
Tuple Routing Strategies for Distributed Eddies
Feng Tian David J. DeWitt

Department of Computer Sciences
University of Wisconsin, Madison

Madison, WI, 53706
{ ftian, dewitt} @cs.wisc.edu

Abstract

Many applications that consist of streams of data
are inherently distributed. Since input stream
rates and other system parameters such as the
amount of available computing resources can
fluctuate significantly, a stream query plan must
be able to adapt to these changes. Routing tuples
between operators of a distributed stream query
plan is used in several data stream management
systems as an adaptive query optimization
technique. The routing policy used can have a
significant impact on system performance. In this
paper, we use a queuing network to model a
distributed stream query plan and define
performance metrics for response time and
system throughput. We also propose and
evaluate several practical routing policies for a
distributed stream management system. The
performance results of these policies are
compared using a discrete event simulator.
Finally, we study the impact of the routing policy
on system throughput and resource allocation
when computing resources can be shared
between operators.

1. Introduction

Stream database systems are a new type of database
system designed to facilitate the execution of queries
against continuous streams of data. Example applications
for such systems include sensor networks, network
monitoring applications, and online information tracking.
Since many stream-based applications are inherently
distributed, a centralized solution is not viable. Recently
the design and implementation of scalable, distributed

data stream management systems has begun to receive the
attention of the database community.

Many of the fundamental assumptions that are the
basis of standard database systems no longer hold for data
stream management systems [8]. A typical stream query is
long running -- it listens on several continuous streams
and produces a continuous stream as its result. The notion
of running time, which is used as an optimization goal by
a classic database optimizer, cannot be directly applied to
a stream management system. A data stream management
system must use other performance metrics. In addition,
since the input stream rates and the available computing
resources will usually fluctuate over time, an execution
plan that works well at query installation time might be
very inefficient just a short time later. Furthermore, the
“optimize-then-execute” paradigm of traditional database
systems is no longer appropriate and a stream execution
plan must be able to adapt to changes of input streams and
system resources.

An eddy [2] is a stream query execution mechanism
that can continuously reorder operators in a query plan.
Each input tuple to an eddy carries its own execution
history. This execution history is implemented using two
bitmaps. A done bitmap records which operators the tuple
has already visited and a ready bitmap records which
operators the tuple can visit next. An eddy routes each
tuple to the next operator based on the tuple’s execution
history and statistics maintained by eddy. If the tuple
satisfies the predicate of an operator, the operator makes
appropriate updates to the two bitmaps and returns the
tuple to the eddy. The eddy continues this iteration until
the tuple has visited all operators. Figure 1.1 shows an
eddy with three operators. The major advantage of an
eddy is that the execution plan is highly adaptive with the
routing decision for each individual tuple deciding the
execution order of the operators for this tuple. [2][18]
demonstrate that this technique adapts well to changes in
input stream rates.

However, a centralized eddy cannot be directly
employed in a distributed data stream management system
without incurring unnecessary network traffic and delays
and would almost certainly end up being a bottleneck.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

In this paper we study the design, implementation, and

performance of the following distributed eddy algorithm.
After an operator processes a tuple, instead of returning
the tuple to a centralized eddy, the operator makes a
routing decision based on the execution history of the
tuple and statistics maintained at the operator. Figure 1.2
shows a distributed plan with three operators. The dashed
arrows indicate possible routes between operators. The
four solid arrows indicate one possible execution order
that a tuple might actually take. The routing policy at each
operator decides the execution order of the operators for
each tuple, therefore, dynamically optimizing the
distributed stream query plan. The purpose of this paper is
to study the effectiveness of different routing policies.

As discussed earlier, query response time is not an
appropriate metric to evaluate a data stream management
system. Instead we propose the following two metrics:

ART - the average response time measured as the
average time between when a tuple enters and leaves the
operators that form the distributed eddy.

MDR - the maximum data rate the system can handle
before an operator becomes a bottleneck.

The formal description of the system and rigorous
definitions of these metrics will be given in Section 3.

Section 4 examines the impact of the routing policy on
system performance. The distributed query plan is
modelled using a queuing network and a solution
technique is described. We also study several practical
routing policies that have straightforward
implementations and compare their performance.

A distributed stream processing system must be able
to dynamically adapt to configuration changes such as
adding or removing computing resources. Changes in
input data rates may also require the system to re-allocate
resources via load sharing techniques. Aurora* [6]
implements box sliding and box splitting to enable load
sharing across nodes. The natural way of applying these
load sharing techniques is to split the workload of an
overloaded node and to merge workloads of lightly loaded
nodes. The routing policy is an important factor in
determining which node is likely to be overloaded. In
Section 5, the effect of routing policy on the system
throughput and resource allocation when computing
resources can be added to or removed from a node is
examined. Conclusions and future research directions are
contained in Section 6.

2. Related Work

There are a number of research projects currently
studying issues related to streaming data [1][2][3][4][5]
[6][7][8][12][16][18][22][26]. Those that are most closely
related to our work are the Aurora* [6][8], STREAM
[3][4][22], Telegraph [2][9][18] and Cougar [7][12]
projects.

The original eddy paper [2] introduced the concept of
routing tuples between operators as a form of query
optimization. This paper extends the idea of an eddy to a
distributed environment. The routing policies described in
[2] and [18] are compared against several other routing
policies in Section 4 and 5.

Aurora [8] describes the architecture of a data stream
management system. Aurora* [6] extends Aurora to a
distributed environment and discusses load sharing
techniques. Aurora also uses routing as a mechanism to
reorder operators. The routing mechanism is similar to
that of an eddy and our results can be adapted to Aurora*.

STREAM [3] describes a query language and precise
semantics of stream queries. [5][22] describe both
operator scheduling and resource management in a
centralized data stream management system, focusing on
minimizing inter-operator queue length or memory
consumption. In [22] a near-optimal scheduling algorithm
for reducing inter-operator queue size is presented. In
addition, [22] explores using constraints to optimize
stream query plans.

Cougar [7][12] is a distributed sensor database system.
Cougar focuses on forming clusters out of sensors to
allow intelligent in-network aggregation to conserve
energy by reducing the amount of communication
between sensor nodes.

[27] asserts that execution time is not an appropriate
goal for optimizing stream queries and proposes the use of
output rates as more appropriate. The output rate metric
proposed in [27] is essentially equivalent to our MDR.

Several approaches have been proposed on how to
gather statistics over a stream [4] [11] [13] [16] [19] [20]
[21] with the primary focus being how to obtain good
estimates over streaming data with limited amounts of
memory and minimal CPU usage. These results will be
critical to the design of accurate routing policies to any
distributed eddy implementation.

There are many papers that describe the use of
queuing networks to analyze computer system. [14][15]
are the standard texts on this subject.

3. Overview of the System Model and
Performance Metrics

We model a distributed stream query plan as a set of
operators Opi, i=1,..,n connected by a network. Input
tuples to an operator are added to a first-come, first-
served (FCFS) queue, as shown in Figure 3.1. Opi.R
resources (i.e. CPU, memory and network bandwidth) are

Figure 1.1 Centralized
Eddy

Eddy

Op1

Op2

Op3

Figure 1.2 A distributed
query plan

Op1

Op2

Op3

assumed to be available to each operator Opi,. We further
assume that each input tuple to Opi consumes, on average,
Opi.r, resources. Thus, Opi can process at most
Opi.R/Opi.r input tuples per time unit and the average
service time Ts for each individual tuple is Opi.r/Opi.R.
Later we will see that only Ts will appear in solutions of
the queuing model and in fact, many queuing network
literature normalize Opi.R to 1. We do not use such
normalization technique because in Section 5 we examine
the case that computing resources at each operator can be
dynamically reallocated among the operators. The
residence time Tr of a tuple at Opi is the sum of the
queuing delay and the processing time of the tuple.

A data source operator is a special kind of operator

that generates tuples. As a tuple t is generated it is time-
stamped with the system time ts. As in [2], each tuple also
carries its own execution history h. The execution history
records the operators that the tuple has already visited.
The operators that the tuple needs to visit next are
implicitly determined by the operators that it has already
visited. A tuple with timestamp ts and history h is denoted
as ttsh. A data source operator does not receive input
tuples from other operators and we assume that the
residence time of a tuple (generated) at a data source
operator is zero.

In average, for every input tuple ttsh to operator Opi,
Opi will produce � output tuples. � is called the selectivity
of Opi. In the case of a selection operator, � is a constant
less than 1. In the case of a join, � may be greater than 11.
For each output tuple, Opi selects the next operator to
send the tuple to with probability proportional to a routing
weight function Opi.W(h)=(wi1(h), wi2(h), …, win(h)),
where n is the number of operators in the distributed plan.
Each output tuple is time-stamped with the same ts as the
input tuple and its execution history is set appropriately
before it is sent to the next operator. This process
continues until the tuple reaches a special operator termed
the Data Sink (Sink). The Sink operator models the result
of the distributed plan. Tuples sent to a Sink operator
correspond to tuples that have left the system; therefore
we assume the tuple consumes no resources at a Sink
operator and that the residence time of the tuple at Sink is
zero. When a Sink receives an input tuple, the operator
can compute the response time of the tuple as the system
time minus the timestamp of the tuple. The operators that
the tuple has visited, in order, is called execution path of
the tuple.

1 For most operators � is a constant. However, there are

situations that � depends on the execution history of input
tuples. We will see such an example (a three way join) in
Section 4.

Operators in this model have only one input queue.
We briefly explain how to implement the join operator,
which logically has two input streams. Our treatment of
join is very much like a distributed version of SteMs
described in [18]. We assume that all the join operators
use sliding window semantics so that a tuple will not have
to be joined with an infinite amount of data. Also, we
assume all join operators are implemented using a
symmetric hash join algorithm [28].

Figure 3.2 The distributed symmetric algorithm for
A B

Figure 3.2 shows a distributed symmetric join
algorithm for A B. An input tuple from stream A is first
processed by an operator that maintains a sliding window
for stream A. The tuple is then sent to an operator that
joins the tuple with the window of stream B (on perhaps a
different physical node). Tuples from stream B are
processed in a symmetric way. Dashed boxes in Figure
3.2 indicate components of the join algorithm that are
likely to reside on a single node.

We propose the following two metrics to measure the
performance of a distributed query plan.

• The Average Response Time (ART) of tuples that
reach the Sink operator. Notice tuples that are filtered
out during query processing do not contribute to this
metric.

• The Maximum Data Rate (MDR) at the data source
operators before the system is overloaded. We say
that the system is overloaded if the length of any
operator’s input queue exceeds a pre-defined
maximum length. When there are multiple data
source operators, it is reasonable to optimize for
some function of the data rates of each data source
operator. For simplicity, we will optimize for the sum
of all data rates of the data source operators.

The corresponding optimization problems for these
two metrics then can be stated as

Optimization Problem 1 (ART): Given the network
configuration (including the selectivity of each operator)
and the data generation rates at the data source operators,
choose a routing weight function W for each operator Opi,

W
1

Update
W1

Join
with
W1

Update
W2

Join
 with
W2

W
2

A

A

B

B

A B

A B

Figure 3.1 Operator

Op
(R,r)

such that the Average Response Time at Sink is
minimized.

Optimization Problem 2 (MDR): Given the network
configuration, choose a routing weight function W for
each Opi, such that the Maximum Data Rate is
maximized.

4. ROUTING POLICY OF A PLAN WITH
FIXED RESOURCE ALLOCATION

4.1 Numerical solutions for ART and MDR

In this section, we consider the routing policy for a plan in
which the computing resource R of operator Opi is fixed.
We further assume that the routing weight function W of
Opi has the following form. Opi.W(h)=(wi1(h), wi2(h), …,
win(h)), where wik(h)=0 if a tuple with history h cannot be
routed to operator Opk for processing next and wik(h)=cik
if a tuple with history h can be routed to Opk. This means
that if two tuples can be routed to Opj and Opk, the
probability of being routed to each operator remains
proportional, regardless of the histories of the two tuples.

The algorithm compute_rate in Figure 4.1 computes
the total input rate Opi.� (as a function of cik and the data
generation rates of the data source operators) to the
operator Opi. If we treat operator Opi as an M/M/1 server
with input rate Opi.� 2, we can compute the average
resident time Opi.Tr of a tuple at Opi and the average
queue length Opi.qlen at Opi. We have

Opi.Tr = Opi.Ts/(1-Opi.� *Opi.Ts)

Opi.qlen = (Opi.� *Opi.Ts)/(1-Opi.� *Opi.Ts)

where Opi.Ts = Opi.r/Opi.R is the average service time
of a tuple at Opi.

The algorithm in Figure 4.1 also computes the arrival
rates at the Sink operator of each different execution
history (or execution path), denoted by Sink.� h. The
response time Th for a tuple with the execution history h
is the sum of residence time at all operators along its
path3, that is, Th =� Opi in hOpi.Tr. We can compute the
average response time of the system as

ART=� h(Sink.� h * Th)/� hSink.� h.

2 In general, the arrival rate at an operator is not exponential. For

example, if a join operation produces more than one output
tuples, the arrival time at next operator of these tuples are not
independent. Other reasons in practice include that the
network delay between two physical nodes are not
independent. This exponential assumption, however, enables
us to analyze the network and because of the averaging effect,
still provides a good approximation [14][15].

3 The formula does not include terms that represent the network
delay because we assume the available network bandwidth and
the cost of sending the tuple through the network is accounted
for in the computing resource.

Equipped with the queuing network model, we can re-
formulate the two optimization metrics of Section 3 as the
following constrained optimization problem for cik.

Optimize ART: Solve
argmin{cik}(� h(Sink.� h * Th)/� hSink.� h) ,
under the constraints Opi.� < Opi.R/Opi.r. Notice here

that the data rate � at data source nodes are given.

Optimize MDR: Solve
argmax{cik, Opi.� where Opi is data source} (� Opi is data sourceOpi.�)
under the constraints Opi.� <Opi.R/Opi.r and

Opi.qlen<Opi.MaxQ, where Opi.MaxQ is the given
maximum queue length at Opi before Opi is considered
overloaded.

Branch is a data structure with fields {op, rate, history}
active_branches is a list of Branches
The total input rate to each operator Opi will be stored in
Opi.� . The arrival rate at Sink with history h will be stored in
Sink.� h

Line 1-11 initializes the data rates at the data source operators.
Line 12-33 recursively computes data rates of the following
branches of an execution path till all the paths reach the data
sink operator.

Algorithm compute_rate:
1 for each operator op:
2 if op is not data source
3 op.� = 0
4 end if
5 if op is data source:
6 new_branch.op = op
7 new_branch.rate = op.�
8 new_branch.history = {op}
9 active_branches.add(new_branch)
10 end if
11 end for
12 while active_branches is not empty:
13 curr = active_branches.first()
14 active_braches.remove(curr)
15 (w1, w2, ..., wn) = curr.op.W(curr.history)
16 total_w = � 1<=k<=nwk
17 for i in 1,2,...n:
18 if wi!= 0:
19 p= wi/total_w
20 r = curr.rate * curr.op.� * p
21 if Opi is not Sink:
22 Opi.� += r
23 new_branch.op = Opi
24 new_branch.flow = r
25 new_branch.history =
26 curr.history.append(Opi)
27 active_branches.add(new_branch)
28 else:
29 Sink.� curr.history += r
30 end if
31 end if
32 end for
33 end while

Figure 4.1 Algorithm compute_rate

4.2 Examples

We give two examples to illustrate the application of the
solution technique.
Example S3

The first example is a plan consisting of three
selection operators, Op1, Op2 and Op3. Op0 is the data
source operator. The three selection operators can be
evaluated in any order. Relevant parameters such as the
computing resources available to each operator are given
in Table 4.1.

P1 Op0,Op1,Op2,Op3,Sink P4 Op0,Op2,Op3,Op1,Sink
P2 Op0,Op1,Op3,Op2,Sink P5 Op0,Op3,Op1,Op2,Sink
P3 Op0,Op2,Op1,Op3,Sink P6 Op0,Op3,Op2,Op1,Sink

Table 4.2 Possible Execution Paths in Example S3

There are six possible execution paths (P1-P6 shown
in Table 4.2) that tuples can take from Op0 to Sink. The
data generation rate at Op0 is Op0.� . Without loss of
generality, we can assume � jcij = 1. We can compute the
total arrival rate and resident time at Op1 as

Op1.� = Op0.� *c01 --- part contributed by P1, P2
 + Op0.� * c02 * Op2.

� * c21 --- by P3
 + Op0.� * c02 * Op2.

� * c23 * Op3.
� --- by P4

 + Op0.� * c03 * Op3.
� * c31 --- by P5

 + Op0.� * c03 * Op3.
� * c32 * Op2.

� --- by P6
Op1.Tr = Op1.Ts/(1-Op1.� *Op1.Ts)

Similar computations can be applied at Op2 and Op3.
Since a tuple travelling from Op0 to Sink will visit Op1,
Op2 and Op3 exactly once regardless of the path taken, the
average response time at Sink is,

 ART = Op1.Tr + Op2.Tr + Op3.Tr.

Now we can solve for both ART and MDR
numerically. For example, if given Op0.� = 200, the
solution of ART is shown in Table 4.3. Suppose
Opi.MaxQ = 10000, i=1,2,3, the solution of MDR is
shown in Table 4.4.

ART c01 c02 c03 c12 c13 c21 c23 c31 c32
0.14 .21 .78 .01 .98 .02 .99 .01 .15 .85

Table 4.3 Solution of ART of S3 when Op0.� = 200

MDR c01 c02 c03 c12 c13 c21 c23 c31 c32
243 .31 .68 .01 .77 .23 .50 .50 .16 .84

Table 4.4 Solution of MDR of S3 when Opi.MaxQ=10000

The cij in the solutions above specify the probability
weight of Opi routing a tuple to Opj. The results obtained
numerically match the intuition that more tuples should be
routed to operators which have lower service times
(faster, Op1, Op2 in the example) and which are more
selective (Op1). Also, observe that several execution paths
exist simultaneously in the solution. This is an important
difference between the optimal distributed routing policy
and the optimal routing policy for a centralized Eddy. For
a centralized eddy considered in [18], the optimal policy
orders selection operators from most selective to least
selective and always applies them in that order. Later in
this section, we will show that practical routing policies
that are designed to approach the optimal solution for a
centralized eddy do not perform well in the distributed
environment.
Example J3

The second example is a three way join A B C.
Stream A, B and C are generated at Op0, Op1 and Op2
with rates Op0.� , Op1.� and Op2.� respectively. As
discussed in Section 3, the symmetric join algorithm can
be carried out in two phases – a sliding window update
phase and a join phase. Since the cost of window update
operators for stream A, B and C are the same regardless
of the routing policy used, we assume that the window
update is performed at Op0, Op1 and Op2 and do not
consider the delay of updating the window in the
optimization problem. Notice that two different join
operations will be performed on the sliding window of
stream B – the right side join of A B and the left side
join of B C. Because both operations must access the
same sliding window, it is a reasonable requirement to
model that both operations compete for the same physical
computing resource and share a single queue, shown as
Op4 in Figure 4.3. However, we should note the
selectivity of streams A and B at Op4 can be very
different. We assume that Op4 has selectivity �

A on tuples
from stream A and �

C on tuples from stream C. The
parameters for Example J3 are given in Table 4.5.

P1 Op0,Op4,Op5,Sink P3 Op1,Op3,Op5,Sink
P2 Op2,Op4,Op3,Sink P4 Op1,Op5,Op3,Sink

Table 4.6 Possible paths in Example J3

 R r Ts=r/R �

Op3 10 .2 .02 .8

� A � C
Op4 20 .2 .01 .1 .4
Op5 40 .4 .01 .2

Table 4.5 Parameters for J3

 R r Ts=r/R �

Op1 10 .1 .01 .5

Op2 20 .1 .005 .2
Op3 20 .5 .025 .4

Table 4.1 S3 Parameters

Figure 4.3 Example J3

Op4

Sink

Op0 Op1 Op2

Op3 Op5

Figure 4.2 Example S3

Op1

Sink

Op2 Op3

Op0

It is reasonable to require that tuples from stream A
(and C) must first be joined with stream B in order to
avoid having to form the cross product of A and C. There
are four possible execution paths (P1-P4) in example J3.
The only routing decision is made at Op1 and the routing
weights c13 and c15 must be determined. Again, without
loss of generality, we can let c13 + c15 = 1. The arrival
rates and resident time at each operator can be computed
as

Op3.� = Op1.� *c13 -- contributed by P3
 + Op1.� *c15*Op5.

� -- contributed by P4
 + Op2.� *Op4.

�
C -- contributed by P2

Op4.� = Op0.� + Op2.� -- contributed by P2 and P4
Op5.� = Op1.� *c15 -- contributed by P4
 + Op1.� *c13*Op3.

� -- contributed by P3
 + Op0.� *Op4.

�
A -- contributed by P1

Opi.Tr = Opi.Ts/(1-Opi.� *Opi.Ts)

At the Sink operator, the arrival rates and response
times along each path are:

Sink.� P1 = Op0.� *Op4.
�

A*Op5.
�

ARTP1 = Op4.Tr + Op5.Tr
Sink.� P2+P3 = Op1.� *Op3.

� *Op5.
�

ARTP2 = ARTP3 = Op3.Tr + Op5.Tr
Sink.� P4 = Op2.� *Op4.

�
C*Op3.

�
ARTP4 = Op4.Tr + Op3.Tr
The ART of the plan is the weighted average of the

ARTs along paths P1 through P4.

ART = (Sink.� P1*ARTP1 + Sink.� P2+P3*ARTP2 +
Sink.� P4*ARTP4) / (Sink.� P1 + Sink.� P2+P3 + Sink.� P4)

Assuming that the input rates are Op0.� =20, Op1.� =80,
Op2.� =20, that Opi.MaxQ = 10000, and that Op0.� : Op1.�
: Op2.� = 1 : 4 : 1, numerical solutions for the ART and
MDR can be found in Tables 4.7 and 4.8, respectively.

In example J3, Op5 is both more selective and faster

(smaller Ts) than Op3. For low data rates, the optimal
routing decision for ART at Op1 is to route all tuples to
Op5. For this case an algorithm that is designed for a
centralized eddy is likely to perform very well. For the
MDR problem, however, the optimal solution routes
about one fourth of the tuples to Op3. It is important to
observe that the solution for MDR balances the
workloads between Op3 and Op5. One might assume that
this solution can be achieved by a policy that routes as
many tuples as possible to Op5 until it is close to the point
of being overloaded and then routes the remaining tuples
to Op3. This is not correct because 80% of the tuples
routed to Op3 from Op1 will be sent to Op5 for further
processing. These tuples will end up overloading Op5 if
Op1 has already sent too many tuples to Op5.

4.3 Practical Routing Policies

The numerical solution to the ART or MDR problems
provides the “optimal” routing policy for a distributed
stream query plan. This optimal policy cannot, however,
usually be achieved in practice because:
1. The solution requires the global configuration

information of the distributed network, which is often
unavailable.

2. The optimization process is very expensive. The
number of possible execution paths is roughly the
factorial of the number of operators in the plan.

3. Often parameters such as stream rates, computing
resources, and operator selectivity are likely to
change during plan execution.

In this section we present some “practical” routing
policies. These policies share the following
characteristics. Operators in a distributed plan learn
statistics during execution, which are exchanged among
the operators periodically. Based on these statistics, each
operator makes its own routing decision without
consulting any central authority or any other operators.
This “autonomous” property is desirable in a distributed
system.

Before describing the routing policies, we first
examine the statistics that can be used to make a routing
decision. Table 4.9 shows the statistics that are gathered at
each node. The input queue length indicates the load at
each operator. Ticket and Selectivity are different
measures of learned selectivity of an operator over its
input streams.

 Symbol Meaning and how to measure
Q length Q Average input queue length, can be

obtained through a resource monitor
at each operator.

Ticket T Increased by 1 when an input tuple is
received and decreased by 1 when a
tuple is placed on the operator’s
output stream. T is set to 0 when it
becomes negative or when the server
is overloaded (indicated by queue
length that grows greater than a pre-
defined threshold).

Selectivity S Selectivity over a specific time
interval Sinterval can be measured by a
monitor, operator selectivity is
updated every time interval using the
formula

 Snew = 0.8*Sold + 0.2*Sinterval

This formula allows S to adapt to
changes in selectivity over time and
avoids sudden changes of S due to
spikes in Sinterval.

Cost C Average service time Ts to process a
tuple, can be obtained through
monitor at each operator.

Table 4.9 Statistics information used by routing policies

MDR c13 c15
153 .24 .76

Table 4.8 MDR solution of
J3

ART c13 c15
.08 .0 1.0

Table 4.7 ART solution of
J3

Next we introduce six practical routing policies.

Routing Policy Q (Q length)

The first policy is the “back-pressure” policy described in
the original Eddy paper [2]. The idea is that a more
heavily loaded operator will apply a larger “back-
pressure” to its input stream, forcing tuples to be routed to
more lightly loaded operators. When an operator outputs a
tuple, the tuple is routed to the operator that has the
shortest queue length Q among all possible operators that
can process the tuple next. Notice that policy Q does not
route an equal number of tuples to each operator. An
operator with smaller Ts can consume tuples at a faster
rate and thus more tuples are routed to it.

Routing Policy T (Ticket)

This policy is the smart eddy algorithm described in
[2][18]. A ticket T is used as a rough indicator of the
learned selectivity at each operator. A tuple is routed to
the most selective operator (i.e. the largest ticket). The
reason behind this policy is that more tuples are dropped
at more selective operators, thus saving unnecessary
processing at operators that are less selective. Note that an
operator sets its ticket to 0 when it becomes overloaded
(as indicated by the length of its input queue). Our results
indicate that this is very important, for otherwise the most
selective operator becomes the bottleneck of the system
and the system becomes congested at rather low data
rates. Following the policy in [18], if the tickets of
possible output operators are all zeros, the routing policy
reverts to policy Q.

Routing Policy SC (Selectivity-Cost)

Policy Q does not consider the selectivity of an
operator; therefore tuples are likely to be routed to an
operator with low selectivity but which is “ fast” (low Ts).
The policy T on the other hand routes tuples to highly
selective operators without considering the cost of
processing a tuple at the operator. Policy SC uses the
following “benefit” to make routing decisions. The
benefit of routing a tuple to operator Opi is defined as

 Benefit_SCi = (1-Opi.S) / Opi.C

If Opi.S is larger than 1, the benefit is set to zero.
Intuitively, this benefit is the possibility that a tuple be
eliminated by an operator divided by the cost of
processing the tuple. An output tuple at each operator is
routed to the next eligible operator with the biggest
benefit.

Routing Policy WSC (Weighted Selectivity-Cost)

The WSC policy is inspired by the fact that several
execution paths exist simultaneously in the optimal plan
derived from the analytic model. In the analytic solution,
operator Opi routes tuples to the next operator Opj with a
certain probability according to weight cij. Policy WSC
mimics the analytic solution by routing a tuple to Opj with

probability proportional to weight W_SCj, which is
computed as

 W_SCj = (Benefit_SCj)
2

At Opi, W_SCj corresponds to the cij in the analytical
model.

Routing Policy SCQ (Selectivity-Cost-Qlength)

Policy SC considers the per-tuple processing cost at an
operator. The cost does not consider the queuing time that
a tuple incurs while waiting to be processed. Tuples will
be routed to an operator with large benefit regardless of
the load at the operator. In policy SCQ, we define

 Benefit_SCQi = (1-Opi.S) / ((1+Opi.Q) *Opi.C)

Benefit_SCQi takes queue length into consideration.
The cost of processing a tuple is the sum of the processing
and queuing time. When an operator is more heavily
loaded, routing a tuple to it will have less benefit.

Routing Policy WSCQ (Weighted Selectivity-Cost-
Qlength)

Like the WSC policy, policy WSCQ routes tuples to
the next possible operator with certain probability. The
weight of routing a tuple to Opi is

 W_SCQi = (Benefit_SCQi)
2

Here we give a short justification of using the square
in computing the weight. When a tuple t is routed to Opi,
the resident time (service time plus queuing time) of t at
Opi is (1+ Opi.Q)*Opi.C. The routing decision, however,
not only affects tuple t, as t also contributes to the queue
length at Opi. Thus, tuples sent to Opi after t will incur a
longer queuing time than they would have had t not been
routed to Opi. Our experiments showed that Benefit alone
is not a good weight function for either WSC or WSCQ
while Benefit2 shows very good results for both WSC and
WSCQ.

4.4 Simulation Results

We simulated each routing policy using CSIM [24], a
discrete event simulator. The system is simulated as a
number of physical nodes connected by a network. Each
operator of a distributed plan executes on one physical
node and one physical node may have several operators
running simultaneously. Tuples are modelled as messages
exchanged between operators. If several operators reside
on one physical node, tuples sent to these operators are
multiplexed over one physical link of the network and de-
multiplexed into the message queue of each operator.
Tuples transferred on one network link are grouped into
pages for transmission. A tuple may be buffered for at
most one time unit and half full pages maybe transferred
if this timer expires. Tuples are generated at data source
operators with an exponential rate. Each operator gathers
the statistics listed in Table 4.9 and broadcasts its learned
statistics to other operators after 5 time units or after

processing every 40 input tuples4. Messages containing
statistics have priority over data. They are not queued
with data packets and are processed immediately when
received. The important parameters of our simulation
model are:

1. The computing resources at each physical node.
We used values from 500 to 1000 in our
simulation.

2. The bandwidth of the network link between two
physical nodes. We used values randomly
selected from 1MB to 100 MB per time unit.

3. Computing resources required by each operator to
process one tuple. We used values from 1 to 20.

4. The page size used for network transfers
(4Kbytes).

5. The average tuple size is 100 bytes; therefore,
there are 40 tuples per page.

We first report results for example S3 (Figure 4.2)
from Section 4.2 and compare the results of the different
policies with the solutions derived using the analytical
model. Table 4.10 shows the ART simulation results for
example S3. If the “overloaded” condition for an operator
is defined as having a queue length of 10,000, the optimal
solution of the analytic model can handle a maximum data
rate of � =243. Shaded entries with bold fonts indicate
major deterioration in ART for a routing policy.

Data Rate 200 210 220 230 240
Model .14 .18 .25 .43 1.57

T .35 22 26 35 45
Q 1.5 2.1 2.6 3 3.8

SC .11 2.3 23 34 44
WSC .12 .49 9.0 20 29
SCQ .54 .95 1.2 1.4 2.2

WSCQ .22 .44 .61 0.8 1.6
Table 4.10 ART of Example S3

Not surprisingly, no practical policy has a better
average response time than the numerical solution from
the analytical model. Policies Q, SCQ, and WSCQ all can
handle a data rate of � =240 without incurring a major
deterioration in ART. These results demonstrate that
incorporating queue length as a routing parameter is
critical in maximizing the rates at which tuples are
processed. Policy T exhibits the worst MDR results
because it depends only on tickets. Once the most
selective operator (Op2) becomes saturated, it sets its
ticket to 0 but this quickly induces congestion at the next
most selective operator. After all operators are congested
the routing policy falls back to policy Q – only worse
because of the congestion.

4 The system is easily overloaded if operators exchange statistics

too infrequently. On the other hand, the statistics information
is noisy if operators exchange statistics in very short intervals.
Our experience shows that exchanging statistics information
after processing 10 to 50 tuples is appropriate for our
simulation.

Policy Q balances the load between operators but too
many tuples are sent to low selectivity operators and
cause too much unnecessary processing. Compare ART
of policy Q to those of policies SCQ and WSCQ, we can
see it is important to consider selectivity and cost in order
to reduce ART. SCQ and WSCQ show good results
across low and high data rates. Both WSC and WSCQ
outperform their un-weighted counterparts in ART.
Policy WSC also shows better MDR than policy SC.

4.4.1 Single Query Simulation Results
We also ran simulations of 100 distributed plans running
on a network consisting of 10 physical nodes. The
number of operators in each plan is uniformly randomly
chosen between 20 and 30 (not including data source
operators and the Sink operator). The average number of
operators per plan was set at 25. The input rates (data
generation rates at the data source operators) of the 100
distributed plans are then varied to generate a total of
1000 queries to evaluate the ART of the different
policies. We choose relatively high data rates to
demonstrate that the different routing policies will exhibit
different queuing behaviours5. Each query is run by itself
(i.e. multiprogramming level of 1).

 T Q SC WSC SCQ WSCQ
GM(ART) 158 66.6 6.0 4.7 3.7 1.92

Table 4.11 Geometric Means of ART

Table 4.11 shows the geometric mean of the ART of
each policy for the 1000 queries. We can see that policy
WSCQ out-performs the other policies by a significant
margin. WSCQ considers selectivity, execution cost, and
the load on each operator (i.e. queue length) and performs
better than those policies that only consider one or two
factors. Comparing the performance of WSCQ with that
of SCQ (WSC with SC), we conclude that using weighted
probability in routing is an effective technique to reducing
the ART.

In our simulation, we treat a physical node as
overloaded if more than 10,000 messages are queued at
that node. Table 4.12 shows the geometric mean of the
MDR of the different scheduling policies for the 1000 test
queries. Policies SCQ and WSCQ have much higher
throughputs than the other policies. From the simulation
results for example S3 in Section 4.2, we concluded that
queue length is a very important factor in routing policy
to achieve higher data rates. The results in Table 4.12
demonstrate that queue length alone is not adequate.

 T Q SC WSC SCQ WSCQ
GM(MDR) 35 150 194 277 349 347

Table 4.12 Geometric Means of MDR

5 The queuing time will be low if the data rate is too low and the

time that tuples are buffered in network to fill a page will be a
major factor of ART.

4.4.2 Multiple Query Simulation Results
In a real data stream management system, it is highly
likely that many long running queries will be running
concurrently. Using our simulation model we also
conducted simulations with 20 simultaneous queries (each
has 10 to 40 operators with an average of 25 operators per
plan) running on a network of 40 nodes6. Tables 4.13 and
4.14 contain the ART and MDR results respectively.

 T Q SC WSC SCQ WSCQ
GM(ART) 331 3.3 21 26 1.52 1.3

 Table 4.13 Geometric Mean of ART for multiple plans

 T Q SC WSC SCQ WSCQ
GM(MDR) 22 94 61 63 96 97

Table 4.14 Geometric Mean of MDR for multiple plans

Again the WSCQ routing policy minimizes the ART.
Compared with the single plan cases, the ARTs of
policies SC and WSC relative to policy WSCQ are much
worse plan while the ART of policy Q relative to WSCQ
is much better. There is no significant difference between
the MDRs of policies Q, SCQ and WSCQ and they are
much better than policies that do not consider queue
length. We conclude that queue length is the most
important factor in making routing decisions when there
are many plans in the system.

The effect of using weight in WSCQ is not as obvious
as the single plan cases because each physical node may
have several operators from different plans and the
workload is automatically balance across physical nodes.

5. ROUTING POLICY OF PLAN WITH
DYNAMIC RESOURCE ALLOCATION

Load sharing is an important technique to achieve
scalability and efficiency in a distributed system. [6]
describes several techniques to facilitate load sharing
across several cooperating physical nodes. Here we
briefly describe these techniques. If more than one
operator (box in Aurora*) resides on an overloaded
physical node, one or more of the operators can be moved
to neighbouring physical nodes through box sliding. If
one operator on a physical node consumes a large amount
of resources, this operator can be split into two copies
through box splitting. One copy of the operator can then
be moved to another physical node. Figure 5.1 illustrates
these techniques. The dashed line boxes indicate a
physical node.

These load sharing techniques raise many important
and difficult issues. [6] points out a number of problems
including when to apply these techniques, which operator
these techniques should be applied to, and possible trade
offs when splitting one operator is much more expensive

6 We have also experimented with different numbers of physical

nodes in the network. Our conclusions hold across simulations
with different number of nodes.

than splitting another. We do not try to attack the problem
in such a general form. Instead, we focus on the impact of
routing policies on load sharing in the system. We
assume the following simple and natural load sharing
policy. If an operator consumes a large amount of
resources at a physical node and the node is overloaded,
the operator is split and sent to nodes that are under
utilized. It is easy to see that the routing policy used in the
system will have an impact on which operators are more
likely to be overloaded. Therefore, the routing policy will
affect the resource allocation between operators.

Physical nodes that share a workload using box sliding
and box splitting are cooperative in the sense that a node
receiving an operator must have enough computing
resources to execute the operator. We model box splitting
and box sliding using the following paradigm. Like the
static resource allocation case, a distributed stream query
plan consists of n operators Op1, Op2, …, Opn. The total
computing resources (aggregated across all nodes on
which the operators are running) available to the query are
denoted as Total_R. The computing resource allocated to
operator Opi from Total_R is denoted as Opi.R. Splitting
and sliding an operator Opi is modelled as increasing the
resources allocated to it. Resources of operators on the
physical node that receives a copy of the operator will be
reduced accordingly. Copies of an under-loaded operator
may be merged later to release resources back to the
Total_R. Next we consider the problem of optimizing for
the maximum data rate the system can handle.

Optimize MDR: Given a distributed plan with
operators Op1, Op2, …, Opn and a total amount of
resources Total_R, compute the routing weight function
cij and computing resources Opi.R of each operator for
the maximum data rate MDR under the constraints:

Opi.� < Opi.R/Opi.r

Opi.qlen < Opi.MaxQ

� Opi.R < Total_R

Figure 5.1 Box Sliding and Box Splitting

OP1 Op2 Op3

Node 1

Node 2

Op1 Op2 Op3

Node 1

Node 2

Box sliding

 Op

Node 1

Op’

Op’’

Node 1

Node 2

Box splitting

The techniques for solving this problem are similar to
those for the static network described in Section 4.1 so we
do not repeat them here. The only difference is that the
computing resources R at each operator become variables
and there is an additional constraint on the sum of these
resources.

We implemented box splitting and box sliding in our
simulation model by creating a copy of the operator and
shipping the copy to the destination physical node. Some
of the tuples queued at the original copy of the operator
are also shipped to the new copy. This implementation is
simpler than a real system because splitting an operator
that has state (such as a join operator) may also need to
ship its state to the destination physical node. Our
simulation ignored this cost because we expect that box
sliding does not occur very frequently in real systems and
some real system implementations simply allow tuples to
be dropped during splitting; tolerating a decrease in the
QoS for a very short period of time [6].

We use example DS3 in Figure 5.2 to illustrate dynamic
resource allocation in a distributed plan. DS3 has a similar
network topology to that of example S3 in Section 4.2
except that Op1, Op2 and Op3 share a total of 100 units of
computing resources. The numerical solution of MDR for
DS3 is 570. Table 5.2 shows the numerical solution to the
ART for the analytic model and the simulation results of
ART for the different routing policies. Shaded entries
indicate a major deterioration in ART for a routing
policy. We can see that policy SCQ and WSCQ achieve
much higher maximum data rate than other polices and
are close to the solution derived using the analytical
model.

Data Rate 200 300 400 500
Model .04 .06 .09 .23

T .06 .27 .56 20
Q .99 81 512 760

SC .04 .74 208 332
WSC .04 .07 50 124
SCQ .05 .18 .29 0.6

WSCQ .05 .12 .45 0.8

Table 5.2 ART of Example DS3

Figure 5.3 shows the actual allocations of resources
among the three operators when the system begins to be
overloaded for each routing policy.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M odel T Q SC WSC SCQ WSCQ

Op3

Op2

Op1

Figure 5.3 Actual Resource Allocations for Example DS3

The solution derived using the analytic model
allocates most of the resources to Op2, which has high
selectivity and is efficient at processing a tuple.
Intuitively, this allocation strategy routes tuples early to
more efficient operators. Routing tuples early to high
selectivity operators automatically reduces the workload
for subsequent operators in the query. Policy SC and SCQ
route tuples to more efficient and more selective operators
first; therefore, they are more aggressive in allocating
resources to those operators. Policy T considers
selectivity only and can be over aggressive in allocating
resources to more selective operators. The probability
weights in WSC and WSCQ attempt to balance the
workload between operators. These policies are more
conservative in allocating resources. Policy Q attempts to
balance queue lengths across operators. Thus, most
resources are allocated to the most expensive operators;
this is usually an inferior resource allocation strategy.

We have conducted simulation experiments of each of
the routing policies with dynamic resource allocations.
The plans used are the same as the plans in Section 4.4.1
except that the operators in each plan can be split and
moved to another physical node. A physical node will
accept a copy of an operator only if the node is not
overloaded (when less than 2000 tuples are queued at the
node). Table 5.3 shows the MDR results of each policy
with and without dynamically adjusting resources
between operators. The MDR values for each routing
policies in the static case are taken from Table 4.12. We
observe that dynamically adjusting resources between
operators can improve the MDR of policy SCQ and
WSCQ by a factor of two to three. We conclude that box
splitting and box sliding are very effective techniques to
improve MDR in a distributed stream management
system. Of the six policies, SCQ and WSCQ have better
results than the others.

 T Q SC WSC SCQ WSCQ
MDR(static) 35 150 194 277 349 347
MDR(dynamic) 311 175 250 835 1315 1297

Table 5.3 Geometric Mean of MDR

 r Ts=r/R �

Op1 .1 .1/Op1.R .5

Op2 .1 .1/Op2.R .2
Op3 .5 .5/Op3.R .4

Op1.R+Op2.R+Op3.R <= 100
Table 5.1 DS3 Parameters

Figure 5.2 Example DS3

Op1

Sink

Op2 Op3

Op0

Higher data rates are used to study the ART of these
policies because the rates used in Table 4.11 are too low
to show queuing behaviour of policy WSC, SCQ and
WSCQ. Table 5.4 shows the ART of the six policies.

 T Q SC WSC SCQ WSCQ
GM(ART) 607 1247 248 34 17 31

 Table 5.4 Geometric Mean of ART

The routing policy plays an important and complex
role in determining the system’s throughput. As discussed
in Section 4, given a fixed resource allocation, balancing
the workload between nodes is an important factor in
making routing decisions to achieve good average
response time and system throughput. However,
balancing the workload also turns out to be conservative
in allocating resource to more selective and more efficient
operators. Our simulation results indicate that the ART of
policy SCQ is about one half of that of policy WSCQ due
to more efficient resource allocation.

We also simulated systems with multiple plans using
the same test cases from Section 4. The results are shown
in Table 5.5 and Table 5.6.

 T Q SC WSC SCQ WSCQ
GM(ART) 71 323 3030 89 21 19

 Table 5.5 Geometric Mean of ART for multiple plans

 T Q SC WSC SCQ WSCQ
MDR(static) 22 94 61 63 96 97
MDR(dynamic) 561 428 99 279 691 657

Table 5.6 Geometric Mean of MDR for multiple plans

Table 5.6 shows the MDR results with dynamic
resource allocation are also much higher than MDR
results of static resource allocation (taken from Table
4.14), which demonstrates box splitting and box sliding
are also very effective in systems with multiple plans.
Like the single plan cases, the SCQ and WSCQ polices
perform better than other policies in terms of both the
ART and the MDR metrics. Having multiple plans in the
system automatically balances the workload. Therefore,
the impact of the weight used by the WSCQ policy is
diminished. Policy SCQ and WSCQ have similar results
in both MDR and ART.

6. CONCLUSION AND FUTURE WORK

In this paper, we have studied the impact of routing
policies on the performance of a distributed data stream
management system. We used a queuing network to build
an analytic model for a distributed query plan and defined
two performance metrics, the average response time and
maximum data rate. We studied six practical routing
policies and compared their relative performance using a
discrete event simulator. We conclude that in a distributed
plan in which each operator has a fixed amount of
computing resources allocated to it, routing policies that
consider operator selectivity, execution cost and operator

load outperforms simpler policies that only consider one
or two factors. Routing policies that are designed for
centralized eddy [2][18] do not perform well in a
distributed environment. Routing tuples using weighted
probabilities is an effective technique to achieve shorter
ART. Overall, the policy WSCQ performs well compared
to other policies. For a distributed plan that can
dynamically allocate computing resources between
operators, our simulation results demonstrate that
adjusting resources between operators (for example, using
box splitting and box sliding) is very effective in
improving system throughput. We observed that there are
two factors that affect system throughput: balancing the
load between operators to avoid congestion and allocating
resources efficiently. Our experiments showed that SCQ
and WSCQ outperform other policies by a significant
margin.

In terms of future work, there are many research
opportunities in studying routing policies in a distributed
data stream management system. We list some of them
here.
1. An overloaded node may drop tuples as “ load-

shedding” technique [6]. Because the routing policy
is an important factor in deciding which node will be
overloaded, the interaction between routing policies
and the policy used to drop tuples will affect the QoS
(as defined in [6][8]) of the system.

2. There are many open issues in “splitting” or “sliding”
operators between physical nodes. We have only
considered one simple strategy, that is, to add
resources to overloaded (indicated by queue length)
operators. It is worthwhile to investigate the
relationship between the more complex load sharing
policies and the routing polices. Especially, we
discovered that under our simple load sharing policy,
balancing the load between operators and efficient
allocation of resources are two competing factors. A
routing policy that is “cooperative” with load sharing
policy is needed to achieve both efficient resource
allocation and efficient execution.

ACKNOWLEDGEMENT

This work was supported by the National Science
Foundation under grant ITR 0086002.

REFERENCES

[1] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J.
Widom. Characterizing memory requirements for
queries over continuous data streams. In Proc. of the
ACM Symp. on Principles of Database Systems
(PODS), 2002.

[2] R. Avnur, J. Hellerstein. Eddies: Continuously Adaptive
Query Processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2000.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J.
Widom. Models and Issues in Data Stream Systems
Invited paper in Proc. of the ACM Symposium on
Principles of Database Systems (PODS), 2002.

[4] B. Babcock, M. Datar and R. Motwani. Sampling From a
Moving Window Over Streaming Data. In Proc. of Annual
ACM-SIAM Symp. On Discrete Algorithms (SODA), 2002.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani. Chain:
Operator Scheduling for Memory Minimization in Stream
Systems. In Proc. Of ACM SIGMOD International
Conference on Management of Data, 2003

[6] H Balakrishnan, D. Carney, et al. Aurora*: A Distributed
Stream Processing System. Submitted for publication.

[7] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards Sensor
Database Systems. In Proceedings of the Second
International Conference on Mobile Data Management,
2001.

[8] D. Carney, U. Cetintemel, M. Cherniack, et al. Monitoring
Streams: A New Class of Data Management Application.
In Proceedings of the 28th International Conference on
Very Large Data Bases (VLDB), 2002.

[9] S. Chandrasekaran, M. J. Franklin. Streaming Queries over
Streaming Data. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB), 2002

[10] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, NiagaraCQ:
A Scalable Continuous Query System for Internet
Databases. In Proc. of ACM SIGMOD International
Conference on Management of Data, 2000.

[11] M. Datar, A. Gionis, P. Indyk and R. Motwani, Maintaining
Stream Statistics over Sliding Windows, In Proc. Of
Annual ACM-SIAM Symp. On Discrete Algorithms
(SODA), 2002.

[12] A. Dobra, M. Garofalakis, J. Gehrke, R. Rastogi.,
Processing Complex Aggregate Queries over Data Streams.
In Proc. of ACM SIGMOD International Conference on
Management of Data, 2002.

[13] S. Guha, N. Koudas, K. Shim. Data-Streams and
Histograms. In Proc. of ACM Symposium on Theory of
Computing (STOC), 2001

[14] L. Kleinrock, Queueing Systems, Volume I: Theory. New
York, Wiley, 1975

[15] L. Kleinrock, Queueing Systems, Volume II: Computer
Applications, New York, Wiley, 1976.

[16] Flip Korn, S. Muthukrishnan, D. Srivastava. Reverse
Nearest Neighbor Aggregates Over Data Streams, In
Proceedings of the 28th International Conference on Very
Large Data Bases (VLDB), 2002

[17] L. Liu, C. Pu, W. Tang. Continual Queries for Internet
Scale Event-Driven Information Delivery. IEEE
Transactions on Knowledge and Data Engineering (TKDE)
11(4), 1999

[18] S. Madden, M Shah, J. Hellerstein, V. Raman.
Continuously Adaptive Queries over Streams. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2002

[19] G. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass and
with limited memory. In Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data, 1998.

[20] Y. Matias, J. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, 1998.

[21] Y. Matias, J. Vitter, and M. Wang. Dynamic maintenance
of wavelet-based histograms. In Proc. of the 2000 Intl.
Conf. on Very Large Data Bases (VLDB), 2000.

[22] R. Motwani, J. Widom, A. Arasu, et al. Query Processing
Approximation and Resource Management in a Data
Stream Management System. In Proceedings of the 2002
Conference on Innovative Data System Research (CIDR),
2002

[23] P. Roy, S. Seshadri, S. Sudarshan and S. Bhobe. Efficient
and extensible algorithms for multi query optimization. In
Proc. of the ACM SIGMOD International Conference on
Management of Data, 2000

[24] H. Schwetman, CSIM--18 the simulation engine. In Proc.
Of the 1996 Winter Simulation Conference, 1996.

[25] T. Sellis, Multiple Query Optimization. ACM Transactions
on Database Systems, 1986

[26] P. Tucker, D. Maier, Exploit Punctuation Semantics in Data
Streams, In 18th International Conference on Data
Engineering (ICDE), 2002

[27] S. Viglas and J. F. Naughton. Rate-Based Query
Optimization for Streaming Information Sources. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2002.

[28] A. N. Wilschut, P. M. G. Apers. Dataflow Query Execution
In A Parallel Main-Memory Environment. Proc. of the
First International Conference on Parallel and Distributed
Information Systems (PDIS), 1991.

