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Abstract

A Data Stream Manager accepts push-based
inputs from a set of data sources, processes
these inputs with respect to a set of stand-
ing queries, and produces outputs based on
Quality-of-Service (QoS) specifications. When
input rates exceed system capacity, the sys-
tem will become overloaded and latency will
deteriorate. Under these conditions, the sys-
tem will shed load, thus degrading the answer,
in order to improve the observed latency of
the results. This paper examines a technique
for dynamically inserting and removing drop
operators into query plans as required by the
current load. We examine two types of drops:
the first drops a fraction of the tuples in a ran-
domized fashion, and the second drops tuples
based on the importance of their content. We
address the problems of determining when load
shedding is needed, where in the query plan to
insert drops, and how much of the load should
be shed at that point in the plan. We describe
efficient solutions and present experimental ev-
idence that they can bring the system back
into the useful operating range with minimal
degradation in answer quality.

1 Introduction

New applications that must deal with vast numbers of
input streams are becoming more common. These in-
clude applications that process data from small embed-
ded sensors, applications that must correlate financial
data feeds, and applications that must manage input
from a very large number of geo-positioning devices. A
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new class of data management systems is emerging in
response to these applications [4, 7, 6, 15, 19]. These
systems will provide the same kind of infrastructure to
stream-based applications that database management
systems have provided for data processing applications.

The Aurora Data Stream Management System [4,
2, 1] is one such new system that is being developed
at Brandeis University, Brown University, and M.L.T.
Aurora uses application-level semantics to make intelli-
gent decisions about resource allocation. Typically, the
resources in question include processor cycles, memory,
and bandwidth [7].

The Aurora design has been influenced heavily by
several specific applications [1]. In particular, we have
studied an application that performs remote triage over
a battlefield given a large number of soldiers with bio-
sensors embedded in their uniforms. Another appli-
cation involves a next-generation airplane that collects
reconnaissance data about the positions of enemy units
and that intelligently disseminates this information to
a series of ground stations, each with different require-
ments. We are also beginning an experimental effort
to manage fish respiratory data as an indicator of the
presence of toxins in a reservoir.

All of these applications are characterized by a large
number of push-based data sources in which the data
arrival rates can be high and unpredictable. Each of
these applications is responsible for monitoring data to
detect critical situations, during which the data rates
can significantly increase and exceed system capacity.
If no corrective action is taken, queues will form and
latencies will increase without bound. Since such over-
load situations are usually unforeseen and immediate
attention is vital, adapting the system capacity to the
increased load by adding more resources or distributing
computation to multiple nodes [7] may not be feasible
or economically meaningful. In these cases, the only
immediate solution is to shed some of the load. In
general terms, load shedding is the process of dropping
excess load from the system. In order to gracefully
degrade the performance of the system, load shedding
should identify and discard the relatively less impor-
tant data [17].

The work described in this paper concentrates on
the processor as the limited resource and exploits
application-specific Quality-of-Service (QoS) informa-



tion when making load shedding decisions. We assume
that QoS is specified separately for each application
and describes the relationship between various charac-
teristics of an answer and its usefulness (i.e., utility).
Thus, we model QoS as a set of functions that relate
a parameter of the output to its utility. For example,
in many applications, answers are only useful if they
are timely. Therefore, the utility of an answer can be
a function of the latency involved in its creation. Also,
the utility of an answer can be a function of the out-
put value, expressing how important each value is for
purposes of the application. For example, in a medical
application that monitors patient heartbeats, extreme
values are certainly more interesting than normal ones.

It should be noted that while dropping tuples will
certainly reduce the processing requirements on the
system, and thus, reduce the effective load, it will also
have a detrimental effect on the accuracy of the answer.
Said another way, load reduction to improve latency
and accuracy are fundamentally at odds. When we
improve utility by shedding load and reducing latency,
we necessarily lose utility by producing an approximate
answer. The technical challenge in this work is to im-
prove latency with minimal loss in answer accuracy.

Load shedding is not a new idea. The fields of net-
working [18] and multimedia [8] have long studied load
shedding; however, the context is rather different here.
First, we consider applications that share processing,
and second, we allow for QoS specifications that in-
clude semantics (i.e., value-based QoS). We also have
a much more restricted view of the processing that is
carried out by an Aurora application. We only allow
applications to be built out of our seven operators. In
this way, we can gather useful statistics (e.g., operator
costs and selectivities) about the processing elements
in a way that is difficult in other contexts.

This paper explores scalable and efficient load shed-
ding techniques for data stream processing systems. In
particular, we address and provide solutions to three
key load shedding questions: determining (1) when, (2)
where, and (3) how much to shed load. We also present
the results of an experimental study that quantitatively
demonstrates the effectiveness of our approach by com-
paring it to alternative, traditional shedding techniques
under a variety of workload and processing scenarios.

The next section is a brief overview of the Aurora
System. Section 3 presents a detailed discussion of
the problem. Section 4 contains the description of our
load shedding algorithms. Sections 5 and 6 present
the experiments and their results. Section 7 outlines
related work, and Section 8 summarizes the work and
provides future directions.

2 Aurora Overview

The Aurora System has been designed to deal with
very large numbers of data streams. An input stream
is a potentially infinite sequence of tuples generated by
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Figure 1: Load Shedder within Aurora

a data source. Possible data sources include computer
programs and hardware sensors that continuously push
data to Aurora. Aurora is expected to process a large
number of queries that are built out of a small set of
operators [2]. A query may take an arbitrary number
of input streams and always ends at a single output.
An operator may be connected to multiple downstream
operators. All such splits carry identical tuples and en-
able sharing of computation among different queries.
Multiple streams can also be merged since some oper-
ators accept more than one input. An Aurora query
network is a collection of such queries.

Aurora has seven primitive operators. Some of these
operators generate tuples with new values that are pos-
sibly different from their input tuples (Map, Aggregate,
Resample) while others process the tuple values as they
are (Filter, Union, Bsort, Join) [2]. Note that while
Join does produce new tuples, they are simple concate-
nations of the inputs. Thus, no new attribute values
are created. The work in this paper considers opera-
tors of the second type only, namely, Filter, Union, and
Join. Filter takes a predicate as parameter and filters
out the input tuples that do not satisfy this predicate.
Union merges two input streams into a single stream.
Join correlates two input streams on equality of a com-
mon attribute, taking a time-based window size as pa-
rameter.

We also consider the use of system generated Drop
operators. A Drop operator eliminates some fraction
of its input. It achieves this by either randomly se-
lecting tuples to drop or by using a predicate to de-
tect and drop tuples containing less important values.
In the latter case, Drop is effectively the same as Fil-
ter. Note that if Drops are inserted into a network
containing only Filter, Union, and Join, the output is
guaranteed to be a subset of the actual answer. This
observation motivates our restriction on query opera-
tors, but it should be noted that in practice there are



actually many applications that can be serviced within
this restriction (e.g., many categorization and routing
applications like those in financial services and intel-
ligent dissemination). Extending these techniques to
work for our other operators is left as future work.

Figure 1 illustrates a small Aurora query network.
The output of each query in the network is routed
to the relevant monitoring application. Furthermore,
each output is supplied with a QoS specification. Cur-
rently, QoS in Aurora is captured by three functions
(1) a latency graph, (2) a value-based graph, and a
(3) loss-tolerance graph [4]. The latency graph indi-
cates how utility drops as an answer tuple is delayed.
The value-based graph shows which values of the out-
put tuple space are most important. The loss-tolerance
graph is a simple way to describe how averse the appli-
cation is to approximate answers. The quality metric
of the loss-tolerance graph is the percentage of output
tuples delivered to an application, 100% indicating zero
loss. The loss-tolerance graph can either be explicitly
defined for an application or be automatically derived
from a value-based graph and statistics about the dis-
tribution of values in the output. An important as-
sumption we make about QoS functions of types (1)
and (3) is that they have concave shapes, i.e., the neg-
ative slope of the function is monotonically increasing.

The Aurora catalog (as shown in Figure 1) contains
information regarding the network topology, inputs,
outputs, QoS, and relevant statistics (e.g., selectiv-
ity and average processing cost for an operator). The
Aurora run-time system reads the network description
from the catalog and executes the queries. Data tu-
ples are queued for processing by the Aurora run-time.
The scheduler selects an operator with waiting tuples
and executes that operator on one or more of the input
tuples [4, 5].

As shown in Figure 1, the load shedder component
of Aurora receives information on data rates and reads
the network description from the catalog. If it detects
an overload in the system, it sheds load by inserting
load reducing Drop operators into the running query
network. The changes to the query plans are stored in
the catalog, thus, updating the network being executed
by the Aurora run-time. The load shedder can also
determine when Drop operators become unnecessary
as data rates subside. In this case, the query plans are
modified to reduce the amount of data being shed.

3 The Problem

In what follows, we explore techniques for scalable load
shedding in Aurora. We model load shedding as the
automatic insertion of drop operators into a running
network. In this paper, we consider two fundamental
types of drop operators.

1. Random Drop. This operator takes a single pa-
rameter p that expresses the fraction of tuples that

should be dropped. This is implemented by toss-
ing a coin that is weighted by p.

2. Semantic Drop. This operator is essentially a
filter operator with a predicate whose selectivity
corresponds to 1 — p and that discards tuples with
the lowest utility.

The load shedding process consists of three funda-
mental decisions.

1. Determining when to shed load. The process-
ing load of the query network needs to be contin-
uously evaluated. If there is overload, it should be
detected quickly.

2. Determining where to shed load. Tuples can
be dropped at any point in the processing network.
Obviously, dropping them early avoids wasting
work; however, because a stream can fanout to
multiple streams, an early drop might adversely
effect too many applications.

3. Determining how much load to shed. Once
we have determined where to insert a drop oper-
ator, we must decide the magnitude of that drop.
In the case of a random drop, this involves decid-
ing on the percentage of tuples to drop. In the
case of a semantic drop, we must decide the form
of the predicate.

Load shedding is an optimization problem and can
be formally stated as follows. We are given a query
network N, a set of input streams I with certain data
arrival rates, and a processing capacity C for the sys-
tem that runs N. Let N(I) indicate the network N op-
erating on inputs I, and Load(N (I)) represent the load
as a fraction of the total capacity C that network N (I)
presents. Load shedding is typically invoked when
Load(N(I)) > H x C . The problem is to find a new
network N’ that is derived from network N by inserting
drops along existing arcs of N such that Load(N'(I)) <
H x C and Ugccuracy(N (1)) = Ugccuracy(N'(I)) is min-
imized. Ujccuracy is the aggregate utility that is mea-
sured from the loss-tolerance QoS graphs of the appli-
cation set. Ugccuracy(N(I)) represents the measured
utility when there is no load shedding (i.e., there are
no inserted drops).

We assume that any processor cycles that are re-
covered by the load shedder will be used sensibly by
the scheduler to improve the overload situation thereby
best improving the latency. We can, therefore, simply
figure out how much capacity we need to recover and
then produce a plan to do so. The scheduler will do
the rest. This decoupling of the scheduler and the load

IThe constant H is the headroom factor that is a conservative
estimate of the percentage of processing resources required by the
system at steady state. The headroom is reserved to guard the
system against thrashing.



shedder is an important simplification. By making this
assumption, the load shedder need not consider latency
QoS directly.

4 The Algorithms

We have developed a scalable load shedding algorithm
with two variants, one for inserting random drops
(called Random Load Shedder) and one for inserting
semantic drops (called Semantic Load Shedder). This
section first gives the overall structure of the algorithms
and then provides some detail on our fundamental data
structures and how we use them to make the three load
shedding decisions mentioned earlier.

4.1 Algorithm Structure

The load shedder always operates in a loop, detect-
ing important changes to the load status and reacting
accordingly.

The first action is to check the current load level
against the known system capacity. The current load
of the network is evaluated with a simple calculation
that involves the current input rates, and the opera-
tor costs and selectivities. If Load(N(I)) > H x C,
then the system is overloaded and load must be shed
by inserting drops into the query network. On the
other hand, if Load(N(I)) < H x C, then load can
be returned by removing drops that might have been
inserted in previous steps.

The next major action in the load shedding algo-
rithm is to determine what drops to insert and where to
put them. Our approach depends on a pre-computed,
tabular data structure called the Load Shedding Road
Map (LSRM). As illustrated in Figure 2, the LSRM is
a table in which each subsequent row represents a load
shedding plan that sheds more load than its predeces-
sor. A load shedding plan consists of an indication of
the expected cycle savings (¢; indicating the cycle sav-
ings coefficient for input 7), the network arcs to place
the drop operators, the corresponding drop amounts,
and the effect of the drops on QoS graphs (p; indicat-
ing the QoS cursor for output 7). At run-time, when an
overload is detected, we use the LSRM to find a plan
for recovering Load(N(I)) — H x C processor cycles by
simply performing a table lookup for the first plan that
sheds at least this much load.

As shown in Figure 2, we keep a cursor that indicates
which row in the LSRM was used last. Later on, if
additional load needs to be shed, the search on the
LSRM can begin at the cursor. On the other hand, if
the load is ever determined to be within the capacity
bound and there are still drops in the network (cursor
is non-zero), then the search can be done in the reverse
direction.

Materializing load shedding plans in advance using
the LSRM significantly reduces the run-time overhead
of making load shedding decisions.
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Figure 2: Load Shedding Road Map (LSRM)

4.2 Overload Detection

We now describe our techniques for making the first
of the three decisions in load shedding: when to shed
load.

Each input to the network has an associated load
coefficient. The load coefficient represents the number
of processor cycles required to push a single input tuple
through the network to the outputs. Consider an input
stream I running through a query of n operators and
producing an output stream O as shown in Figure 3.
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Figure 3: Calculating load coefficients for stream I

Assume that each operator 7 has an associated cost
¢; (cycles per tuple) and selectivity s;. We assume that
such statistics can be gathered over some characteristic
run period. The load coefficient for input I is computed

as
n

L= (I xe O

i=1 j=1

for all n operators on a path from input I to the output
O. If an input has load coefficient L (in processor cycles
per tuple) and input rate r (in tuples per time unit),
the actual run-time load for that input is L x r (cycles
per time unit). If there are m inputs, we can compute

the total load as
m
Z L,’ X T
i=1

The load coefficient formulation given in (1) is based
on the flat query shown in Figure 3. We now illustrate
how we generalize it to query networks with fan-outs
and binary operators. In Figure 4, we provide an ex-
ample query network with two continuous queries and
two input streams. We present load coefficients for
each of the input streams as well as load coefficients
for each intermediate stream in the network. When
there is fan-out, each different path’s load is added to
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Figure 4: Example query network with load coefficients

an input’s load coefficient. When there is a binary op-
erator, input rate flowing into the operator is an aggre-
gation of both inputs. Note that all of these coefficients
can be computed statically. Later, the actual run-time
load can easily be calculated using these pre-computed
coefficients. For example, if it turns out that input
streams I; and I» have rates of 10 and 20 tuples per
time unit, respectively, then the load of this network
becomes 26.5 x 10 + 18.75 x 20 = 640 cycles per time
unit. If this value exceeds the capacity of the system,
then the load shedder must be invoked.

Note that the actual load is a combination of cur-
rent input rates and any queues that may have built
up since the last load evaluation step. With the head-
room constant H > 0, queues will eventually disap-
pear as long as the load shedder maintains the head-
room space. Alternatively, load shedder may exploit
the queue length information to speed up this process
through “overshedding” [16].

4.3 The Load Shedding Road Map (LSRM)

This subsection describes our techniques to make the
last two decisions in load shedding: where to shed
load and how much load to shed. Making these de-
cisions constitute the major steps in construction of
the LSRM.

As shown in Figure 2, the LSRM is an ordered se-
quence of entries, each of which is a triple of the form:

< Cycle Savings Coefficients (CSC),

Drop Insertion Plan (DIP),
Percent Delivery Cursors (PDC) >

The Drop Insertion Plan (DIP) is a set of drops that
will be inserted at specific points in the network. Cy-
cle Savings Coefficients (CSC) is a list of input streams
that will be affected by the plan along with their associ-
ated savings coeflicients. CSC’s are used to determine
how many cycles will be saved along the path of each
input stream if the corresponding DIP is adopted. Per-
cent Delivery Cursors (PDC) is a list of cursors for the
loss-tolerance QoS graphs, one for each output. They
indicate where the system will be running (in terms of
percent of tuple delivery) if the drop insertion plan is
adopted.

Figure 5 shows the steps followed in the construction
of the LSRM. In this section, we will describe these
steps one by one.

identify Drop Locations

compute & sort Loss/Gain ratios

take the least ratio

how much to drop?| which values to drop?

[}
Semantic LS

where to drop?

—| create LSRM entry

Figure 5: LSRM construction

4.3.1 Choosing Drop Locations

Each entry in the LSRM must guarantee that the util-
ity sacrificed by adopting its DIP is the minimum that
is necessary to save the number of cycles promised in
its CSC. For this, the amount of utility loss on the
loss-tolerance QoS graphs must be minimized. Addi-
tionally, the number of cycles gained in return must be
maximized. Hence, when creating a new LSRM entry,
the best network location (i.e., arc) to insert a drop
is the one with the minimum Loss/Gain ratio. This
guarantees minimal aggregate utility loss if statistical
values accurately reflect the system state [16].

The search space for all possible drop locations may
seem very large at first. However, it can be dramati-
cally reduced by exploiting several heuristics. We use
the network shown in Figure 6 to discuss how reduc-
tion is performed. This network consists of two in-
put streams and three queries. Each query has a loss-
tolerance QoS attached to its output. Smaller boxes
marked with letters indicate candidate locations for
drops.

First, consider a query plan that has no sharing with
others. In a network that contains such a plan, a drop
insertion at any location in that query does not af-
fect the other queries. Hence, the utility loss is only
observed at the output of that query plan. For exam-
ple, in Figure 6, the bottom-most query has no sharing
with the top two. In general, it is best to insert drops
as early in the query plan as possible since it mini-
mizes wasted work. Therefore, for query plans with no
sharing, the best location for a drop is always at its
input. Hence, the small box marked with F is the best
location for a drop in the bottom query.

Now consider a query network with sharing. Shar-
ing occurs when the output of an operator fans out to
more than one downstream operator leading to differ-
ent outputs. This is observed at operator 1 in Figure
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6. Any tuple coming out of operator 1 would be routed
to both outputs O; and O,. Hence, a drop operator
inserted at A affects both outputs. Inserting a drop
at B or D affects only one output and is thus a way
to isolate the effect to a single output. If both B and
D end up requiring similar drops, then the drop could
be placed at A thereby saving the work of operator 1.
However, if A is preceded by a linear stretch of boxes,
then by our previous reasoning, the drops should be
pushed upstream to the next split point. As a result,
output of operators with split points (B, D) and Au-
rora inputs (A, F) are the only locations that need to
be considered for drops. For each such candidate loca-
tion, we compute the Loss/Gain ratios, as described in
the next section.

4.3.2 Loss/Gain Ratios

Loss/Gain ratios allow us to sort the candidate drop
locations by their desirability as candidates. Here, Loss
refers to utility loss from loss-tolerance QoS for each
percentage of tuples dropped. Gain refers to processor
cycles gained for each percentage of tuples dropped.
Consider Figure 7, where a drop operator has been
inserted upstream from a query subnetwork. R is the
input rate flowing into the drop, z is the drop amount,
D is the cost of the drop operator itself, and L is the
load coefficient of stream flowing into the subnetwork.
The gain from inserting this drop is:

Gl) = R x (x x L—D) 1f;c>(‘]
0 otherwise

Assume the loss-tolerance utility function of the af-
fected output is given as U(z). The Loss/Gain ratio is
then:

negative slope of U(z)
RxL

—dU(z)/dx
dG(z)/dx

One important point is that since we are sorting
Loss/Gain ratios, absolute values of data rates are not
needed. Rather, it is enough to know their relative
proportions. Hence, if statistics on rate proportions are
available, the Gain values can be computed statically.

loss—tolerance QoS
U(x)

DROP

p=x
cost=D

= Query Subnetwork .

i | 0 X
fffffffffffffffff ! 100 0

Figure 7: Insertion of a drop

Loss is determined by using the loss-tolerance QoS
graph. In our example in Figure 6, the QoS graphs of
locations B, D, F are the same as those of O1, O2, and
O3, respectively. The QoS of location A is the cumula-
tive QoS from O; and O, and is obtained by summing
the QoS functions of both of these outputs. Each drop
location may have as many different Loss/Gain ratios
as there are different function pieces in its (cumulative)
QoS graph. For example, the percent loss for location
F is (1—0.7)/50 for the first piece of the QoS function,
whereas it is (0.7 — 0)/50 for the second piece. Fur-
thermore, it is always guaranteed that Loss/Gain ratio
increases as we move from 100% to 0%. This is a result
of our concaveness assumption mentioned earlier.

Once the drop locations and their Loss/Gain ratios
are fixed, they are then sorted in ascending order by
their Loss/Gain ratios (Figure 5). The entries of the
LSRM are created by processing the drop locations
in this order. Each new entry builds upon the previ-
ous entry, by applying the drop location with the next
smallest Loss/Gain ratio.

4.3.3 LSRM for Random Load Shedding

Given the drop location with the smallest Loss/Gain
ratio and the previous LSRM entry, the random load
shedding algorithm follows two main steps to create a
new LSRM entry:

Determining how much to drop. First, the drop
parameter p, which denotes the fraction of tuples to
be dropped, has to be determined. Each drop amount
is applied in increments of a STEP_SIZE. To ex-
plain how we set this parameter, we will turn back to
the formula for G(z). To guarantee G(z) > 0, i.e.,
the gain from drop insertion is more than its cost, we
must ensure that z > %. For this purpose, we use
a STEP_SIZFE parameter such that STEP_SIZE >
#{L}, where min{L} is the minimum load coefficient

in the network (over all arcs). We use this minimum
value so that the chosen STEP_SIZE will work for all
locations in the network. The value for this parameter
also affects the granularity of the entries of the LSRM.
Assume that the loss-tolerance QoS for the output
that correspond to the given drop location has a per-
cent delivery cursor (PDC) value of z, as stored in
the previous LSRM entry. Then we choose the new
drop amount such that the cursor moves to x — 100 x
STEP_SIZE. For this, the new drop to be inserted
must have the drop parameter p = 1 — (x — 100 x
STEP_SIZE)/x.
Placing the drop in the network. After p is deter-



mined, a drop operator can be created for the desig-
nated drop location. However, the new drop operator’s
placement in the network may affect the drops that
already exist in the DIP inherited from the previous
LSRM entry. For example, if we were to insert a drop
with p = k at A in Figure 6, and B already had a drop
with p = | where [ < k, then the drop at B becomes
redundant because the drop at A covers the amount B
is supposed to drop. However, if [ > k, then B’s per-
centage must be reduced to produce a total percentage
of [ at the output. In other words, the drop insertion
decision made in an earlier step must be maintained
while the new decision is being applied. Our algorithm
achieves this by inserting the new drops at the outputs
first, and then pushing them towards the desired drop
locations. Necessary adjustments are made on drop
parameters of the existing drops that are encountered
along the way.

New drops combined with the drops of the previous
LSRM entry form the DIP of our new LSRM entry.
We update the CSCs for each stream that sends tuples
to the drops in the DIP. Finally, QoS cursors of the af-
fected outputs are advanced and stored in PDCs. The
next iteration of the loop takes the current entry and
builds upon it. This way, each LSRM entry has more
savings than the previous one.

4.3.4 LSRM for Semantic Load Shedding

LSRM entries for the semantic load shedder are created
in almost the same way as for the random one. The
major difference is that we need to create semantic
drops with proper predicates which will provide us the
desired level of load shedding, while filtering out the
data values with the lowest utility. Therefore, in this
section, we mainly discuss additional techniques that
the semantic load shedding algorithm uses to construct
the LSRM entries.

We developed a technique that enables us to fol-
low the same method to determine drop amount and
location, as the one described for the random load
shedder. Our approach derives the loss-tolerance QoS
graph from a given value-based QoS graph. In this
way, the derived loss-tolerance QoS graph captures the
value utility information and can be safely used for de-
ciding Loss/Gain ratios.

Deriving the loss-tolerance QoS. For the purposes
of this study, we restrict value-based QoS graphs to
be piece-wise linear functions. For simplicity, assume
that values in each value interval have a constant util-
ity 2. Assume further that the output data-value his-
tograms are available for each of the intervals specified
in the value-based QoS graph. Such histograms are

2For non-constant linear utility functions, we simply define a
chunk_size and assume that each load shedding step will drop
value ranges in multiples of a chunk. Hence, the values in the
same chunk can be assumed to have the average utility of that
piece of the utility function.

interval | w f w n
0-50 0.2 | 0.4 | 0.08 | 0.08/0.68 = 0.12
51-100 | 1.0 | 0.6 | 0.6 | 0.6/0.68 = 0.88

Table 1: Example value intervals

relative frequency

utility utility

‘2 tuples

Figure 8: Derivation of the loss-tolerance QoS

commonly created in conventional DBMS’s to assist
in query processing. A histogram shows the relative
frequency of each value interval. Using a histogram
and a value-based QoS graph, we can produce a loss-
tolerance QoS graph as described below. We use the
following notation:

u; @ utility of values in interval 4

fi : relative frequency of values in interval 4, Y f; =1

w; : weighted utility of values in interval i, w; = u; X f;

n; : normalized utility of values in interval ¢, (n; = “’:Ul)
We order the value intervals based on their u values
in ascending order and store them in a table together
with their u, f, w, and n values. Table 1 illustrates
such a table with two value intervals.

The derivation relies on the fact that given a value-
based QoS, if we needed to drop some tuples, we would
always start dropping from the lowest utility interval
(hence the table is ordered on u). When we drop all
values in an interval with normalized utility n;, then
the utility for that output drops to 1 — n;. Using the
relative frequency f;, we can infer that dropping values
of ¢ will lead us to drop about f; x 100 percent of the
tuples. Therefore, while utility of 100% is 1, the utility
of (100 — f; x 100)% drops to 1 —n;. The utility values
for the percentages in the range (100,100 — f; x 100)
decrease linearly.

Consider the simple example in Figure 8. A his-
togram for two value intervals (Figure 8a) and a value-
based QoS (Figure 8b) are provided. Our goal is to
generate a loss-tolerance QoS from these two. Notice
that the first value interval makes up 40% of the values
and has a normalized utility of 0.12 (see Table 1). This
means that when we drop 40% of the tuples, our utility
drops from 1 to 1 — 0.12 = 0.88. Therefore, the point
(60, 0.88) is the inflection point at which the utility
function and hence the slope changes. This leads us to
the loss-tolerance graph in Figure 8c.

Determining the predicate for semantic drop.
There is a pre-determined order for dropping value in-
tervals imposed by their utilities. We capture this by
keeping a sorted list of intervals in ascending order of
their utilities. The cursor on the loss-tolerance QoS
graph, say z, indicates how much of the data we al-




ready dropped. Each time we need to drop an addi-
tional k percent of the tuples, we locate the right entry
in the interval table based on relative frequency of the
intervals.

Consider the example we presented in Figure 8. As-
sume that x is 100, i.e., we have not dropped any tuples
yet. Assume also that the algorithm has decided to
drop 20% of the tuples. Interval [0, 50] has a percent-
age of 40% and it is the smallest utility interval that
we have not dropped from before. We should drop the
20% from interval [0, 50], i.e., half the data in this
interval . The interval to be dropped will be [0,25)
and the predicate for the semantic drop operator to
be inserted will be value > 25. If we needed to drop
70%, then interval [0, 50] would not be sufficient. We
would have to drop all of interval [0, 50] plus half of
the interval [51, 100]. Hence, the predicate would be
value > 75.

4.3.5 A Note on Join Processing

A join operator correlates tuples that appear at most a
window apart in its inputs (to avoid blocking and infi-
nite buffering). If the window size is not large enough,
then the distribution of values in a given window can-
not be assumed to be uniform. Hence, selectivity es-
timation becomes a problem. Our current implemen-
tation works for long window sizes, for which we can
easily estimate changes to operator selectivities. We
are currently investigating histogram-based techniques
for handling short window sizes.

5 Experimental Environment
5.1 The Simulator

To experiment on our algorithms, we implemented a
query network simulator using the CSIM18 Simulation
Engine [14]. In the simulation, a round-robin CPU
scheduling policy is used for operator scheduling. The
model also includes a monitoring process, which wakes
up periodically to evaluate the load to detect overloads.
Additionally, a workload generator simulates each in-
put data stream arriving at the query network based
on the specified tuple inter-arrival times.

5.2 The Workload

To generate our test networks, we implemented a ran-
dom query network generator [16]. Using this program,
we first determine the number of queries and the num-
ber of operators for each query. We can adjust the
relative proportions of operator types in the network
by changing their probabilities of being chosen. We can
also control the number of splits, i.e., points where an

3Any 50% of this interval could be dropped. However, we
restrict our drop predicates to be range predicates. Therefore,
we drop contiguous data values from beginning of the interval
towards its end.

operator’s output is connected to more than one oper-
ators’ inputs. For each filter operator, we also generate
a filter predicate and assign its selectivity. We assume
uniform input data distributions to simplify the esti-
mation of selectivities. The predicates are simple com-
parison predicates of the form value > constant. Each
operator type has a fixed average cost.

We use streams of integers whose values are chosen
randomly from the range [0, 100]. We generate streams
with a constant mean inter-arrival time.

Our main QoS graph is the value-based QoS graph.
Given that and the output value histograms, we gener-
ate the loss-tolerance QoS graph. We use two different
value intervals in our experiments. The utility of the
first interval is assigned randomly using a Zipf distri-
bution while the second interval has a utility of 1.0.
Using this distribution, we can control the skewedness
of utility values on QoS graphs among multiple output
applications.

For the experiments in the following section, unless
otherwise stated, we use a network with five queries.
This query network consists of 47 operators, 34 of
which are filters, and the rest are unions. There is
no sharing among the queries. The number of input
streams is 18. The mean input rate for these streams
vary between 10 and 2 units of inter-arrival time (i.e.,
1/10 and 1/2 tuples per unit time), representing an
excess load between +22% to +307% of the system
capacity. The results reported for the Input-Random
algorithm are averages of four different runs.

5.3 Algorithms

In addition to our random (Random-LS) and the se-
mantic (Semantic-LS) load shedding algorithms, we
also developed two other algorithms that effectively
simulate classical admission control. Neither algorithm
takes QoS information into account; rather, they shed
load at the network inputs as necessary.

1. Input-Random. When an excess of load, AL,
is detected, this algorithm randomly selects one in-
put stream and sheds sufficient load on that stream
to compensate for AL. If shedding all the data from
the chosen input does not suffice, we select another in-
put stream and repeat the same step for the remaining
excess load. We also implemented a variant of this al-
gorithm, namely Input-Cost-Top. It selects the most
costly input stream (i.e., the one with the highest load
share) instead of a random one.

2. Input-Uniform. Rather than choosing streams
one at a time, this algorithm distributes the excess load
evenly across all input streams, attempting to shed the
same amount of load from each. If an input stream
cannot provide its share of cycle gains, then the extra
amount is distributed evenly to the other inputs. A
variant of this algorithm, Input-Cost-Uniform dis-
tributes excess load across all input streams weighted
by their costs.



5.4 Utility Metrics

We use two metrics to evaluate the utility of a query
output. Tuple Utility refers to the utility based on
the loss-tolerance QoS graph. Value Utility refers to
the utility based on the value-based QoS graph. The
following formulas are used to compute these utilities:

Tuple Utility = 2’;117uxn’ where

2ioimi

k: number of epochs *

n;: number of tuples seen in epoch i (ZLI n; =n)

u;: loss-tolerance utility of each tuple during epoch

Value Utility = iz fXt,
i=1Ji XU

fi: relative frequency of tuples in interval ¢ w/o drops
fi: frequency of tuples for interval 1 w/ drops relative
to the total number of tuples
u;: average value utility for interval ¢
The overall tuple (value) utility of a query network in
the presence of multiple queries is computed by tak-
ing a sum of individual tuple (value) utilities for each

query.

where

6 Experimental Results
6.1 Tuple Utility Loss

Our first experiment quantifies the loss in tuple util-
ity for different load shedding schemes and for varying
overload levels. Different load levels are characterized
by different mean (arrival) rates for the input streams.
The mean arrival rate is defined as the mean number
of tuple arrivals per time unit at each input stream in
the network.

Figure 9 shows that all algorithms are clearly nega-
tively affected by increasing input rates. Because the
system has fixed capacity, the percentage of tuples that
need to be dropped increases with increasing input
rates, thereby, decreasing the loss-tolerance utility of
the system.

As expected, we observe that the two QoS-driven al-
gorithms perform much better than the admission con-
trol algorithms. They follow a similar pattern, which
is not surprising as they make their decisions based on
the same loss-tolerance QoS graph (generated from the
same value-QoS graph). Utility loss for Semantic-LS is
observed to be less than that of Random-LS by a con-
stant amount. This is a result of information in the
output value histograms that Semantic-LS can exploit
whereas Random-LS cannot. Since some of the input
tuples are filtered out by the filter operators before they
reach the outputs, they show up in the input streams
but not in the output. Those are the tuples that should
be dropped from the input in the first place. They pro-
vide cycle gain without causing any utility loss at the
output. Semantic-LS can capture this with a predicate,
but Random-LS is only allowed to drop random tuples.
The constant utility difference between the two curves

4An epoch is the time period during which same percentage
of tuples are being received.
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Figure 9: % Tuple Utility Loss vs. Mean Rate

amounts to this free “cycle gain” in Semantic-LS at no
utility loss.

The Input-Random and Input-Cost-Top algorithms
perform poorly compared to others, incurring relatively
higher utility losses for all input rates.

Because Input-Uniform spreads tuple drops uni-
formly across the applications, for low excess loads,
all applications can manage to remain at the top, rela-
tively flat portions of their loss-tolerance QoS graphs.
With increased load, as shown in Figure 9, this situ-
ation changes and we start observing the benefits of
the QoS-driven algorithms over the Input-Uniform al-
gorithm. Weighting drops from input streams based
on their costs does not help much and almost performs
exactly the same as Input-Uniform for low excess loads.

6.2 Value Utility Loss

We now investigate the loss in the value utility for
different algorithms and input rates. Our goal is to
quantify the semantic utility gains we can achieve by
exploiting information present in the value-QoS graph.
We compare our value-based algorithm against others
that do not utilize such semantic information.

Figure 10 clearly demonstrates that the semantic
drop algorithm significantly outperforms the other ap-
proaches in terms of the value utility metric. Note
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Figure 10: % Value Utility Loss vs. Mean Rate
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Figure 11: Value Utility Loss Ratio for Random-
LS/Semantic-LS vs. Skew in Utility

that comparing the other approaches among each other
based on the outcome of this experiment would not be
fair. Since those approaches drop in a randomized fash-
ion, they must be compared on the basis of the tuple
utility metric, as we presented in the previous experi-
ment.

6.3 Effect of Utility Skew

In the scenarios we considered so far, the utility values
for the first data intervals of different outputs were uni-
formly distributed. (Remember that the utility value
of the second interval is taken as 1.0 for all the out-
puts.)

In order to characterize the impact of skewed utility
distributions for different outputs, we devise a scenario
where we inject skew to the utility values for the first
data interval. We use a Zipf distribution to generate
the utility values and use the Zipf parameter 8 to con-
trol the skew. For low skew values, the utility values
are more evenly distributed. For higher values, low
utilities have higher probability of occurrence. Hence,
we expect that with high skew, value-based dropping
will perform much better than the randomized drop-
ping approach. The rationale is that the latter will
tend to drop high utility tuples, whereas the former
will be able to fine-select the lower utility tuples for
dropping.

We now demonstrate the effect of skew on utility
loss for drops and filters for different values of mean
input rates. Figure 11 illustrates our results. On the
y-axis, we show the ratio of the value utility loss com-
ing from the random load shedding algorithm to that
coming from the semantic one. As we hypothesized, as
the skew gets larger, the Semantic-LS algorithm gets
increasingly more effective compared to the Random-
LS algorithm. Interestingly, as the input rates increase,
this effect tends to diminish. The reason is that when
the rates are sufficiently high, the Semantic-LS algo-
rithm also starts to drop tuples from the higher utility
value intervals.
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Figure 12:  Tuple Utility Loss Ratio for
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6.4 Effect of Sharing

For our last experiment, we used a network with 20
identical queries. Queries receive input from a single
input stream and have one common operator. This
operator’s output is split into 20 arcs and routed to
the query-specific operators on separate arcs to create
a scenario of full sharing among the queries.

This experiment investigates the behavior of our al-
gorithms against the admission control algorithms in
the presence of shared operators (i.e., splits) in the
query network. In this experiment, we compare the
tuple utility loss of two algorithms: Input-Uniform,
the best of the admission control algorithms as ob-
served in the earlier experiments; and our Random-LS
algorithm. Our comparison here is based on the loss-
tolerance QoS rather than the value-QoS, to factor out
the advantage of our algorithms due to using semantic
information.

The bar chart in Figure 12 shows how tuple utility
loss ratio between the two algorithms change as the
amount of excess load in the system is increased. At
each point of excess load, we present three different
results. Each result is obtained using a different set
of QoS graphs for the 20 queries. The loss-tolerance
QoS graphs are generated from value-QoS graphs for
which two data intervals are used: [0, 75] with a utility
chosen from a Zipf distribution with skew parameter
0, and [76, 100] with utility 1.0. Hence, as the skew
parameter theta increases, the uniformity of the QoS
graphs decreases.

We observe that, as QoS graphs get more skewed,
Random-LS performs better than the Input-Uniform
algorithm. The reason is that our algorithm takes
slopes of the QoS graphs into account while decid-
ing where to shed load; whereas Input-Uniform always
uniformly drops from the inputs. We further observe
that the success of Random-LS against Input-Uniform
starts to diminish as the amount of excess load gets
to extremely high levels. This is because of the fact
that, as the load increases to extreme levels, dropping
from the inner arcs of the network does not suffice to



recover all extra the cycles. Our algorithm is forced to
adopt the plans down in the LSRM, which eventually
correspond to dropping at input points of the query
network.

7 Related Work

The congestion control problem in data networks [18]
is relevant to Aurora and its load shedding mechanism.
Load shedding in networks typically involves dropping
individual packets randomly, based on timestamps, or
using (application-specified) priority bits. Despite con-
ceptual similarities, there are also some fundamental
differences between network load shedding and Aurora
load shedding. First, unlike network load shedding
which is inherently distributed, Aurora is aware of the
entire system state and can potentially make more in-
telligent shedding decisions. Second, Aurora uses QoS
information provided by the external applications to
trigger and guide load shedding. Third, Aurora’s se-
mantic load shedding approach not only attempts to
minimize the degradation in overall (accuracy-based)
system utility, but also quantifies the imprecision due
to dropped tuples.

Real-time databases, which support the enforcement
of timing constraints on transactions, also require ef-
fective overload management. The typical solution is
to abort transactions that are not expected to meet
their deadlines, or perform feasibility analysis and re-
ject any new transactions that are not deemed feasible
[12]. This can be regarded as a simple form of load
shedding where shedding units are individual transac-
tions and shedding happens only at the system input
boundaries. Aurora’s load shedding approach is finer-
grained since we are dealing with individual tuples and
dropping can be performed at any place inside the op-
erator network. Furthermore, Aurora’s load shedding
is driven by the ultimate goal of maximizing the ag-
gregate accuracy-based QoS perceived by the applica-
tions, requiring reasoning about the data values and
processing that takes place inside the Aurora network.

Load shedding is essentially an approximate query
answering technique. Various techniques for producing
approximate answers in exchange for faster execution
have been studied in the database literature [3]. In the
context of data streams, approximation has to be ap-
plied as data continues to arrive. The process is also
more dynamic in that the degree of approximation has
to be adjusted as the difference between supply and
demand on resources changes. More recent work have
explored approximate query processing techniques on
data streams both for aggregation queries [10, 11] and
sliding window joins [9, 13]. Unlike these work, we not
only consider individual operations, but also complete
query networks. These networks may be composed of
a variety of operators and may serve multiple applica-
tions with shared operations. Furthermore, we address
the load shedding process from end to end; i.e., from

overload detection to overload resolution. We origi-
nally proposed to do semantic load shedding by filter-
ing data that has lower utility to the applications [4].
Das et al. have a different view of semantic load shed-
ding, concentrating on join processing and the semantic
distance of the approximate answer [9]. Dropping tu-
ples when input rate exceeds the service rate has also
been discussed in rate-based evaluation of window joins
[13]. In this work, the focus has been on random drops
rather than semantic ones.

The STREAM system uses several approximation
techniques on stream queries [15]. Synopses are used
to reduce memory requirements of operators in a query
plan; random sampling is used as a means of load shed-
ding. We not only provide techniques for sampling us-
ing random drops but also provide semantic load shed-
ding based on tuple values.

8 Summary and Conclusions

In this paper, we have described the general problem
of shedding load in a data stream management sys-
tem by discarding tuples that have the least impact on
QoS. We discussed the way in which we detect an over-
load, our mechanism for discarding tuples (i.e., insert-
ing drops), and a technique for determining the proper
location and the right magnitude of the drops. The
key feature of our solution is that most of the analysis
concerning dropping strategies can be done statically
and captured in a simple data structure. The dynamic
load shedding process involves a very cheap use of the
static information. This technique makes our solution
practical and scalable.

Also, our solution does not depend on the details of
the scheduling algorithm. Instead it assumes that any
cycles that are recovered as a result of load shedding
are used sensibly by the scheduler to relieve the con-
gestion. This makes our solution much more general
in that it works equally well with any good scheduler.

We have shown some experimental evidence that our
load shedding techniques outperform basic admission
control and its variants. We have also shown that while
our probabilistic dropping technique can do fairly well,
the method that takes tuple semantics into account
can do even better. Our experiments also clearly show
that as we increase the difference in importance be-
tween the most valuable tuples and the least valuable
tuples, semantic load shedding produces more striking
benefits. All of these results verify our intuitions. The
most crucial observation of this paper is that it is pos-
sible to design a low-overhead mechanism for putting
these concepts into practice in the context of a stream
data manager.

In the future, we plan to study ways to general-
ize these methods to include more complex operators
supported by Aurora. These include stateful opera-
tors like aggregation. The effect of pushing drops past
these operators has to be considered. Furthermore,



any operator that produces fewer output tuples than
it receives as input could potentially be used for load
shedding, such as an aggregate. We will also explore
such alternative techniques.

In the current study, we have focused on load shed-
ding to reclaim processor cycles. In many stream-
oriented applications, cycles are not the limited re-
source. Often things like bandwidth or battery power
will be the resources that must be conserved. Load
shedding via dropping of tuples has an important role
to play in these environments as well. We intend to in-
vestigate ways in which we can design techniques sim-
ilar to the ones discussed here that can work for other
kinds of resource management.

Finally, in stream processing applications, operators
must avoid blocking because blocking can obviously de-
stroy latency. Thus, it is reasonable to have an operator
timeout [2] before it is certain that a semantic condition
is reached (e.g., emit an average before all the stock
prices for the 3pm report have been received). Once
the timeout has happened, further tuples in the previ-
ously terminated category (e.g., 3pm reports) have no
benefit and can therefore be discarded. This is a type
of pre-planned load shedding that is needed when the
data rates are too slow and tuples are delayed. We are
interested in exploring the relationship between load
shedding for high loads and load shedding (timeouts)
for low loads. It would be interesting to see if there is
some commonality that could be exploited.
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