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Abstract 

Many applications that consist of streams of data 
are inherently distributed. Since input stream 
rates and other system parameters such as the 
amount of available computing resources can 
fluctuate significantly, a stream query plan must 
be able to adapt to these changes. Routing tuples 
between operators of a distributed stream query 
plan is used in several data stream management 
systems as an adaptive query optimization 
technique. The routing policy used can have a 
significant impact on system performance. In this 
paper, we use a queuing network to model a 
distributed stream query plan and define 
performance metrics for response time and 
system throughput. We also propose and 
evaluate several practical routing policies for a 
distributed stream management system. The 
performance results of these policies are 
compared using a discrete event simulator. 
Finally, we study the impact of the routing policy 
on system throughput and resource allocation 
when computing resources can be shared 
between operators. 

1. Introduction 

Stream database systems are a new type of database 
system designed to facilitate the execution of queries 
against continuous streams of data. Example applications 
for such systems include sensor networks, network 
monitoring applications, and online information tracking. 
Since many stream-based applications are inherently 
distributed, a centralized solution is not viable.  Recently 
the design and implementation of scalable, distributed 

data stream management systems has begun to receive the 
attention of the database community.  

Many of the fundamental assumptions that are the 
basis of standard database systems no longer hold for data 
stream management systems [8]. A typical stream query is 
long running -- it listens on several continuous streams 
and produces a continuous stream as its result. The notion 
of running time, which is used as an optimization goal by 
a classic database optimizer, cannot be directly applied to 
a stream management system. A data stream management 
system must use other performance metrics. In addition, 
since the input stream rates and the available computing 
resources will usually fluctuate over time, an execution 
plan that works well at query installation time might be 
very inefficient just a short time later.  Furthermore, the 
“optimize-then-execute”  paradigm of traditional database 
systems is no longer appropriate and a stream execution 
plan must be able to adapt to changes of input streams and 
system resources. 

An eddy [2] is a stream query execution mechanism 
that can continuously reorder operators in a query plan. 
Each input tuple to an eddy carries its own execution 
history. This execution history is implemented using two 
bitmaps. A done bitmap records which operators the tuple 
has already visited and a ready bitmap records which 
operators the tuple can visit next. An eddy routes each 
tuple to the next operator based on the tuple’s execution 
history and statistics maintained by eddy. If the tuple 
satisfies the predicate of an operator, the operator makes 
appropriate updates to the two bitmaps and returns the 
tuple to the eddy. The eddy continues this iteration until 
the tuple has visited all operators. Figure 1.1 shows an 
eddy with three operators. The major advantage of an 
eddy is that the execution plan is highly adaptive with the 
routing decision for each individual tuple deciding the 
execution order of the operators for this tuple. [2][18] 
demonstrate that this technique adapts well to changes in 
input stream rates. 

However, a centralized eddy cannot be directly 
employed in a distributed data stream management system 
without incurring unnecessary network traffic and delays 
and would almost certainly end up being a bottleneck. 
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In this paper we study the design, implementation, and 

performance of the following distributed eddy algorithm. 
After an operator processes a tuple, instead of returning 
the tuple to a centralized eddy, the operator makes a 
routing decision based on the execution history of the 
tuple and statistics maintained at the operator. Figure 1.2 
shows a distributed plan with three operators.  The dashed 
arrows indicate possible routes between operators. The 
four solid arrows indicate one possible execution order 
that a tuple might actually take. The routing policy at each 
operator decides the execution order of the operators for 
each tuple, therefore, dynamically optimizing the 
distributed stream query plan. The purpose of this paper is 
to study the effectiveness of different routing policies.  

As discussed earlier, query response time is not an 
appropriate metric to evaluate a data stream management 
system. Instead we propose the following two metrics:  

ART - the average response time measured as the 
average time between when a tuple enters and leaves the 
operators that form the distributed eddy. 

MDR - the maximum data rate the system can handle 
before an operator becomes a bottleneck.  

The formal description of the system and rigorous 
definitions of these metrics will be given in Section 3.  

Section 4 examines the impact of the routing policy on 
system performance. The distributed query plan is 
modelled using a queuing network and a solution 
technique is described. We also study several practical 
routing policies that have straightforward 
implementations and compare their performance. 

A distributed stream processing system must be able 
to dynamically adapt to configuration changes such as 
adding or removing computing resources. Changes in 
input data rates may also require the system to re-allocate 
resources via load sharing techniques. Aurora* [6] 
implements box sliding and box splitting to enable load 
sharing across nodes. The natural way of applying these 
load sharing techniques is to split the workload of an 
overloaded node and to merge workloads of lightly loaded 
nodes. The routing policy is an important factor in 
determining which node is likely to be overloaded. In 
Section 5, the effect of routing policy on the system 
throughput and resource allocation when computing 
resources can be added to or removed from a node is 
examined.  Conclusions and future research directions are 
contained in Section 6. 

2.   Related Work 

There are a number of research projects currently 
studying issues related to streaming data [1][2][3][4][5] 
[6][7][8][12][16][18][22][26]. Those that are most closely 
related to our work are the Aurora* [6][8], STREAM 
[3][4][22], Telegraph [2][9][18] and Cougar [7][12] 
projects.  

The original eddy paper [2] introduced the concept of 
routing tuples between operators as a form of query 
optimization. This paper extends the idea of an eddy to a 
distributed environment. The routing policies described in 
[2] and [18] are compared against several other routing 
policies in Section 4 and 5. 

Aurora [8] describes the architecture of a data stream 
management system. Aurora* [6] extends Aurora to a 
distributed environment and discusses load sharing 
techniques. Aurora also uses routing as a mechanism to 
reorder operators. The routing mechanism is similar to 
that of an eddy and our results can be adapted to Aurora*.  

STREAM [3] describes a query language and precise 
semantics of stream queries. [5][22] describe both 
operator scheduling and resource management in a 
centralized data stream management system, focusing on 
minimizing inter-operator queue length or memory 
consumption. In [22] a near-optimal scheduling algorithm 
for reducing inter-operator queue size is presented. In 
addition, [22] explores using constraints to optimize 
stream query plans. 

Cougar [7][12] is a distributed sensor database system. 
Cougar focuses on forming clusters out of sensors to 
allow intelligent in-network aggregation to conserve 
energy by reducing the amount of communication 
between sensor nodes.    

[27] asserts that execution time is not an appropriate 
goal for optimizing stream queries and proposes the use of 
output rates as more appropriate. The output rate metric 
proposed in [27] is essentially equivalent to our MDR.  

Several approaches have been proposed on how to 
gather statistics over a stream [4] [11] [13] [16] [19] [20] 
[21] with the primary focus being how to obtain good 
estimates over streaming data with limited amounts of 
memory and minimal CPU usage. These results will be 
critical to the design of accurate routing policies to any 
distributed eddy implementation. 

There are many papers that describe the use of 
queuing networks to analyze computer system. [14][15] 
are the standard texts on this subject. 

3.   Overview of the System Model and 
Performance Metrics 

We model a distributed stream query plan as a set of 
operators Opi, i=1,..,n connected by a network. Input 
tuples to an operator are added to a first-come, first-
served (FCFS) queue, as shown in Figure 3.1. Opi.R 
resources (i.e. CPU, memory and network bandwidth) are 
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assumed to be available to each operator Opi,. We further 
assume that each input tuple to Opi consumes, on average, 
Opi.r, resources. Thus, Opi can process at most 
Opi.R/Opi.r input tuples per time unit and the average 
service time Ts for each individual tuple is Opi.r/Opi.R. 
Later we will see that only Ts will appear in solutions of 
the queuing model and in fact, many queuing network 
literature normalize Opi.R to 1. We do not use such 
normalization technique because in Section 5 we examine 
the case that computing resources at each operator can be 
dynamically reallocated among the operators. The 
residence time Tr of a tuple at Opi is the sum of the 
queuing delay and the processing time of the tuple.   

 
A data source operator is a special kind of operator 

that generates tuples. As a tuple t is generated it is time-
stamped with the system time ts. As in [2], each tuple also 
carries its own execution history h. The execution history 
records the operators that the tuple has already visited. 
The operators that the tuple needs to visit next are 
implicitly determined by the operators that it has already 
visited. A tuple with timestamp ts and history h is denoted 
as ttsh. A data source operator does not receive input 
tuples from other operators and we assume that the 
residence time of a tuple (generated) at a data source 
operator is zero. 

In average, for every input tuple ttsh to operator Opi, 
Opi will produce �  output tuples. �  is called the selectivity 
of Opi. In the case of a selection operator, �  is a constant 
less than 1. In the case of a join, �  may be greater than 11. 
For each output tuple, Opi selects the next operator to 
send the tuple to with probability proportional to a routing 
weight function Opi.W(h)=(wi1(h), wi2(h), …, win(h)), 
where n is the number of operators in the distributed plan. 
Each output tuple is time-stamped with the same ts as the 
input tuple and its execution history is set appropriately 
before it is sent to the next operator. This process 
continues until the tuple reaches a special operator termed 
the Data Sink (Sink). The Sink operator models the result 
of the distributed plan. Tuples sent to a Sink operator 
correspond to tuples that have left the system; therefore 
we assume the tuple consumes no resources at a Sink 
operator and that the residence time of the tuple at Sink is 
zero. When a Sink receives an input tuple, the operator 
can compute the response time of the tuple as the system 
time minus the timestamp of the tuple. The operators that 
the tuple has visited, in order, is called execution path of 
the tuple. 
                                                           
1 For most operators �  is a constant. However, there are 

situations that �  depends on the execution history of input 
tuples. We will see such an example (a three way join) in 
Section 4. 

Operators in this model have only one input queue. 
We briefly explain how to implement the join operator, 
which logically has two input streams. Our treatment of 
join is very much like a distributed version of SteMs 
described in [18]. We assume that all the join operators 
use sliding window semantics so that a tuple will not have 
to be joined with an infinite amount of data. Also, we 
assume all join operators are implemented using a 
symmetric hash join algorithm [28]. 

Figure 3.2 The distributed symmetric algorithm for 
A B 

Figure 3.2 shows a distributed symmetric join 
algorithm for A B. An input tuple from stream A is first 
processed by an operator that maintains a sliding window 
for stream A. The tuple is then sent to an operator that 
joins the tuple with the window of stream B (on perhaps a 
different physical node). Tuples from stream B are 
processed in a symmetric way. Dashed boxes in Figure 
3.2 indicate components of the join algorithm that are 
likely to reside on a single node. 

We propose the following two metrics to measure the 
performance of a distributed query plan. 

• The Average Response Time (ART) of tuples that 
reach the Sink operator. Notice tuples that are filtered 
out during query processing do not contribute to this 
metric.  

• The Maximum Data Rate (MDR) at the data source 
operators before the system is overloaded. We say 
that the system is overloaded if the length of any 
operator’s input queue exceeds a pre-defined 
maximum length. When there are multiple data 
source operators, it is reasonable to optimize for 
some function of the data rates of each data source 
operator. For simplicity, we will optimize for the sum 
of all data rates of the data source operators. 

The corresponding optimization problems for these 
two metrics then can be stated as  

Optimization Problem 1 (ART): Given the network 
configuration (including the selectivity of each operator) 
and  the data generation rates at the data source operators, 
choose a routing weight function W for each operator Opi, 
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such that the Average Response Time at Sink is 
minimized.  

Optimization Problem 2 (MDR): Given the network 
configuration, choose a routing weight function W for 
each Opi, such that the Maximum Data Rate is 
maximized. 

4.  ROUTING POLICY OF A PLAN WITH 
FIXED RESOURCE ALLOCATION 

4.1 Numerical solutions for ART and MDR 

In this section, we consider the routing policy for a plan in 
which the computing resource R of operator Opi is fixed. 
We further assume that the routing weight function W of 
Opi has the following form. Opi.W(h)=(wi1(h), wi2(h), …, 
win(h)), where wik(h)=0 if a tuple with history h cannot be 
routed to operator Opk for processing next and wik(h)=cik 
if a tuple with history h can be routed to Opk. This means 
that if two tuples can be routed to Opj and Opk, the 
probability of being routed to each operator remains 
proportional, regardless of the histories of the two tuples. 

The algorithm compute_rate in Figure 4.1 computes 
the total input rate Opi.�  (as a function of cik and the data 
generation rates of the data source operators) to the 
operator Opi. If we treat operator Opi as an M/M/1 server 
with input rate Opi.� 2, we can compute the average 
resident time Opi.Tr of a tuple at Opi and the average 
queue length Opi.qlen at Opi. We have  

Opi.Tr = Opi.Ts/(1-Opi.� *Opi.Ts)  

Opi.qlen = (Opi.� *Opi.Ts)/(1-Opi.� *Opi.Ts)  

where Opi.Ts = Opi.r/Opi.R is the average service time 
of a tuple at Opi.  

The algorithm in Figure 4.1 also computes the arrival 
rates at the Sink operator of each different execution 
history (or execution path), denoted by Sink.� h. The 
response time Th for a tuple with the execution history h 
is the sum of residence time at all operators along its 
path3, that is, Th =� Opi in hOpi.Tr. We can compute the 
average response time of the system as  

ART=� h(Sink.� h *  Th)/� hSink.� h.  

                                                           
2 In general, the arrival rate at an operator is not exponential. For 

example, if a join operation produces more than one output 
tuples, the arrival time at next operator of these tuples are not 
independent. Other reasons in practice include that the 
network delay between two physical nodes are not 
independent. This exponential assumption, however, enables 
us to analyze the network and because of the averaging effect, 
still provides a good approximation [14][15]. 

3 The formula does not include terms that represent the network 
delay because we assume the available network bandwidth and 
the cost of sending the tuple through the network is accounted 
for in the computing resource.  

Equipped with the queuing network model, we can re-
formulate the two optimization metrics of Section 3 as the 
following constrained optimization problem for cik.  

Optimize ART: Solve  
argmin{cik}(� h(Sink.� h *  Th)/� hSink.� h) , 
under the constraints Opi.�  < Opi.R/Opi.r. Notice here 

that the data rate �  at data source nodes are given. 

Optimize MDR: Solve  
argmax{cik, Opi.�  where Opi is data source} (� Opi is data sourceOpi.� ) 
under the constraints Opi.� <Opi.R/Opi.r and 

Opi.qlen<Opi.MaxQ, where Opi.MaxQ is the given 
maximum queue length at Opi before Opi is considered 
overloaded. 

Branch is a data structure with fields {op, rate, history} 
active_branches is a list of Branches 
The total input rate to each operator Opi will be stored in 
Opi.� . The arrival rate at Sink with history h will be stored in 
Sink.� h 
 
Line 1-11 initializes the data rates at the data source operators. 
Line 12-33 recursively computes data rates of the following 
branches of an execution path till all the paths reach the data 
sink operator. 
 
Algorithm compute_rate: 
1   for each operator op: 
2        if op is not data source 
3               op.�  = 0 
4        end if 
5        if op is data source: 
6               new_branch.op = op 
7               new_branch.rate = op.�  
8               new_branch.history = {op} 
9               active_branches.add(new_branch) 
10      end if 
11  end for 
12  while active_branches is not empty: 
13        curr = active_branches.first() 
14        active_braches.remove(curr) 
15        (w1, w2, ..., wn) = curr.op.W(curr.history) 
16        total_w = � 1<=k<=nwk 
17        for i in 1,2,...n: 
18                if wi!= 0: 
19                       p= wi/total_w 
20                       r = curr.rate * curr.op.�  * p 
21                      if Opi is not Sink: 
22                              Opi.�  += r 
23                              new_branch.op = Opi 
24                              new_branch.flow = r 
25                              new_branch.history =  
26                                          curr.history.append(Opi) 
27                             active_branches.add(new_branch) 
28                      else: 
29                             Sink.� curr.history += r 
30                      end if 
31                end if 
32        end for 
33  end while 

Figure 4.1 Algorithm compute_rate 



4.2  Examples 

We give two examples to illustrate the application of the 
solution technique. 
Example S3 

The first example is a plan consisting of three 
selection operators, Op1, Op2 and Op3. Op0 is the data 
source operator. The three selection operators can be 
evaluated in any order. Relevant parameters such as the 
computing resources available to each operator are given 
in Table 4.1. 

 
P1 Op0,Op1,Op2,Op3,Sink P4 Op0,Op2,Op3,Op1,Sink 
P2 Op0,Op1,Op3,Op2,Sink P5 Op0,Op3,Op1,Op2,Sink 
P3 Op0,Op2,Op1,Op3,Sink P6 Op0,Op3,Op2,Op1,Sink 

Table 4.2 Possible Execution Paths in Example S3 

There are six possible execution paths (P1-P6 shown 
in Table 4.2) that tuples can take from Op0 to Sink. The 
data generation rate at Op0 is Op0.� . Without loss of 
generality, we can assume � jcij = 1. We can compute the 
total arrival rate and resident time at Op1 as  

Op1.�  = Op0.� *c01         --- part contributed by P1, P2 
          + Op0.�  *  c02 *  Op2.

�  *  c21           --- by P3 
          + Op0.�  *  c02 *  Op2.

�  *  c23 *  Op3.
�  --- by P4 

          + Op0.�  *  c03 *  Op3.
�  *  c31              --- by P5 

          + Op0.�  *  c03 *  Op3.
�  *  c32 *  Op2.

�  --- by P6 
Op1.Tr = Op1.Ts/(1-Op1.� *Op1.Ts) 

Similar computations can be applied at Op2 and Op3. 
Since a tuple travelling from Op0 to Sink will visit Op1, 
Op2 and Op3 exactly once regardless of the path taken, the 
average response time at Sink is, 

 ART = Op1.Tr + Op2.Tr + Op3.Tr. 

Now we can solve for both ART and MDR 
numerically.  For example, if given Op0.�  = 200, the 
solution of ART is shown in Table 4.3. Suppose 
Opi.MaxQ = 10000, i=1,2,3, the solution of MDR is 
shown in Table 4.4.  

ART c01 c02 c03 c12 c13 c21 c23 c31 c32 
0.14 .21 .78 .01 .98 .02 .99 .01 .15 .85 

Table 4.3 Solution of ART of S3 when Op0.�  = 200 

MDR c01 c02 c03 c12 c13 c21 c23 c31 c32 
243 .31 .68 .01 .77 .23 .50 .50 .16 .84 

Table 4.4 Solution of MDR of S3 when Opi.MaxQ=10000 

The cij in the solutions above specify the probability 
weight of Opi routing a tuple to Opj.  The results obtained 
numerically match the intuition that more tuples should be 
routed to operators which have lower service times 
(faster, Op1, Op2 in the example) and which are more 
selective (Op1). Also, observe that several execution paths 
exist simultaneously in the solution. This is an important 
difference between the optimal distributed routing policy 
and the optimal routing policy for a centralized Eddy. For 
a centralized eddy considered in [18], the optimal policy 
orders selection operators from most selective to least 
selective and always applies them in that order. Later in 
this section, we will show that practical routing policies 
that are designed to approach the optimal solution for a 
centralized eddy do not perform well in the distributed 
environment. 
Example J3  

The second example is a three way join A B C. 
Stream A, B and C are generated at Op0, Op1 and Op2 
with rates Op0.� , Op1.�  and Op2.�  respectively. As 
discussed in Section 3, the symmetric join algorithm can 
be carried out in two phases – a sliding window update 
phase and a join phase. Since the cost of window update 
operators for stream A, B and C are the same regardless 
of the routing policy used, we assume that the window 
update is performed at Op0, Op1 and Op2 and do not 
consider the delay of updating the window in the 
optimization problem. Notice that two different join 
operations will be performed on the sliding window of 
stream B – the right side join of A B and the left side 
join of B C. Because both operations must access the 
same sliding window, it is a reasonable requirement to 
model that both operations compete for the same physical 
computing resource and share a single queue, shown as 
Op4 in Figure 4.3. However, we should note the 
selectivity of streams A and B at Op4 can be very 
different. We assume that Op4 has selectivity �

A on tuples 
from stream A and �

C on tuples from stream C. The 
parameters for Example J3 are given in Table 4.5. 

 
 

P1 Op0,Op4,Op5,Sink P3 Op1,Op3,Op5,Sink 
P2 Op2,Op4,Op3,Sink P4 Op1,Op5,Op3,Sink 

Table 4.6 Possible paths in Example J3 

 R r Ts=r/R �  

Op3 10 .2 .02 .8 

� A � C 
Op4 20 .2 .01 .1 .4 
Op5 40 .4 .01 .2 

Table 4.5 Parameters for J3 

 R r Ts=r/R  �  

Op1 10 .1 .01 .5 

Op2 20 .1 .005 .2 
Op3 20 .5 .025 .4 

Table 4.1 S3 Parameters 

Figure 4.3 Example J3 
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It is reasonable to require that tuples from stream A 
(and C) must first be joined with stream B in order to 
avoid having to form the cross product of A and C. There 
are four possible execution paths (P1-P4) in example J3. 
The only routing decision is made at Op1 and the routing 
weights c13 and c15 must be determined. Again, without 
loss of generality, we can let c13 + c15 = 1. The arrival 
rates and resident time at each operator can be computed 
as  

Op3.�  = Op1.� *c13                      -- contributed by P3 
          + Op1.� *c15*Op5.

�            -- contributed by P4 
          + Op2.� *Op4.

�
C                  -- contributed by P2  

Op4.�  = Op0.�  + Op2.�        -- contributed by P2 and P4 
Op5.�  = Op1.� *c15                      -- contributed by P4   
          + Op1.� *c13*Op3.

�            -- contributed by P3 
          + Op0.� *Op4.

�
A                    -- contributed by P1 

Opi.Tr = Opi.Ts/(1-Opi.� *Opi.Ts) 

At the Sink operator, the arrival rates and response 
times along each path are: 

Sink.� P1 = Op0.� *Op4.
�

A*Op5.
�  

ARTP1 = Op4.Tr + Op5.Tr 
Sink.� P2+P3 = Op1.� *Op3.

� *Op5.
�  

ARTP2 = ARTP3 = Op3.Tr + Op5.Tr 
Sink.� P4 = Op2.� *Op4.

�
C*Op3.

�  
ARTP4 = Op4.Tr + Op3.Tr 
The ART of the plan is the weighted average of the 

ARTs along paths P1 through P4. 

ART = (Sink.� P1*ARTP1 + Sink.� P2+P3*ARTP2 + 
Sink.� P4*ARTP4) / (Sink.� P1 + Sink.� P2+P3 + Sink.� P4) 

Assuming that the input rates are Op0.� =20, Op1.� =80, 
Op2.� =20, that Opi.MaxQ = 10000, and that Op0.�  : Op1.�  
: Op2.�  = 1 : 4 : 1,   numerical solutions for the ART and 
MDR can be found in Tables 4.7 and 4.8, respectively. 

 
In example J3, Op5 is both more selective and faster 

(smaller Ts) than Op3. For low data rates, the optimal 
routing decision for ART at Op1 is to route all tuples to 
Op5.  For this case an algorithm that is designed for a 
centralized eddy is likely to perform very well.  For the 
MDR problem, however, the optimal solution routes 
about one fourth of the tuples to Op3. It is important to 
observe that the solution for MDR balances the 
workloads between Op3 and Op5. One might assume that 
this solution can be achieved by a policy that routes as 
many tuples as possible to Op5 until it is close to the point 
of being overloaded and then routes the remaining tuples 
to Op3. This is not correct because 80% of the tuples 
routed to Op3 from Op1 will be sent to Op5 for further 
processing. These tuples will end up overloading Op5 if 
Op1 has already sent too many tuples to Op5. 

4.3  Practical Routing Policies 

The numerical solution to the ART or MDR problems 
provides the “optimal”  routing policy for a distributed 
stream query plan. This optimal policy cannot, however, 
usually be achieved in practice because: 
1. The solution requires the global configuration 

information of the distributed network, which is often 
unavailable. 

2. The optimization process is very expensive. The 
number of possible execution paths is roughly the 
factorial of the number of operators in the plan. 

3. Often parameters such as stream rates, computing 
resources, and operator selectivity are likely to 
change during plan execution. 

In this section we present some “practical”  routing 
policies. These policies share the following 
characteristics. Operators in a distributed plan learn 
statistics during execution, which are exchanged among 
the operators periodically. Based on these statistics, each 
operator makes its own routing decision without 
consulting any central authority or any other operators. 
This “autonomous”  property is desirable in a distributed 
system. 

Before describing the routing policies, we first 
examine the statistics that can be used to make a routing 
decision. Table 4.9 shows the statistics that are gathered at 
each node. The input queue length indicates the load at 
each operator. Ticket and Selectivity are different 
measures of learned selectivity of an operator over its 
input streams. 

 Symbol Meaning and how to measure 
Q length Q Average input queue length, can be 

obtained through a resource monitor 
at each operator. 

Ticket T Increased by 1 when an input tuple is 
received and decreased by 1 when a 
tuple is placed on the operator’s 
output stream. T is set to 0 when it 
becomes negative or when the server 
is overloaded (indicated by queue 
length that grows greater than a pre-
defined threshold). 

Selectivity S Selectivity over a specific time 
interval Sinterval can be measured by a 
monitor, operator selectivity is 
updated every time interval using the 
formula 

     Snew = 0.8*Sold + 0.2*Sinterval   

This formula allows S to adapt to 
changes in selectivity over time and 
avoids sudden changes of S due to 
spikes in Sinterval. 

Cost C Average service time Ts to process a 
tuple, can be obtained through 
monitor at each operator.  

Table 4.9 Statistics information used by routing policies 

MDR c13 c15 
153 .24 .76 

Table 4.8 MDR solution of 
J3 

ART c13 c15 
.08 .0 1.0 

Table 4.7 ART solution of 
J3 

 



Next we introduce six practical routing policies. 

Routing Policy Q (Q length) 

The first policy is the “back-pressure”  policy described in 
the original Eddy paper [2]. The idea is that a more 
heavily loaded operator will apply a larger “back-
pressure”  to its input stream, forcing tuples to be routed to 
more lightly loaded operators. When an operator outputs a 
tuple, the tuple is routed to the operator that has the 
shortest queue length Q among all possible operators that 
can process the tuple next. Notice that policy Q does not 
route an equal number of tuples to each operator. An 
operator with smaller Ts can consume tuples at a faster 
rate and thus more tuples are routed to it. 

Routing Policy T (Ticket) 

This policy is the smart eddy algorithm described in 
[2][18]. A ticket T is used as a rough indicator of the 
learned selectivity at each operator. A tuple is routed to 
the most selective operator (i.e. the largest ticket). The 
reason behind this policy is that more tuples are dropped 
at more selective operators, thus saving unnecessary 
processing at operators that are less selective. Note that an 
operator sets its ticket to 0 when it becomes overloaded 
(as indicated by the length of its input queue). Our results 
indicate that this is very important, for otherwise the most 
selective operator becomes the bottleneck of the system 
and the system becomes congested at rather low data 
rates. Following the policy in [18], if the tickets of 
possible output operators are all zeros, the routing policy 
reverts to policy Q.   

Routing Policy SC (Selectivity-Cost) 

Policy Q does not consider the selectivity of an 
operator; therefore tuples are likely to be routed to an 
operator with low selectivity but which is “ fast”  (low Ts). 
The policy T on the other hand routes tuples to highly 
selective operators without considering the cost of 
processing a tuple at the operator. Policy SC uses the 
following “benefit”  to make routing decisions. The 
benefit of routing a tuple to operator Opi is defined as 

 Benefit_SCi = (1-Opi.S) / Opi.C 

If Opi.S is larger than 1, the benefit is set to zero. 
Intuitively, this benefit is the possibility that a tuple be 
eliminated by an operator divided by the cost of 
processing the tuple. An output tuple at each operator is 
routed to the next eligible operator with the biggest 
benefit.  

Routing Policy WSC (Weighted Selectivity-Cost) 

The WSC policy is inspired by the fact that several 
execution paths exist simultaneously in the optimal plan 
derived from the analytic model. In the analytic solution, 
operator Opi routes tuples to the next operator Opj with a 
certain probability according to weight cij. Policy WSC 
mimics the analytic solution by routing a tuple to Opj with 

probability proportional to weight W_SCj, which is 
computed as  

 W_SCj = (Benefit_SCj)
2  

At Opi, W_SCj corresponds to the cij in the analytical 
model. 

Routing Policy SCQ (Selectivity-Cost-Qlength) 

Policy SC considers the per-tuple processing cost at an 
operator. The cost does not consider the queuing time that 
a tuple incurs while waiting to be processed. Tuples will 
be routed to an operator with large benefit regardless of 
the load at the operator. In policy SCQ, we define  

 Benefit_SCQi = (1-Opi.S) / ((1+Opi.Q) *Opi.C) 

Benefit_SCQi takes queue length into consideration. 
The cost of processing a tuple is the sum of the processing 
and queuing time. When an operator is more heavily 
loaded, routing a tuple to it will have less benefit.  

Routing Policy WSCQ (Weighted Selectivity-Cost-
Qlength)  

Like the WSC policy, policy WSCQ routes tuples to 
the next possible operator with certain probability. The 
weight of routing a tuple to Opi is  

 W_SCQi = (Benefit_SCQi)
2 

Here we give a short justification of using the square 
in computing the weight. When a tuple t is routed to Opi, 
the resident time (service time plus queuing time) of t at 
Opi is (1+ Opi.Q)*Opi.C.  The routing decision, however, 
not only affects tuple t, as t also contributes to the queue 
length at Opi. Thus, tuples sent to Opi after t will incur a 
longer queuing time than they would have had t not been 
routed to Opi. Our experiments showed that Benefit alone 
is not a good weight function for either WSC or WSCQ 
while Benefit2 shows very good results for both WSC and 
WSCQ. 

4.4 Simulation Results 

We simulated each routing policy using CSIM [24], a 
discrete event simulator. The system is simulated as a 
number of physical nodes connected by a network. Each 
operator of a distributed plan executes on one physical 
node and one physical node may have several operators 
running simultaneously. Tuples are modelled as messages 
exchanged between operators. If several operators reside 
on one physical node, tuples sent to these operators are 
multiplexed over one physical link of the network and de-
multiplexed into the message queue of each operator. 
Tuples transferred on one network link are grouped into 
pages for transmission.  A tuple may be buffered for at 
most one time unit and half full pages maybe transferred 
if this timer expires. Tuples are generated at data source 
operators with an exponential rate. Each operator gathers 
the statistics listed in Table 4.9 and broadcasts its learned 
statistics to other operators after 5 time units or after 



processing every 40 input tuples4. Messages containing 
statistics have priority over data. They are not queued 
with data packets and are processed immediately when 
received. The important parameters of our simulation 
model are: 

1. The computing resources at each physical node. 
We used values from 500 to 1000 in our 
simulation. 

2. The bandwidth of the network link between two 
physical nodes. We used values randomly 
selected from 1MB to 100 MB per time unit.  

3. Computing resources required by each operator to 
process one tuple. We used values from 1 to 20. 

4. The page size used for network transfers 
(4Kbytes). 

5. The average tuple size is 100 bytes; therefore, 
there are 40 tuples per page. 

We first report results for example S3 (Figure 4.2) 
from Section 4.2 and compare the results of the different 
policies with the solutions derived using the analytical 
model. Table 4.10 shows the ART simulation results for 
example S3. If the “overloaded”  condition for an operator 
is defined as having a queue length of 10,000, the optimal 
solution of the analytic model can handle a maximum data 
rate of � =243.  Shaded entries with bold fonts indicate 
major deterioration in ART for a routing policy.  

Data Rate 200 210 220 230  240 
Model .14 .18 .25 .43 1.57 

T .35 22 26 35 45 
Q 1.5 2.1 2.6 3 3.8 

SC .11 2.3 23 34 44 
WSC .12 .49 9.0 20 29 
SCQ .54 .95 1.2 1.4 2.2 

WSCQ .22 .44 .61 0.8 1.6 
Table 4.10 ART of Example S3 

Not surprisingly, no practical policy has a better 
average response time than the numerical solution from 
the analytical model. Policies Q, SCQ, and WSCQ all can 
handle a data rate of � =240 without incurring a major 
deterioration in ART. These results demonstrate that 
incorporating queue length as a routing parameter is 
critical in maximizing the rates at which tuples are 
processed. Policy T exhibits the worst MDR results 
because it depends only on tickets.  Once the most 
selective operator (Op2) becomes saturated, it sets its 
ticket to 0 but this quickly induces congestion at the next 
most selective operator. After all operators are congested 
the routing policy falls back to policy Q – only worse 
because of the congestion.  

                                                           
4 The system is easily overloaded if operators exchange statistics 

too infrequently. On the other hand, the statistics information 
is noisy if operators exchange statistics in very short intervals. 
Our experience shows that exchanging statistics information 
after processing 10 to 50 tuples is appropriate for our 
simulation.  

Policy Q balances the load between operators but too 
many tuples are sent to low selectivity operators and 
cause too much unnecessary processing. Compare ART 
of policy Q to those of policies SCQ and WSCQ, we can 
see it is important to consider selectivity and cost in order 
to reduce ART. SCQ and WSCQ show good results 
across low and high data rates. Both WSC and WSCQ 
outperform their un-weighted counterparts in ART. 
Policy WSC also shows better MDR than policy SC.  

4.4.1 Single Query Simulation Results 
We also ran simulations of 100 distributed plans running 
on a network consisting of 10 physical nodes.  The 
number of operators in each plan is uniformly randomly 
chosen between 20 and 30 (not including data source 
operators and the Sink operator). The average number of 
operators per plan was set at 25. The input rates (data 
generation rates at the data source operators) of the 100 
distributed plans are then varied to generate a total of 
1000 queries to evaluate the ART of the different 
policies. We choose relatively high data rates to 
demonstrate that the different routing policies will exhibit 
different queuing behaviours5. Each query is run by itself 
(i.e. multiprogramming level of 1).  

 T Q SC WSC SCQ WSCQ 
GM(ART) 158 66.6 6.0 4.7 3.7 1.92 

Table 4.11 Geometric Means of ART  

Table 4.11 shows the geometric mean of the ART of 
each policy for the 1000 queries. We can see that policy 
WSCQ out-performs the other policies by a significant 
margin. WSCQ considers selectivity, execution cost, and 
the load on each operator (i.e. queue length) and performs 
better than those policies that only consider one or two 
factors. Comparing the performance of WSCQ with that 
of SCQ (WSC with SC), we conclude that using weighted 
probability in routing is an effective technique to reducing 
the ART. 

In our simulation, we treat a physical node as 
overloaded if more than 10,000 messages are queued at 
that node. Table 4.12 shows the geometric mean of the 
MDR of the different scheduling policies for the 1000 test 
queries. Policies SCQ and WSCQ have much higher 
throughputs than the other policies. From the simulation 
results for example S3 in Section 4.2, we concluded that 
queue length is a very important factor in routing policy 
to achieve higher data rates. The results in Table 4.12 
demonstrate that queue length alone is not adequate.   

 
 T Q SC WSC SCQ WSCQ 
GM(MDR) 35 150 194 277 349 347 

Table 4.12 Geometric Means of MDR  
 

                                                           
5 The queuing time will be low if the data rate is too low and the 

time that tuples are buffered in network to fill a page will be a 
major factor of ART.  



4.4.2 Multiple Query Simulation Results 
In a real data stream management system, it is highly 
likely that many long running queries will be running 
concurrently. Using our simulation model we also 
conducted simulations with 20 simultaneous queries (each 
has 10 to 40 operators with an average of 25 operators per 
plan) running on a network of 40 nodes6. Tables 4.13 and 
4.14 contain the ART and MDR results respectively. 

 T Q SC WSC SCQ WSCQ 
GM(ART) 331 3.3 21 26 1.52 1.3 

 Table 4.13 Geometric Mean of ART for multiple plans 

 T Q SC WSC SCQ WSCQ 
GM(MDR) 22 94 61 63 96 97 

Table 4.14 Geometric Mean of MDR for multiple plans 

Again the WSCQ routing policy minimizes the ART. 
Compared with the single plan cases, the ARTs of 
policies SC and WSC relative to policy WSCQ are much 
worse plan while the ART of policy Q relative to WSCQ 
is much better. There is no significant difference between 
the MDRs of policies Q, SCQ and WSCQ and they are 
much better than policies that do not consider queue 
length. We conclude that queue length is the most 
important factor in making routing decisions when there 
are many plans in the system.   

The effect of using weight in WSCQ is not as obvious 
as the single plan cases because each physical node may 
have several operators from different plans and the 
workload is automatically balance across physical nodes. 

5.  ROUTING POLICY OF PLAN WITH 
DYNAMIC RESOURCE ALLOCATION 

Load sharing is an important technique to achieve 
scalability and efficiency in a distributed system. [6] 
describes several techniques to facilitate load sharing 
across several cooperating physical nodes. Here we 
briefly describe these techniques. If more than one 
operator (box in Aurora*) resides on an overloaded 
physical node, one or more of the operators can be moved 
to neighbouring physical nodes through box sliding. If 
one operator on a physical node consumes a large amount 
of resources, this operator can be split into two copies 
through box splitting. One copy of the operator can then 
be moved to another physical node. Figure 5.1 illustrates 
these techniques. The dashed line boxes indicate a 
physical node. 

These load sharing techniques raise many important 
and difficult issues. [6] points out a number of problems 
including when to apply these techniques, which operator 
these techniques should be applied to, and possible trade 
offs when splitting one operator is much more expensive 
                                                           
6 We have also experimented with different numbers of physical 

nodes in the network. Our conclusions hold across simulations 
with different number of nodes.  

than splitting another. We do not try to attack the problem 
in such a general form. Instead, we focus on the impact of 
routing policies on load sharing in the system.  We 
assume the following simple and natural load sharing 
policy. If an operator consumes a large amount of 
resources at a physical node and the node is overloaded, 
the operator is split and sent to nodes that are under 
utilized. It is easy to see that the routing policy used in the 
system will have an impact on which operators are more 
likely to be overloaded. Therefore, the routing policy will 
affect the resource allocation between operators.  

Physical nodes that share a workload using box sliding 
and box splitting are cooperative in the sense that a node 
receiving an operator must have enough computing 
resources to execute the operator. We model box splitting 
and box sliding using the following paradigm. Like the 
static resource allocation case, a distributed stream query 
plan consists of n operators Op1, Op2, …, Opn. The total 
computing resources (aggregated across all nodes on 
which the operators are running) available to the query are 
denoted as Total_R. The computing resource allocated to 
operator Opi from Total_R is denoted as Opi.R. Splitting 
and sliding an operator Opi is modelled as increasing the 
resources allocated to it. Resources of operators on the 
physical node that receives a copy of the operator will be 
reduced accordingly. Copies of an under-loaded operator 
may be merged later to release resources back to the 
Total_R. Next we consider the problem of optimizing for 
the maximum data rate the system can handle. 

Optimize MDR: Given a distributed plan with 
operators Op1, Op2, …, Opn and a total amount of 
resources Total_R, compute the routing weight function 
cij and computing resources Opi.R of each operator for 
the maximum data rate MDR under the constraints: 

Opi.�  < Opi.R/Opi.r 

Opi.qlen < Opi.MaxQ 

� Opi.R < Total_R 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

Figure 5.1 Box Sliding and Box Splitting 
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The techniques for solving this problem are similar to 
those for the static network described in Section 4.1 so we 
do not repeat them here. The only difference is that the 
computing resources R at each operator become variables 
and there is an additional constraint on the sum of these 
resources.   

We implemented box splitting and box sliding in our 
simulation model by creating a copy of the operator and 
shipping the copy to the destination physical node. Some 
of the tuples queued at the original copy of the operator 
are also shipped to the new copy. This implementation is 
simpler than a real system because splitting an operator 
that has state (such as a join operator) may also need to 
ship its state to the destination physical node. Our 
simulation ignored this cost because we expect that box 
sliding does not occur very frequently in real systems and 
some real system implementations simply allow tuples to 
be dropped during splitting; tolerating a decrease in the 
QoS for a very short period of time [6].   

We use example DS3 in Figure 5.2 to illustrate dynamic 
resource allocation in a distributed plan. DS3 has a similar 
network topology to that of example S3 in Section 4.2 
except that Op1, Op2 and Op3 share a total of 100 units of 
computing resources. The numerical solution of MDR for 
DS3 is 570. Table 5.2 shows the numerical solution to the 
ART for the analytic model and the simulation results of 
ART for the different routing policies. Shaded entries 
indicate a major deterioration in ART for a routing 
policy. We can see that policy SCQ and WSCQ achieve 
much higher maximum data rate than other polices and 
are close to the solution derived using the analytical 
model.  

Data Rate 200 300 400 500  
Model .04 .06 .09 .23 

T .06 .27 .56   20 
Q .99 81 512 760 

SC .04 .74 208 332 
WSC .04 .07   50 124 
SCQ .05 .18 .29 0.6 

WSCQ .05 .12 .45 0.8 

Table 5.2 ART of Example DS3 

Figure 5.3 shows the actual allocations of resources 
among the three operators when the system begins to be 
overloaded for each routing policy.  
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Figure 5.3 Actual Resource Allocations for Example DS3 

The solution derived using the analytic model 
allocates most of the resources to Op2, which has high 
selectivity and is efficient at processing a tuple. 
Intuitively, this allocation strategy routes tuples early to 
more efficient operators. Routing tuples early to high 
selectivity operators automatically reduces the workload 
for subsequent operators in the query. Policy SC and SCQ 
route tuples to more efficient and more selective operators 
first; therefore, they are more aggressive in allocating 
resources to those operators. Policy T considers 
selectivity only and can be over aggressive in allocating 
resources to more selective operators. The probability 
weights in WSC and WSCQ attempt to balance the 
workload between operators. These policies are more 
conservative in allocating resources. Policy Q attempts to 
balance queue lengths across operators. Thus, most 
resources are allocated to the most expensive operators; 
this is usually an inferior resource allocation strategy.  

We have conducted simulation experiments of each of 
the routing policies with dynamic resource allocations. 
The plans used are the same as the plans in Section 4.4.1 
except that the operators in each plan can be split and 
moved to another physical node. A physical node will 
accept a copy of an operator only if the node is not 
overloaded (when less than 2000 tuples are queued at the 
node). Table 5.3 shows the MDR results of each policy 
with and without dynamically adjusting resources 
between operators. The MDR values for each routing 
policies in the static case are taken from Table 4.12. We 
observe that dynamically adjusting resources between 
operators can improve the MDR of policy SCQ and 
WSCQ by a factor of two to three. We conclude that box 
splitting and box sliding are very effective techniques to 
improve MDR in a distributed stream management 
system. Of the six policies, SCQ and WSCQ have better 
results than the others.  

 T Q SC WSC SCQ WSCQ 
MDR(static) 35 150 194 277 349 347 
MDR(dynamic) 311 175 250 835 1315 1297 

Table 5.3 Geometric Mean of MDR  

 r Ts=r/R  �  

Op1  .1 .1/Op1.R .5 

Op2  .1 .1/Op2.R .2 
Op3  .5 .5/Op3.R .4 

Op1.R+Op2.R+Op3.R <= 100 
Table 5.1 DS3 Parameters 
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Higher data rates are used to study the ART of these 
policies because the rates used in Table 4.11 are too low 
to show queuing behaviour of policy WSC, SCQ and 
WSCQ.  Table 5.4 shows the ART of the six policies.  

 T Q SC WSC SCQ WSCQ 
GM(ART) 607 1247 248 34 17 31 

 Table 5.4 Geometric Mean of ART  

The routing policy plays an important and complex 
role in determining the system’s throughput. As discussed 
in Section 4, given a fixed resource allocation, balancing 
the workload between nodes is an important factor in 
making routing decisions to achieve good average 
response time and system throughput. However, 
balancing the workload also turns out to be conservative 
in allocating resource to more selective and more efficient 
operators. Our simulation results indicate that the ART of 
policy SCQ is about one half of that of policy WSCQ due 
to more efficient resource allocation. 

We also simulated systems with multiple plans using 
the same test cases from Section 4. The results are shown 
in Table 5.5 and Table 5.6. 

 T Q SC WSC SCQ WSCQ 
GM(ART) 71 323 3030 89 21 19 

 Table 5.5 Geometric Mean of ART for multiple plans 

 T Q SC WSC SCQ WSCQ 
MDR(static) 22 94 61 63 96 97 
MDR(dynamic) 561 428 99 279 691 657 

Table 5.6 Geometric Mean of MDR for multiple plans 

Table 5.6 shows the MDR results with dynamic 
resource allocation are also much higher than MDR 
results of static resource allocation (taken from Table 
4.14), which demonstrates box splitting and box sliding 
are also very effective in systems with multiple plans. 
Like the single plan cases, the SCQ and WSCQ polices 
perform better than other policies in terms of both the 
ART and the MDR metrics. Having multiple plans in the 
system automatically balances the workload. Therefore, 
the impact of the weight used by the WSCQ policy is 
diminished. Policy SCQ and WSCQ have similar results 
in both MDR and ART. 

6.  CONCLUSION AND FUTURE WORK 

In this paper, we have studied the impact of routing 
policies on the performance of a distributed data stream 
management system. We used a queuing network to build 
an analytic model for a distributed query plan and defined 
two performance metrics, the average response time and 
maximum data rate. We studied six practical routing 
policies and compared their relative performance using a 
discrete event simulator. We conclude that in a distributed 
plan in which each operator has a fixed amount of 
computing resources allocated to it, routing policies that 
consider operator selectivity, execution cost and operator 

load outperforms simpler policies that only consider one 
or two factors. Routing policies that are designed for 
centralized eddy [2][18] do not perform well in a 
distributed environment. Routing tuples using weighted 
probabilities is an effective technique to achieve shorter 
ART. Overall, the policy WSCQ performs well compared 
to other policies. For a distributed plan that can 
dynamically allocate computing resources between 
operators, our simulation results demonstrate that 
adjusting resources between operators (for example, using 
box splitting and box sliding) is very effective in 
improving system throughput.  We observed that there are 
two factors that affect system throughput: balancing the 
load between operators to avoid congestion and allocating 
resources efficiently. Our experiments showed that SCQ 
and WSCQ outperform other policies by a significant 
margin. 

In terms of future work, there are many research 
opportunities in studying routing policies in a distributed 
data stream management system. We list some of them 
here. 
1. An overloaded node may drop tuples as “ load-

shedding”  technique [6]. Because the routing policy 
is an important factor in deciding which node will be 
overloaded, the interaction between routing policies 
and the policy used to drop tuples will affect the QoS 
(as defined in [6][8]) of the system. 

2. There are many open issues in “splitting”  or “sliding”  
operators between physical nodes. We have only 
considered one simple strategy, that is, to add 
resources to overloaded (indicated by queue length) 
operators. It is worthwhile to investigate the 
relationship between the more complex load sharing 
policies and the routing polices.  Especially, we 
discovered that under our simple load sharing policy, 
balancing the load between operators and efficient 
allocation of resources are two competing factors. A 
routing policy that is “cooperative”  with load sharing 
policy is needed to achieve both efficient resource 
allocation and efficient execution.   
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