phase), these virtual links as well as
real ones are employed together to compute updated au-
thority scores for pages archived in the warehouse. As
will be validated by our experimental results, these newly
computed authority scores are able to better suit the users’
information need. Consequently, when the same query is
encountered next time, the list of pages ranked by the up-
dated scores will be presented to the user.

In our work, the integration of the new algorithm with
the warehouse is conducted. We have implemented a pro-
totype of the proposed warehousing system. Technical
issues in the implementation of the system are discussed.
Several experiments are conducted to evaluate the perfor-
mance of VIPAS and compare VIPAS with the original
HITS. It is empirically shown that VIPAS is not only very
effective but also very adaptive in providing much more
valuable information to users. Specifically, the longer the
system runs, the better it performs in retrieving the user’s
desirable information, showing very good adaptability of
the system built.

The rest of this paper is organized as follows. Section
2 contains problem description and preliminaries. Sec-
tion 3 will describe algorithms and the architecture of the
proposed system. Section 4 discusses the implementation
and technical issues. Experimental results and comparison
with other related works can be found in the same section.
This paper concludes with Section 5.

2 Problem Description
The goal of our work is to build a Web warehouse capa-
ble of performing a new information retrieval algorithm.
Specifically, the problems we face can be divided into the
following. First of all, we must be able to capture the
users’ behavior while they are browsing the Web pages.
Secondly, we have to use some algorithms to determine
whether a page satisfies the interest of a user, taking both
the link structure of pages and the browsing behavior of
users into account. Finally, a mechanism for building,
managing and using the warehouse is required.

2.1 Authority Evaluation

Kleinberg’s HITS (Hyperlink Induced Topic Search) algo-
rithm [14] aims at finding good authority Web pages given
a collection of pages on the same topic. HITS analyzes the
hyperlinks contained in the pages to find the most author-
itative ones among them. A page pointing to many other
pages is called a “hub” page, while the one being pointed
to by many pages is considered to be a good “authority.”
In addition, a hub page pointing to many good authority



q1

q2

q3 r1

r2

r3

page p
xp := sum of yq , for all q

pointing to p

page p
yp := sum of xr , for

all r pointed to by p

Figure 1: The relationship between hubs and authorities.

pages is deemed a better hub page. Similarly, authority
pages being pointed to by many good hub pages are bet-
ter authorities. This forms a circular relationship called
mutual reinforcement between authorities and hubs. The
goal of HITS is to find the best authority pages. To break
the circularity, the algorithm first gives each page an ini-
tial authority and hub score, and then repeatedly updates
the scores in an iterative manner. Figure 1 depicts the rela-
tionship between hub and authority scores, where xp and yp
denote the authority and hub score of page p, respectively.

To show the mutual reinforcement relationship numeri-
cally, consider the following inference: if p points to many
pages with large x-scores, then it should receive a large y-
score; if p is pointed to by many pages with large y-scores,
then it should receive a large x-score. We now describe
the HITS algorithm in details. The input of the algorithm
is an arbitrary set of hyperlinked pages, represented as a
directed graph G = (V,E), where V consists of all pages in
the environment, and a directed edge (p,q) ∈ E indicates
the presence of a link from p to q. We then define two
operations: I and O. Given scores {xp} and {yp}, the I
operation updates the x-score as follows:

xp ←−
P

q:(q, p)∈E
yq .

TheO operation updates the y-scores as follows:

yp ←−
P

q:(p, q)∈E
xq .

The I and O operations are the basic operations by
which hubs and authorities reinforce each other. To find
the desired “equilibrium” values for x and y, one can apply
the I and O operations in an alternating fashion, and see
whether a fixed point is reached. The procedure of HITS
is shown below. More details can be found in [14].

Algorithm HITS: Hyperlink Induced Topic Search
1. For a query term, obtain a set of pages using a search

engine. Keep the top k pages in a “root set” R;
2. Join R with pages pointed to by R and those pointing

to R to form a “base set” B;
3. Assign each page in B an authority score of 1 and a

hub score of 1;

4. In each iteration, update the authority and hub scores
of each page using the I and O operations;

5. Normalize the scores so that
P
p∈B

(xp)
2 = 1 andP

p∈B
(yp)2 = 1;

6. Repeat steps 4 and 5 until all xp and yp converge.

It is shown in [14] that after several runs of update, the
hub and authority scores of each page will converge to a
certain value1, and the iteration can be terminated. The
final authority score of a document can be taken as the in-
dication of its relevance to the keyword. Therefore docu-
ments with high authority scores are expected to have rele-
vant contents, whereas documents with high hub scores are
expected to contain links to relevant contents. This im-
plies that the URLs of pages with highest authority scores
can be placed at top of the query result list to be inspected
by the user first, and pages with highest hub scores will be
returned to the user if this user needs a collection of links
to pages with content valuable to him/her.

With the help of this algorithm, one may find good
authority pages and settle the problem encountered in
keyword-based indexing schemes. There is a big defect,
however, that links in Web pages only reflect page creators’
regard, but not page readers’. Note that in many causes the
author of a page will not put a link in his/her page even
though its destination is really very relevant. For example,
a company is rare likely to put links to its competitors in
its homepage. By analyzing merely the links put by page
creators, we are unable to find all of the companies’ home-
pages in the same competing industry. In other words, we
argue that page readers’ regard has to be considered as well.
We will describe an improvement that takes this point into
account in subsequent sections.

2.2 Client-side Data Collection

As pointed out in [21], an extensive survey on Web min-
ing, there are three types of sources that can provide data
to serve as the input to mining processes, namely (1) server
logs, (2) proxy logs and (3) client-side data. Most of the
existing Web mining projects use server logs as the source
data. However, this type of data suffers from several prob-
lems, such as the difficulty in user session identification.
These problems arise mainly from the presence of cached
resources in the browser or the proxy servers. For exam-
ple, when a user presses the “Back” button of the browser
to return to the former page this user just went by, the
cached copy will be displayed without being explicitly re-
quested from the server. This phenomenon will cause the
preprocessing step of Web mining to become a laborious
task. The data from proxy logs has similar problems. In
fact, there is little difference between these two types of
logs. Problems we encounter from using server logs will
still present when proxy logs are used instead.

To remedy this, one way is to employ a client-side data
collection module in the system. There is no standard way

1This is under the condition that there are no negative scores.



Page
Archive

Keyword
& Ranking
Database

Web Pages

Authority
Evaluator

Query
Interface

Clickstream
Database

Clicking
Observer

Virtual Link
Creator

virtual links

page content

& links

keywords

scores

query results

Figure 2: The framework of the warehousing system.

for performing client-side data collection. The use of Java
Applets [19, 25] or Java Scripts is one solution which how-
ever suffers from limited functionality and access restric-
tion. A more powerful way is to use a modified browser
with users’ consent. By employing this, many statistics
of client behavior can be collected such as the time a user
spends on a page before he/she jumps to another one by fol-
lowing a link in that page, and whether the user has saved
the URL of the page in the bookmark. For an obvious
reason, the use of a modified browser is not suitable for or-
dinary users. Without loss of generality, we choose to use
a carefully designed ASP script to meet our data collection
purposes. This script is meant to record whether a URL in
the result list output by the system after a query execution
is clicked or just skipped by the user. Details for this will
be described later in Section 3.4.

3 Algorithms and System Scheme
In this section, we will describe VIPAS algorithm which is
designed to further improve the search results over HITS
by taking the user behavior into account. Firstly, the sys-
tem framework is described in Section 3.1. The basic idea
of our algorithm is presented in Section 3.2. Section 3.3
contains the detailed steps for the new method. Finally, the
client-side data collection module is developed in Section
3.4.

3.1 The Whole Framework

We will build a warehouse and utilize it to satisfy users’
information need. The user queries our system with key-
words, and then the query result of page URLs ranked by
some criteria will be presented. We next observe and
record the user behavior with the query result, and then,
in light of these records, devise virtual links to improve the
system.

Figure 2 shows the framework of the proposed system.
The user submits the query from the query interface, and
the query keywords will be recorded in a database. A page
archive stores all Web pages obtained from a keyword-

based search engine2 and those that are linked together via
hyperlinks, as well as various page information such as ti-
tle, size, date of modification, etc. Moreover, hyperlinks
between pages are also stored. This archive serves as the
source of input to the authority evaluator, which will be
discussed in the following subsections.

There is a clicking observer module that observes
whether a URL in the query result is indeed clicked by
the user or not. The observed clickstreams are stored too.
These will be fed to another component which adds the dis-
covered virtual links among relevant pages. The mecha-
nism for creating virtual links will be described later in this
section.

3.2 The Notion of Virtual Links

As previously stated, the major drawback of HITS is that
page readers’ regard cannot be reflected in the search re-
sults. The links between Web pages are fixed after being
created, and will not change until an updated copy of the
document they reside in is provided by the author. Once
the authority and hub scores are computed, the ranking of
pages according to these scores will remain the same un-
less we run the algorithm periodically. And even if we
do monitor the page update and continuously re-rank the
pages, it is not guaranteed that the updated ranking will be
more satisfactory to the user than the previous ranking.

Consequently, it is desirable to have a mechanism to
adaptively adjust the authority scores according to the
users’ behavior. Consider the following scenario: There
is a user interested in the Java programming language and
who wants to find Web pages that help the learning of the
language. To fulfil this information need, the keyword
“Java” is used to obtain a root set from a search engine and
HITS is run to produce a list of authority pages. The user
finds that the top ten pages in the list except the sixth one
are indeed good resources for learning the Java language,
for there are lots of stuff such as the language’s specifi-
cation, the language’s syntax and semantics, programming
tutorials and examples, etc. in these Web pages. The sixth
URL in the list, however, is a homepage of a book publisher
that publishes many Java-related books. Though such a
page is considered relevant in general cases, it is not suit-
able for this specific user’s need, namely looking for Web
pages that are directly helpful to his/her learning the lan-
guage. In such a case, we want to lower the ranking of the
sixth URL in the list. In other words, we have to reduce
the authority score of the sixth URL’s page or, alternatively,
magnify those of other URLs.

3.2.1 Virtual Links from a Virtual Hub to Hot Pages

As stated above, we need a way to modify the scores. Since
we present the list of page URLs for the user to click and
browse, we may also record whether a certain URL in the

2This part of search engines is flexible and orthogonal to the key com-
ponent of VIPAS. In fact, some popular engines such as AltaVista, Lycos
or Yahoo can be used instead.



URL 1

URL 2

Virtual hub
URL 5

URL 6

URL 7

URL 10

Figure 3: Virtual links from the virtual hub to hot pages.

URL 1

URL 2
Hub 1

URL 5

URL 6

URL 7

URL 10

Hub 2

Hub n

Figure 4: Virtual links from top n hubs to hot pages.

list is often clicked or is often ignored by the user. The fea-
ture of HITS algorithm is that if a page has the more pages
linking to it, the higher its authority score is. Therefore
we come up with the idea of putting “virtual links” going
to pages that are often accessed by the user. There are two
alternatives of the source of these virtual links.
Criterion 1 for adding virtual links: We create an imag-
inary page, called the “virtual hub”, with links going to
pages whose scores are what we want to modify. The set
composed of those target pages are referred to as the “hot
set.” In this specific example, the hot set consists of the
top ten URLs excluding the sixth one. Figure 3 contains
an illustration for this. With these virtual links incorpo-
rated into the HITS computation, pages in the hot set will
be assigned with even higher authority scores. Hence, the
page of the sixth URL will become relatively less important
after the addition of virtual links.

The virtual hub can be viewed as an analogy to the query
result page. Since the result page contains many links to
(possibly) authoritative pages, it can be thought as an imag-
inary hub page. The concept of virtual hubs originates
from this idea.

3.2.2 Virtual Links from Top Hubs to Hot Pages

On the other hand, it is observed that if a page A1 is pointed
to by a hub H1 with a higher hub score than a hub H2 point-
ing to a page A2, A1 will receive a higher authority score
than A2. Based on this observation, we have the other cri-
terion of creating virtual links.
Criterion 2 for adding virtual links: We pick up the top
n hubs and put virtual links from these hubs to pages in the
hot set, where n is an adjustable parameter for the ware-
housing system. There is an exposition for this in Figure
4. Since the authority score of a page is determined by

the hub scores of pages pointing to it, with the virtual links
added we can significantly enlarge the authority scores of
the hot set pages, thereby achieving the goal of raising their
rank as well as letting the book publisher’s homepage be
less relevant to the user’s information need.

Note that we do not try to directly reduce the score of
the sixth URL’s page here. The reason is that if we want to
reduce a page’s authority score by virtual links, these links
must come from pages with negative hub scores (i.e. these
links are “negative links”) or be given negative weights.
However, as pointed out in [14], there is a risk that the it-
erative update cannot terminate because the scores will not
converge due to the presence of negative links. This is
the very reason we avoid directly reducing the score of the
sixth URL’s page here.

3.3 Design of Algorithm VIPAS

We now describe the complete process of the improved
method we propose. The process can be briefly outlined as
follows. For a query term we first use the ordinary HITS
to obtain an initial ranking of pages. Each keyword as well
as the relevant pages with the computed authority and hub
scores are stored in the database. Afterwards, each time
when a user queries the system with a certain query term,
the list of URLs ordered by each corresponding page’s au-
thority score will be presented. The user will click the
listed URLs from the top of the list to the bottom one by
one, or ignore some URLs at the top and jump to subse-
quent ones listed at the latter. We record URLs that are
clicked by the user to form a hot set, discarding those that
are ignored. Then, virtual links are added and incorpo-
rated into the computation of new scores. Finally the list
of pages ranked by the newly computed scores is presented
next time when the query with the same query term is en-
countered.

The algorithm devised is called VIPAS (Virtual LInk
Powered Authority Search), whose procedure can be di-
vided into three phases. The first phase, called the ini-
tialization phase, performs the regular HITS analysis. A
database will be created to store the document information,
link topology, and the authority and hub scores for each
page in the base set. The second phase is the virtual link
collection phase, which monitors the user behavior to ob-
serve whether a link in the list is clicked by the user or
not. After a period of observation, virtual links are created
according to one of the two criteria described previously.
These virtual links are stored in the database as well. The
final phase, called the refinement phase, uses the original
authority and hub scores plus the ordinary and virtual links
to obtain a new ranking that better suits the users’ interest.

Algorithm VIPAS: Virtual Link Powered Authority Search
Initialization Phase:
1. For a query term, perform the regular HITS analysis;
2. Collect a base set of pages with computed authority

and hub scores and store them in the database.



Virtual Link Collection Phase:
3. Monitor the user behavior to see whether a URL in the

list is clicked by the user or not;
4. After a period of user behavior observation, put URLs

that are often accessed into the “hot set”;
(described in Section 3.3.1)

5. Create virtual links for pages in the hot set.
Refinement Phase:
6. For each page in the hot set, compute its new authority

and hub scores;
7. Run several iterations of score update for pages in the

base set.
(see Section 3.3.3 for detailed discussion on steps 6 and 7)

Note that there are two criteria for creating virtual links
in step 5 of VIPAS, as described in Section 3.2.1 and Sec-
tion 3.2.2. In the discussion of experiment results to be
appeared in Section 4, we will refer to that using Crite-
rion 1 as VIPAS-VH (VIPAS with virtual links from a Vir-
tual Hub), while one using Criterion 2 is called VIPAS-TH
(VIPAS with virtual links from Top Hubs). In the follow-
ing subsections, we shall detail some important processes
of VIPAS. Section 3.3.1 discusses issues on the creation
of hot sets. Section 3.3.2 shows how to assign weights to
virtual links. Finally, the computation of new scores after
virtual links are added is presented in Section 3.3.3.

3.3.1 Issues on Hot Sets

The way by which the hot set is formed needs to be further
explored. In the scenario in Section 3.2, the hot set consists
of the top ten pages in the list except the sixth one. Now
consider that another user with the same interest queries
the system to find Java-related Web pages. This user has
already browsed the pages of the first and second URLs
in the list before coming to our system, perhaps because
he/she has ever used some search engine to find out those
pages and browse them. Therefore this user will skip the
first two pages and begin from the third one. Under this
situation, we obviously should not exclude the pages of the
first and second URLs from the hot set. Hence, thinking in
the reverse side, we propose the forming of the hot set as
follows. We define a period of time, say two weeks, for ob-
serving the users’ browsing behavior. Within this period,
we pay attention to clicks of continuous URLs in the list.
When a user continuously clicks several URLs according
to the order of the list and then skips one or more URLs
following and goes on with subsequent ones, we mark the
URLs being skipped. For example, if there is such a click-
stream from a user: 3rd, 4th, 5th, 7th and 8th. We mark the
sixth URL as having ever been skipped in this period. Af-
ter the period is over, we exclude all the pages of URLs that
were marked with frequency greater than α from the form-
ing of the hot set. Among the pages left, those that are
accessed by at least β percent of users with the same query
are put into the hot set. α and β are system-dependent
parameters.

Note that the marking of being skipped must follow the
requirement that the skipping by the user is occurred after

1. http://java.sun.com/
2. http://www.sun.com/java/
3. http://www.javaworld.com/
4. http://java.oreilly.com/
5. http://www.jars.com/
6. ……………..
7. ……………..

clicked

clicked

clicked

skipped

clicked

1. http://java.sun.com/
2. http://www.sun.com/java/
3. http://www.javaworld.com/
4. http://java.oreilly.com/
5. http://www.jars.com/
6. ……………..
7. ……………..

skipped

clicked

clicked

skipped

clicked

Case 1 Case 2

1. http://java.sun.com/
2. http://www.sun.com/java/
3. http://www.javaworld.com/
4. http://java.oreilly.com/
5. http://www.jars.com/
6. ……………..
7. ……………..

clicked

clicked

clicked

skipped

clicked

1. http://java.sun.com/
2. http://www.sun.com/java/
3. http://www.javaworld.com/
4. http://java.oreilly.com/
5. http://www.jars.com/
6. ……………..
7. ……………..

skipped

clicked

clicked

skipped

clicked

Case 1 Case 2

Figure 5: An example of user behavior on clicking URLs.

some continuous clicks of URLs in the list. For example,
if the user skips the first n URLs and begins with the n+1th
one, these first n URLs will not be marked because they do
not satisfy the condition. The purpose of setting this con-
straint is to avoid marking URLs that are in fact important
but their pages usually have already been browsed by the
users before they seek the aid of our system. Because they
are often put at the top of the list, users are likely to skip
them and begin with URLs listed behind them. We shall
not mark these URLs under such circumstances.

Figure 5 shows an example of the observed user behav-
ior. In case 1, URL 4 is marked as being skipped. In case
2 though both URL 1 and URL 4 are skipped, only URL 4
is marked because the former does not satisfy the condition
stated above.

3.3.2 Assigning Weights to Virtual Links

After the hot set is constructed, we create virtual links ac-
cording to one of the two criteria described in Section 3.2.1
and Section 3.2.2. To let the effect of virtual links re-
flect more precisely what the user acts, we assign each
virtual link a weight which is determined by the observed
user clickstream. Here we explain how to establish these
weights by illustrative examples.
Example 1 : Initially after the first observation period T1
is over and the hot set for each keyword is formed, we set
weights as follows. Let the members of a hot set corre-
sponding to a certain keyword be t1, t2, ... and tn. In the
observation period, if there was a session with clickstream
(t1, t2, t3, t4, x1, x2) by the user where x1 and x2 are pages
not in the hot set, we give weights w1,1, w1,2, ..., w1,n to
links going to t1, t2, ..., tn respectively as

w1,1 =
4
6 × 4

1+2+3+4 (= 0.267)

w1,2 =
4
6 × 3

1+2+3+4 (= 0.200)

w1,3 =
4
6 × 2

1+2+3+4 (= 0.133)

w1,4 =
4
6 × 1

1+2+3+4 (= 0.067)
w1,5 = w1,6 = ... = w1,n = 0

where wc,m is the weight determined by clickstream c for
tm. The 4

6 comes from the fraction of the number of hot set
pages among total number of URLs clicked (i.e. the user
clicked 6 URLs in total, but only 4 of them are in the hot
set). The k

1+2+3+4 reflects the order by which the hot set
pages are clicked in the clickstream. Since t1 is clicked
first, it should receive a higher weight than t2, t3 and t4.
Therefore the numerator is the click order counted in the
reverse direction (i.e. in the sequence t1 t2 t3 t4, t1 should



be given 4, t2 should be given 3, and so on). The denomi-
nator is the sum of all orders. Because w1,5 through w1,n
are not accessed in this session, their weights are given 0.
Example 2 : If there was another clickstream (t3, x1, t1),
we have

w2,1 =
2
3 × 1

1+2 (= 0.222)

w2,3 =
2
3 × 2

1+2 (= 0.444)
w2,2 = w2,4 = w2,5 = ... = w2,n = 0

because in the sequence t3 t1, t3’s order is 2 and t1’s order
is 1.

If there was a clickstream consisting of a single click
(tj), then from this session the weight of tj will be 1 with
weights of all other hot set pages being 0. For each ob-
served clickstream in the period, we compute the weights
by the way just described. Finally we take the average as
the final weight value for this period. For example, if there
were totally N clickstreams in the period, we compute N
weights respectively for each of t1, t2, ... and tn and then
take the average over the N ones from clickstream 1, 2, ...,
N as the final value:

wh(T1) =

N(T1)P
k=1

wk,h

N(T1)

for h = 1, 2, ..., n. Going on from the previous two ex-
amples, if there were only two clickstreams in total from
this period, we have w1(T1) =

0.267+0.222
2 = 0.245,

w2(T1) =
0.200+0

2 = 0.100, and so on.
After the weights for period T1 are determined, we take

these weights into the computation of new scores by the
way to be described in Section 3.3.3. However, the weights
for subsequent periods are produced in a slightly different
manner. For a period Ti where i = 2, the weights are
computed as:

w0h(Ti) =

N(Ti)P
k=1

wk,h

N(Ti)

wh(Ti) =
1
3 ×wh(Ti−1) + 2

3 ×w0h(Ti).

The purpose of this is to let weights from more recent
data represent higher significance than those from click-
streams of previous periods, with a degeneration factor of
1/3.

3.3.3 Computing the New Scores

We now describe the computation of the new scores after
virtual links are created. Consider a simplified example
for illustration purpose. Figure 6 depicts several pages
and their link topology, where an and hn denote authority
and hub page, respectively. The two pages t1 and t2 in
the figure are pages in the hot set, and the page hv is the
virtual hub. The links from hv to t1 and t2 are shown in
border lines, meaning that they are virtual links we added.

h1

h2

h3

a1
a2

a3

t1 t2hv

virtual hub

virtual links

1,thvw
2,thvw

Figure 6: An example of pages and links in calculating au-
thority scores by Equations (1) and (2).

hvh1

h2

h3

a1
a2

a3

t1 t2

virtual hub

virtual links

1,thvw
2,thvw

Figure 7: An example of pages and links with different
parts involved in calculating hub scores by Equations (3),
(4) and (5).

It can be seen that this form of virtual link creation follows
Criterion 1 described in Section 3.2.1.

Following the convention from Section 2.1, let xp denote
the authority score of page p whereas yp is used to represent
page p’s hub score. These scores have been pre-computed
using the HITS algorithm in Section 2.1. Recall that we
update the scores by the I and O operations in a regular
HITS iteration. Now we show the computation of new
scores after virtual links are incorporated as follows. For
each page p, we update p’s authority score by

xp ←−
P

q:(q, p)∈E
yq + γA

P
q0:(q0, p)∈E0

wq0, p yq0

where E’ is the set consisting of all virtual links created,
and γA is a parameter used to represent the relative impor-
tance of virtual links to real links. As will be shown in
Section 4, the value of γA is empirically determined with a
typical value around 10. The larger γA is, the more signifi-
cantly virtual links affect the authority scores. In addition,
wq0, p denotes the weight of the virtual link going from q0
to p. In this specific example explained in Figure 6, we
have

xt1 = yh1 + yh2 + γAwhv, t1yhv (1)

xt2 = yh2 + yh3 + γAwhv, t2yhv. (2)

In Figure 6 the pages shown in dotted lines (i.e. a1, a2
and a3) are those not involved in the computation of new
scores at this stage.



Now consider the update of hub scores. The procedure
is similar. See Figure 7 for the same set of pages and links
but with different parts highlighted. For each page p, we
update p’s hub score by

yp ←−
P

q:(p, q)∈E
xq + γH

P
q0:(p, q0)∈E0

wp, q0 xq0

where γH is another parameter serving the analogous func-
tion to γA but this time for hub scores. In this example, we
have

yt1 = xa1 + xa3 (3)

yt2 = xa2 + xa3 (4)

yhv = γHwhv, t1xt1 + γHwhv, t2xt2 . (5)

In each iteration we update the authority and hub scores
of all pages by these formulas, and then normalize them as
in the regular HITS.

A complete iteration is processed this way, but several
additional iterations must be run. We note that only a
few iterations are required for the whole system to enter
the “steady state”, i.e. the scores converge. This can be
explained by the reason that we begin with an initial vec-
tor of scores that are already in the equilibrium state before
virtual links are added, not those consisting of all 1’s (as in
step 3 of algorithm HITS). As long as the virtual links do
not dramatically distort the overall link topology, we can
see that the scores converge quickly. It was found in our
experiments that the final sets of scores were the same as
what we obtained if we had begun with all scores of 1 and
run the iterative update many times until the scores con-
verged.

The computation of new scores when virtual links are
created by Criterion 2 (Section 3.2.2) is the same. In a
word, the principle is that when a virtual link is encoun-
tered, we multiply the score with its weight and the impor-
tance factor so as to adjust its impact on the scores. The
appropriate values for parameters γA and γH can be em-
pirically determined.

3.3.4 Virtual v.s. Real Links

It is worth mentioning that one may encounter the situation
where there is already a real link presented while a virtual
link is being created. Since our goal is to magnify the
importance of the hot set pages by adding virtual links, one
should still create virtual links even in such cases so as to
preserve every opportunity to reflect users’ interest. Since
we use different weights for computing scores contributed
by real and virtual links, the addition of virtual links should
not be viewed redundant.

3.4 User Behavior Observation Module

Figure 8 is the process we employed in observing the user
behavior. We first replace each URL in the query result
page with a wrapper written as an ASP script receiving
the original URL as its parameter. After the user clicks
some item of the list, the wrapper will be executed. The

1. The Source of Java(TM) Technology
http://java.sun.com/

2. ………………….
http://….

3. ………
http://…

plain URL http://java.sun.com/
replaced by

wrapper.asp?URL=http://java.sun.com/

1. Increment the click count of
http://java.sun.com/

2. Record the time
3. Redirect the user to

http://java.sun.com/

Query result for keyword: “Java”

Query result page

Figure 8: The client-side data collection process.

ASP script will increment the click count of that URL it
received, and record the time at which the user clicked the
item. The purpose of recording the click time is to de-
termine the sequence by which the user clicked the URLs
listed in the result page. Finally after these two steps are
done, the user will be redirected by the wrapper to the orig-
inal URL. In fact, the use of the wrapper is transparent to
the user.

We comment that more sophisticated methods are con-
ceivable for user behavior collection. Clearly, methods
with different complexities will be able to collect the data
to different levels of details. If the practical application
environment permits, a more complicated client-side data
collection module such as that proposed in [16] can also
be used. For the demonstration of VIPAS, however, the
wrapper described above suffices.

4 Experimental Results
In order to validate the proposed mechanism, we have im-
plemented a warehousing system according to principles
described in the previous sections. Here we will present
the implementation details and show the experiments con-
ducted on the system. Section 4.1 contains issues on im-
plementation, while Section 4.2 describes system parame-
ters employed. For the purpose of examining the effec-
tiveness of the system, evaluation metrics are devised in
Section 4.3. Finally, Section 4.4 is devoted to experimental
results and comparison with the original HITS.

4.1 Implementation Details

While implementing the system, some practical consider-
ations should be taken into account. These issues will be
discussed in the following subsections.

4.1.1 The Experimental Testbed

Before going into themes of implementation, we have to
first describe the environment upon which our system is
built. We have chosen the website of Department of Elec-
trical Engineering, National Taiwan University (NTUEE)3

as the “database” where Web documents are to be searched
from. Intuitively, the best environment for this kind of
systems will be a traditional keyword-based search engine,
into which our new ranking algorithm can be incorporated

3http://www.ee.ntu.edu.tw/



to provide the user with a self-learning facility according
to how the user uses the engine. Since there is an in-site
search function in the NTUEE website and we are free to
access the site’s administration permission, we are able to
put the warehousing system behind that searching compo-
nent. For a preliminary analysis of our work, we choose
this site as our testing environment for experiments. The
site’s original search function exists as a CGI program in
a machine-executable binary form, and therefore we use a
wrapper to replace the CGI program being called after a
query is submitted. What the wrapper does is summarized
into the following: (1) Receive the parameters (keywords)
submitted by the user, (2) Call the original searching exe-
cutable to do the search and get a result list, (3) Re-arrange
the ranking in the list according to our new proposed algo-
rithm and (4) Present the result to the user, and record what
the user reacts. These four steps form the main skeleton of
the whole system.

4.1.2 Preparation for Document and Link Informa-
tion

Because our algorithm is based on link-analysis, we have
to first collect the information of documents and links in
the whole website, otherwise there will be no way for the
system to operate on-line. This is done in advance by a
crawler. The crawler retrieves each document in the root
directory of the site, parses them and extracts hyperlinks
embedded in the HTML tag, and then advances to each
subdirectories and repeats the same procedure all over. A
database is built with Microsoft SQL Server DBMS to store
these information. There are primarily two tables: Docu-
ment and Link. The Document table contains each Web
document’s title, URL, file size, modification date, author-
ity and hub scores4. Each record of the table corresponds
to a specific document in the site and will be given a unique
serial number (SN). The Link table is used to keep infor-
mation of hyperlinks between pairs of documents. Each
record of this table is composed of the following fields: SN
of source document, SN of target document, anchor text5
and link weight6.

4.1.3 Data Collection

Recall Figure 2 in Section 3.1, where there is a clicking
observer and a clickstream database in the system. The
clicking observer is used to record whether a URL in the
query result is indeed clicked by the user. This is done
by the module described in Section 3.4. Similar to the
Document and Link tables mentioned above, the recorded
clicking time and count corresponding to each document is
stored in a ClickTab table, which is mainly the clickstream
database.

4Initially these scores are all set to 1.0.
5For further expansion purpose only, currently not used.
6Weights for real links are all ones, while virtual links will have

weights determined by the method derived in Section 3.3.2.

Homepage of professor Ruey-Beei WuH/html_2000/www/faculty/rb-wu/rb-wu.htm8682

[no title]H/html_2000/WWW/faculty/english/Wu-Rei-Bei.html7228

Homepage of professor Ruey-Beei WuH/www/faculty/rb-wu/rb-wu.htm5633

TitleURLSN

Homepage of professor Ruey-Beei WuH/html_2000/www/faculty/rb-wu/rb-wu.htm8682

[no title]H/html_2000/WWW/faculty/english/Wu-Rei-Bei.html7228

Homepage of professor Ruey-Beei WuH/www/faculty/rb-wu/rb-wu.htm5633

TitleURLSN

Figure 9: Authority list for keyword “Ruey-Beei Wu.”

4.2 Parameter Sets

We next describe various parameters employed in the ex-
periment. We do not set the upper limit for the size of root
set as a regular HITS often does, while [14] used the Al-
taVista search engine to get the root set with a size limited
to 200. This is because the number of documents in the
NTUEE website is within a reasonable range. Due to the
same reason, we also do not limit the number of parents
brought by a page in the root set while expanding the root
set to form the base set. The length of observation period
is about 9 weeks7. The two parameters α and β in con-
structing the hot set are 20% and 40%, respectively. The
relative importance of virtual links to real ones: γA and
γH , are both 10. This means that the strongest virtual link
is 10 times more important than a real link, in determining
both authority and hub scores.

4.3 Evaluation Method

Here we explain how we assess the effectiveness of the sys-
tem. For each keyword with a result list produced by the
system, we review each page in the list and evaluate its rel-
evance to the keyword manually with our personal point of
view. A selected list of best authorities is generated from
this step. Afterward we compare this authority list with
that returned by the system. The more similar the two lists
are, the more effective our system is.

Note that there are many evaluation methods conceiv-
able. One such as comparing the percentage of clicks of
in-the-front URLs in the list (i.e. see if the users click more
on URLs placed in the front of the list and click less on
those placed in the rear) before and after the new algorithm
is applied can be employed if desirable. However, it is
believed that these evaluation methods will lead to similar
relative performance results for the algorithms evaluated.

4.3.1 Keyword for Demonstration

We have conducted experiments on several keywords.
Here we use one keyword “Ruey-Beei Wu” of them to
demonstrate the process of result evaluation. This key-
word is the name of a professor in NTUEE. Therefore, we
can easily conclude that the best authorities for this key-
word should be the professor’s homepages in the NTUEE
website. As just described, we composed manually the
authority list for this keyword, which is shown in Figure 9
where H in URL represents "http://www.ee.ntu.edu.tw." In
the figure, we show each authority page’s serial number in
the Document table as well as its URL and title. From the
URLs and titles there are apparent evidences that they are
indeed the homepages of professor Wu.

7From March 28, 2002 to May 31, 2002.



5633

7228

34

35

93

hv

0.413

0.227

Figure 10: The link topology of pages involved in process-
ing the example keyword “Ruey-Beei Wu.”

Engineering Mathematics I: Differential 
Equations

H/html_2000/content/chinese/required/differential_
equations.html

890410

[no title] H/html_2000/WWW/faculty/english/Wu-Rei-Bei.html722841

Engineering Mathematics I: Differential 
Equations 

H/content/chinese/required/differential_equations.html49599

[no title]H/html_2000/WWW/faculty/NoSort.html58928

[no title]H/html_2000/WWW/faculty/english/Chen-Qiu-Lin.html72697

[no title] H/html_2000/WWW/faculty/english/Cao-Heng-Wei.html72296

Homepage of professor Ruey-Beei Wu H/html_2000/www/faculty/rb-wu/rb-wu.htm86825

Faculty members of NTUEE H/prodata_c.html343

4

2

1

Rank

Faculty members of NTUEE H/professor_e.html94

Faculty members of NTUEE H/professor_c.html93

Homepage of professor Ruey-Beei WuH/www/faculty/rb-wu/rb-wu.htm5633

TitleURLSN

Engineering Mathematics I: Differential 
Equations

H/html_2000/content/chinese/required/differential_
equations.html

890410

[no title] H/html_2000/WWW/faculty/english/Wu-Rei-Bei.html722841

Engineering Mathematics I: Differential 
Equations 

H/content/chinese/required/differential_equations.html49599

[no title]H/html_2000/WWW/faculty/NoSort.html58928

[no title]H/html_2000/WWW/faculty/english/Chen-Qiu-Lin.html72697

[no title] H/html_2000/WWW/faculty/english/Cao-Heng-Wei.html72296

Homepage of professor Ruey-Beei Wu H/html_2000/www/faculty/rb-wu/rb-wu.htm86825

Faculty members of NTUEE H/prodata_c.html343

4

2

1

Rank

Faculty members of NTUEE H/professor_e.html94

Faculty members of NTUEE H/professor_c.html93

Homepage of professor Ruey-Beei WuH/www/faculty/rb-wu/rb-wu.htm5633

TitleURLSN

Figure 11: “Ruey-Beei Wu” - Regular HITS.

In Figure 10, we show the involved pages and virtual
links created according to observed user clickstreams from
the observation period. The weights assigned to virtual
links are depicted as well. The number under each page is
its serial number.

After the observation period was over, we performed the
VIPAS analysis for this keyword. There were two alterna-
tives of the origination of virtual links: one using a virtual
hub (VIPAS-VH) and another using top n hubs (VIPAS-
TH), corresponding to Criterion 1 and Criterion 2 stated
in Section 3.2.1 and Section 3.2.2, respectively. We con-
ducted experiments on both of the two flavors, with the lat-
ter one using n = 1 for comparative purposes since there is
only one virtual hub in the former case. The resulted au-
thority lists returned by the system are shown in Figures 11,
12 and 13. We only show in the figures top 10 authorities
for each case for the sake of a limited space.

4.3.2 Measurements by Discrepancy and Grouping
Coefficients

By comparing the authority lists with that given in Figure
9, we can see that results from VIPAS are indeed better

Engineering Mathematics I: Differential 
Equations 

H/content/chinese/required/differential_equations.html495910

[no title]H/html_2000/WWW/faculty/NoSort.html58929

[no title]H/html_2000/WWW/faculty/english/Chen-Qiu-Lin.html72698

[no title]H/html_2000/WWW/faculty/english/Cao-Heng-Wei.html72297

[no title] H/html_2000/WWW/faculty/english/Wu-Rei-Bei.html72286

Homepage of professor Ruey-Beei Wu H/html_2000/www/faculty/rb-wu/rb-wu.htm86825

Faculty members of NTUEE H/prodata_c.html343

4

2

1

Rank

Faculty members of NTUEE H/professor_e.html94

Faculty members of NTUEE H/professor_c.html93

Homepage of professor Ruey-Beei WuH/www/faculty/rb-wu/rb-wu.htm5633

TitleURLSN

Engineering Mathematics I: Differential 
Equations 

H/content/chinese/required/differential_equations.html495910

[no title]H/html_2000/WWW/faculty/NoSort.html58929

[no title]H/html_2000/WWW/faculty/english/Chen-Qiu-Lin.html72698

[no title]H/html_2000/WWW/faculty/english/Cao-Heng-Wei.html72297

[no title] H/html_2000/WWW/faculty/english/Wu-Rei-Bei.html72286

Homepage of professor Ruey-Beei Wu H/html_2000/www/faculty/rb-wu/rb-wu.htm86825

Faculty members of NTUEE H/prodata_c.html343

4

2

1

Rank

Faculty members of NTUEE H/professor_e.html94

Faculty members of NTUEE H/professor_c.html93

Homepage of professor Ruey-Beei WuH/www/faculty/rb-wu/rb-wu.htm5633

TitleURLSN

Figure 12: “Ruey-Beei Wu” - VIPAS-VH.

Engineering Mathematics I: Differential 
Equations 

H/content/chinese/required/differential_equations.html495910

[no title]H/html_2000/WWW/faculty/NoSort.html58929

[no title]H/html_2000/WWW/faculty/english/Chen-Qiu-Lin.html72698

[no title]H/html_2000/WWW/faculty/english/Cao-Heng-Wei.html72297

Homepage of professor Ruey-Beei Wu H/html_2000/www/faculty/rb-wu/rb-wu.htm86826

[no title]H/html_2000/WWW/faculty/english/Wu-Rei-Bei.html72285

Faculty members of NTUEE H/prodata_c.html343

4

2

1

Rank

Faculty members of NTUEE H/professor_e.html94

Faculty members of NTUEE H/professor_c.html93

Homepage of professor Ruey-Beei WuH/www/faculty/rb-wu/rb-wu.htm5633

TitleURLSN

Engineering Mathematics I: Differential 
Equations 

H/content/chinese/required/differential_equations.html495910

[no title]H/html_2000/WWW/faculty/NoSort.html58929

[no title]H/html_2000/WWW/faculty/english/Chen-Qiu-Lin.html72698

[no title]H/html_2000/WWW/faculty/english/Cao-Heng-Wei.html72297

Homepage of professor Ruey-Beei Wu H/html_2000/www/faculty/rb-wu/rb-wu.htm86826

[no title]H/html_2000/WWW/faculty/english/Wu-Rei-Bei.html72285

Faculty members of NTUEE H/prodata_c.html343

4

2

1

Rank

Faculty members of NTUEE H/professor_e.html94

Faculty members of NTUEE H/professor_c.html93

Homepage of professor Ruey-Beei WuH/www/faculty/rb-wu/rb-wu.htm5633

TitleURLSN

Figure 13: “Ruey-Beei Wu” - VIPAS-TH.

than that from regular HITS. The best authorities for key-
word “Ruey-Beei Wu”: documents with SN 5633, 7228
and 8682 respectively are listed in front of the query re-
sults. In order to show the effectiveness of VIPAS in a
more descriptive manner, we have to perform some formal
evaluations. Traditionally, researches in information re-
trieval often adopt the measurement of precision and recall
for the evaluation of retrieval systems [2]. Precision is de-
fined to be the percentage of retrieved documents that are in
fact relevant to the query, whereas recall is the ratio of rele-
vant documents that are retrieved to the total number of rel-
evant documents in the search space. However, these two
measurements are not directly suitable for the evaluation of
our system, because we have to focus on the comparison
of two authority lists, where one is that returned by VIPAS
and the other is the manually composed list. Therefore,
we define two measurements: discrepancy coefficient and
grouping coefficient. The discrepancy coefficient, denoted
by µ, is used to measure the extent to which the author-
ity pages are put in front of the output list. We define it
as the average over the difference between each authority
page’s ranking in the output and its “ideal” ranking. An
authority page’s ideal ranking is a number among 1, 2, ...
till n, where n is the number of all authority pages. For
example, if there are totally three authorities, any authority
page’s ideal ranking should be either 1, 2 or 3. Therefore,
the formula of discrepancy coefficient is

µ =

nP
k=1

(Rk − k)

n

where Rk is the ranking of the k-th encountered author-
ity in the output list as we browse from the top of the list
to the bottom. For example, in Figure 11, R1 is 1 (au-
thority with SN 5633), R2 is 5 (authority with SN 8682),
and R3 is 41 (authority with SN 7228). The discrepancy
coefficient is (1−1) + (5−2) + (41−3)

3 = 13.67. Similarly,
in Figure 12 we calculate the discrepancy coefficient as
(1−1) + (5−2) + (6−3)

3 = 2. The smaller the discrepancy
coefficient, the more frequently authority pages are put in
front of the result list.

The grouping coefficient, denoted by σ, is a measure of
the locality of authorities’ position in the result list. The
grouping coefficient is defined as



0

5

10

15

20

25

1 2 3 4 5 6 7 8

Keyword

D
isc

re
pa

nc
y 

Co
ef

fic
ie

nt

HITS
VIPAS-VH
VIPAS-TH

Figure 14: Comparison among HITS, VIPAS-VH and
VIPAS-TH on discrepancy coefficient where the smaller
the discrepancy coefficient, the more frequently authority
pages are put in front of the result list.

0

4

8

12

16

20

1 2 3 4 5 6 7 8

Keyword

G
ro

up
in

g 
Co

ef
fic

ie
nt HITS

VIPAS-VH
VIPAS-TH

Figure 15: Comparison among HITS, VIPAS-VH and
VIPAS-TH on grouping coefficient where the smaller the
grouping coefficient, the more closely authority pages are
put together.

σ =

s
nP

k=1

[(Rk − k)− µ]2

n ,

where µ is the discrepancy coefficient.
From the formula we can see that the coefficient is the

standard deviation of the difference between each authority
page’s ranking in the output and its ideal ranking. The
grouping coefficient calculated from Figure 11 isq

[(1−1)−13.67]2 + [(5−2)−13.67]2 + [(41−3)−13.67]2
3 =

17.25 while that from Figure 12 isq
[(1−1)−2]2 + [(5−2)−2]2 + [(6−3)−2]2

3 = 1.41. The
smaller the grouping coefficient, the more closely author-
ity pages are put together in the result list.

4.4 Overall Results and Discussion

4.4.1 Comparison on Performance and Stability

We conducted experiments on eight keywords and calcu-
lated the discrepancy and grouping coefficients for all of
them. Figure 14 shows the comparison among HITS,
VIPAS-VH and VIPAS-TH on discrepancy coefficient,
while Figure 15 shows that on grouping coefficient. It is
seen that VIPAS significantly outperforms HITS. In addi-
tion, VIPAS-VH is somewhat better than VIPAS-TH as far
as discrepancy and grouping coefficients are concerned.

0
1
2
3
4
5
6
7
8
9

HITS VIPAS-VH VIPAS-TH

St
ab

ili
ty

Figure 16: Comparison among HITS, VIPAS-VH and
VIPAS-TH on stability.

We also calculate another measurement, which is the
standard deviation of each algorithm’s discrepancy coeffi-
cients for the eight keywords. We use this as the indication
of the stability of an algorithm. A more stable algorithm
should produce a smaller value of this measurement. The
results are shown in Figure 16 where VIPAS-VH is slightly
more stable than VIPAS-TH, but both of them have much
better stability than HITS. The reason why VIPAS-VH per-
forms more stably is that virtual links of VIPAS-TH origi-
nate from the top hub with a score determined by both real
and virtual links. This leads to the problem of noises since
real links may go to non-authoritative pages. In contrast,
VIPAS-VH has virtual links going out from the virtual hub
whose score is purely determined by the scores of linked
authorities. Note that VIPAS-VH in essence outperforms
VIPAS-TH at the expense of more storage to keep the in-
formation of one additional page, i.e. the virtual hub.

4.4.2 Remark

From the experiments, it is worth mentioning that after the
practice of virtual links, only about three runs of iterative
updates are needed for the scores to converge to a steady
value. Note that we have pre-computed the scores before
virtual links are added and archived them in the Web ware-
house. Since virtual links will not significantly alter the
whole link topology, the difference between two consecu-
tive steady states will not be prominent. Therefore a few
iterations, ranging from 3 to 5, are usually sufficient for
the system to jump from the state corresponding to the link
topology of merely real links to the one with virtual links,
indicating the very advantage of Web warehousing.

Finally, we comment that some search engines have also
used the idea similar to incorporating users’ feedback into
the computation of document ranking. Excite [9] is one
example of such engines. However, the mechanism uti-
lized by Excite was relevance feedback [3], which needs
users’ explicit reaction with the engine’s interface. In [13],
there is a study on the transaction log analysis of queries
and user sessions for Excite. As pointed out in that liter-
ature, there was a surprisingly low percentage of sessions
with relevance feedback. In contrast, our method does not
need any cooperation from the user, and is able to avoid
this deficiency.



5 Conclusions
In this paper, we have proposed the architecture of a Web
warehousing system that is able to find authoritative Web
pages for the information need of the user. By identify-
ing hot sets consisting of pages heavily accessed by the
user and creating virtual links with dynamic weights deter-
mined by the observed user behavior, VIPAS is able to pro-
vide the user with results that are progressively improving
as the system is continuously being used. By conducting
experiments on the system, we have shown that VIPAS is
not only very effective but also very adaptive in providing
much more valuable information to users.

Acknowledgement
The authors are supported in part by the National Science
Council, Project No. NSC 91-2213-E-002-034 and NSC
91-2213-E-002-045, Taiwan, Republic of China.

References
[1] AltaVista. http://www.altavista.com/.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley, 1999.

[3] N. Belkin, C. Cool, J. Koenemann, K. Ng, and
S. Park. Using relevance feedback and ranking in in-
teractive searching. Proc. of the 4th Text Retrieval
Conference, 1996.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Proc. of the 7th In-
ternational World Wide Web Conference, 1998.

[5] J. Carriere and R. Kazman. WebQuery: Searching
and visualing the Web through connectivity. Proc.
of the 6th International World Wide Web Conference,
1997.

[6] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,
P. Raghavan, and S. Rajagopalan. Automatic resource
compilation by analyzing hyperlink structure and as-
sociated text. Proc. of the 7th International World
Wide Web Conference, 1998.

[7] S. Chakrabrti, B. Dom, D. Gibson, J. Klein-
berg, R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tompkins. Mining the link structure of the World
Wide Web. IEEE Computer, August 1998.

[8] M.-S. Chen, J. Han, and P. S. Yu. Data mining: An
overview from database perspective. IEEE Transac-
tions on Knowledge and Data Engineering, 8(6):866–
883, December 1996.

[9] Excite. http://www.excite.com/.

[10] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From
data mining to knowledge discovery in databases. AI
Magazine, 17:37–54, 1996.

[11] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring
Web communities from link topology. ACM Confer-
ence on Hypertext and Hypermedia, 1998.

[12] Google. http://www.google.com/.

[13] B. J. Jansen, A. Spink, and T. Saracevic. The use
of relevance feedback on the Web: Implications for
Web IR system design. Proc. of the 1999 World Con-
ference on the WWW and Internet, pages 550–555,
1999.

[14] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Proc. of ACM-SIAM Symposium on
Discrete Algorithms, 1998.

[15] R. Kosala and H. Blockeel. Web mining research: A
survey. ACM-SIGKDD Explorations, July 2000.

[16] I.-Y. Lin, X.-M. Huang, and M.-S. Chen. Capturing
user access patterns in the Web for data mining. IEEE
1999 International Conference on Tools with Artifi-
cial Intelligence, pages 345–348, November 1999.

[17] Lycos. http://www.lycos.com/.

[18] M. Pazzani, L. Nguyen, and S. Mantik. Towards a
WWW information filtering and seeking agent. IEEE
1995 International Conference on Tools with Artifi-
cial Intelligence, 1995.

[19] C. Shahabi, A. M. Zarkesh, J. Adibi, and V. Shah.
Knowledge discovery from users Web-page naviga-
tion. Workshop on Research Issues in Data Engineer-
ing, 1997.

[20] E. Spertus. Parasite: Mining structural information on
the Web. Proc. of the 6th International World Wide
Web Conference, 1997.

[21] J. Srivastava, R. Cooley, M. Deshpande, and P.-N.
Tan. Web usage mining: Discovery and applications
of usage patterns from Web data. ACM-SIGKDD Ex-
plorations, January 2000.

[22] S. M. Weiss and C. A. Kulikowski. Computer sys-
tems that learn: Classification and prediction meth-
ods from statistics, neural nets, machine learning, and
expert systems. Morgan Kaufmann Publishers, 1991.

[23] Yahoo. http://www.yahoo.com/.

[24] O. Zaiane, M. Xin, and J. Han. Discovering Web ac-
cess patterns and trands by applying OLAP and data
mining technology on Web logs. Proc. on Advances
in Digital Libraries, pages 19–29, 1998.

[25] A. Zarkesh, J. Adibi, C. Shahabi, R. Sadri, and
V. Shah. Analysis and design of server informative
WWW-sites. Proc. of the 6th International Confer-
ence on Information and Knowledge Management,
1997.


