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ABSTRACT 

Querying XML documents typically involves both 
tree-based navigation and pattern matching similar to 
that used in structured information retrieval domains. 
In this paper, we show that for good performance, a 
native XML query processing system should support 
query plans that mix these two processing paradigms. 
We describe our prototype native XML system, and 
report on experiments demonstrating that even for 
simple queries, there are a number of options for how 
to combine tree-based navigation and structural joins 
based on information retrieval-style inverted lists, and 
that these options can have widely varying 
performance. We present ways of transparently using 
both techniques in a single system, and provide a cost 
model for identifying efficient combinations of the 
techniques. Our preliminary experimental results 
prove the viability of our approach.  

1. INTRODUCTION 
As the number of XML documents increases, the 
importance of building and querying native XML 
repositories becomes evident. An interesting and 
challenging aspect of such repositories is that part of the 
query evaluation process is the discovery of relevant data 
in addition to its retrieval. This discovery operation often 
requires a form of simple pattern matching: that is, it 
requires operations like “ find all elements x containing a 
string s” , or “ find all elements x that have an element y as 
an ancestor.”  To solve this problem, the database 
community utilizes inverted list filtering, since the 
problem is so similar to that addressed in structured 
information retrieval applications. In addition to inverted 
list filtering, XML query processing naturally includes 
navigational access to XML data. Such access is similar to 

that provided by a DOM interface; here the common 
operations include finding the children of a given node, or 
iterating through a set of descendants by doing a depth-
first search of the subtree rooted at a given node. In the 
XML query processing literature to date, there has been a 
sharp line demarcating the use of inverted list filtering and 
tree navigation. The purpose of this paper is to show that 
building systems that keep the two kinds of processing 
separate is suboptimal, and that by tightly integrating the 
two types of processing, one can obtain faster query 
response times. We show this using the Niagara native 
XML database system. 

In more detail, as we will show, there are queries for 
which inverted list filtering techniques alone are best; 
there are other queries for which structural navigation 
techniques alone are best; there are still other queries for 
which inverted list filtering techniques followed by 
structural navigation is best; and, perhaps most 
surprisingly, there are queries for which structural 
navigation followed by inverted list filtering is best. This 
suggests that a native XML repository needs to support 
query plans that utilize these query processing approaches, 
and needs to be able to pipe intermediate results between 
the two. Finally, given that no one style of processing 
dominates, an XML query processor requires query 
optimization techniques and statistics to decide how to 
choose among the alternatives for any given query. 

This paper makes the following contributions: 

• We present the main structure of a scalable system for 
storing and querying static XML data. In particular, 
we explain in detail the approach used in two key 
parts, a structure index module called the Index 
Manager and a data storage module called the Data 
Manager.  The Niagara overview [19] describes the 
system architecture in general terms, but the 
presentation in that paper did not provide sufficient 
detail to motivate the tight coupling of the Index 
Manager and the Data Manager.  

• We present algorithms for answering queries using 
either module, along with a cost model for each 
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algorithm. The cost model is dependent on statistics 
capturing the structure of XML documents, and we 
propose new statistics necessary to ensure cost model 
accuracy. 

• We present a decision algorithm using the proposed 
cost model to decide which combination of query 
processing techniques (inverted list filtering and/or 
tree navigation) should be used for a given query over 
a specific dataset.  

• We present an experimental study of this framework.  

The rest of the paper is organized as follows: An overview 
of the system and the relevant modules is presented in 
Section 2. The specific algorithms for using each of the 
modules to process queries over XML data, the costs 
associated with each algorithm, and a decision process 
selecting the correct algorithm are presented in Section 3.  
An experimental evaluation of the proposed approach is 
presented in Section 4. A discussion of related work is 
contained in Section 5. Finally, the conclusions and the 
future work directions are summarized in Section 6. 

2. SYSTEM OVERVIEW 
2.1 System Architecture 
Our system is perhaps best described by examining how it 
processes and stores an XML document. As shown in 
Figure 1, the process of loading an XML document begins 
by running it through a front-end parser. The parsed XML 
is then fed into the Data Manager and the Index Manager. 

• The Data Manager stores a DOM-style tree 
representation of the XML document. 

• The Index Manager stores a set of inverted lists, 
mapping elements, attributes, and words found in the 
XML document to lists of exact locations within the 
document. 

The Shore Storage Manager [6] is used for storage and 
indexing.  

Once a set of documents has been loaded into the Data 
Manager and the Index Manager, the system is ready to 
execute queries over those documents. To support this, 
our system provides a query parser for XQuery, an 
optimizer, and a tuple-based execution engine.  

The system is designed with scalability and performance 
in mind. To that end, physical operators within our query 
execution engine are executed on separate threads, and 
communicate with each other via a message queue. This 
allows parallel execution of operators as well as a 
straightforward extension to a distributed execution 
environment. 
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Figure 1 – Basic System Architecture 

2.1.1 Numbering Scheme 
To facilitate mixed-mode query processing, the Data 
Manager and Index Manager must share a common 
scheme for numbering the elements in an XML document. 
For performing structural joins using inverted lists, the 
results in [2,16,25] have demonstrated that assigning a 
start number, end number, and level to each element 
suffices. Each element in the Data Manager is uniquely 
identified by its start number and the id of the document 
containing the element. An example XML document 
showing the start and end number assignments for each 
element appears in Figure 2. Additional numbers are 
assigned to attributes and words occurring in attribute 
values and element contents. We omit these details as they 
are not relevant to the focus of this paper. 
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Figure 2 - Numbered XML Document 

2.1.2 Data Manager 
Each XML document is stored in the Data Manager using 
a B+-tree structure. Figure 3 illustrates this structure for 



 

the example document in Figure 2.  The key of the B+-
tree index is a (document id, element id) pair that we refer 
to as an XKey. In addition to an XKey, each leaf entry in 
the B+-tree contains:  

• Term id – The element name converted to an id 
number via a hash table. 

• A Record id (RID).  

This RID specifies the address of a record in the data 
manager which contains the following information about 
the element: 

• End number , Level  

• Element Payload – The actual text for the 
element 

• A list of (term id, element id) pairs – All 
children of the element, in document order 

Attributes are stored in the leaves of the B+-tree following 
their enclosing element. 

The leaf level of the B+-tree shown in Figure 3 has nine 
entries, corresponding to the nine elements of the XML 
document from Figure 2. Consider the leaf entry 
corresponding to the B element. It is comprised of the 
XKey and the term id, which is ((4,2),26), and the rid. The 
corresponding record has the end number and level (17,2), 
and a list of child elements. 
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Figure 3 - Data Manager  tree structure 

The Data Manager provides a DOM-like interface to its 
clients. Two types of cursors are supported: 

• The Child Axis (CA) cursor  takes as input an 
XKey and an optional tag name, and enumerates 
the children of that element in document order. If 
a tag name is specified, only child elements with 
a matching tag name are returned by the cursor.  

• The Descendent Axis (DA) cursor  also takes an 
XKey and an optional tag name as input, but 
enumerates all proper descendant elements. 
Element name filtering based on the input tag 
name occurs in this case also.  

2.1.3 Index Manager 
In order to be able to efficiently identify XML documents 
that contain a particular term [15,19], the Index Manager 
maintains posting lists describing the occurrence of 
elements, attributes, and text for the documents stored in 
the Data Manager. We next describe how this information 
is structured to facilitate the scalable retrieval of term 
locations both on an intra- and inter-document basis. 

This indexing information is stored in a two level index 
structure. The top level index is a B+-tree with (term id, 
doc id) as the key. The value associated with each leaf 
entry is an inverted list that contains information about 
occurrences of a particular term in a particular document. 
Each occurrence is represented by a start number, end 
number, and level triple as proposed in [2,16,25]. We 
refer to this info as a posting, and the entire list as a 
posting list. 

The second level index is built on each posting list. This 
index consists of a single index page stored in the leaf 
level of the top level B+-tree. For each page in the posting 
list, the index page has an entry with the start number of 
the first posting in that page. When the cardinality of the 
posting list is very small, we inline the posting list in the 
top level B+-tree leaf level pages instead of using a 
second level index. Similarly, when the number of 
postings becomes so large that the second level index no 
longer fits on a single page, we switch to a separate B+-
tree index for this posting list. Figure 4 illustrates how the 
document in Figure 2 would be indexed. 
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Figure 4 - Index Manager tree structure 

To find all occurrences of a term in a repository of 
documents, the system performs a range scan on the top 
level B+-tree using the term id as a partial key. To find all 
occurrences in a single document, the pair (term id, doc 
id) is used as the search key to retrieve the entire posting 
list. As will be demonstrated later, being able to efficiently 
offset into the posting list for a particular document using 
a start number will be beneficial for our structural join 



 

algorithm. We support this through the use of the second 
level index. 

3. MIXED MODE QUERY PROCESSING 
In this section, we first describe the relevant path 
expression evaluation algorithms of our system. We 
develop a cost model which estimates the cost for an 
execution strategy for each algorithm given a set of 
statistics. Finally, we conclude this section by describing 
our plan enumeration strategy. 

3.1 Notation 
Our cost model depends on several statistics and cost 
estimates of fundamental operations. The path expression 
statistics are maintained on both a per document basis and 
across all documents. Table 1 provides a list of common 
notations used throughout this paper and explanations for 
each. Note that the path expression statistics used can be 
computed with any of the XML summary structures that 
have been proposed in the literature [1,7,12,20,23], with 
the exception of the skip factor SF(A,B) and the skip count 
SC(A,B). A possible strategy for gathering these statistics 
is discussed in section 3.3.2. 

Table 1 – Notation used in cost formulas 

|A| Cardinality of element A 
|A/B|, |A//B| Number of B elements that have an A parent 

(/) or A ancestor (//) – B can be ‘ *’  to count 
all children/descendants of A 

cac Time to open a child axis cursor in the Data 
Manager (including I/O) 

dac Time to open a descendant axis cursor in the 
Data Manager (including I/O) 

EBP Number of element entries per leaf page in 
the Data Manager B+-tree 

PBP Number of postings per Index Manager 
backing store page 

F B+-tree lookup cost (including I/O) 
IO Cost for a single page I/O 
OC Communication cost between operators per 

XKey or posting 
comp Time to compare integers in main memory 
{ P1 | P2}  Average number of P1 paths for an element 

satisfying the context path P2  
{ P1 | P2} NL Average number of P1 paths, which terminate 

on a non-leaf element, for an element 
satisfying the context path P2  

SF(A,B) The fraction of comparisons which can be 
skipped when processing A/B or A//B 

SC(A,B) The count of skips that occur when 
processing A/B or A//B 

3.2 Data Manager 
The Data Manager supports navigation-based algorithms 
for evaluating path expression queries. This section 
presents one such algorithm, which we call Unnest. 

3.2.1 Unnest Algorithm 
The Unnest algorithm takes as input a path expression and 
a stream of XKeys. It evaluates the path expression for 
each XKey in the input, and outputs XKeys corresponding 
to the satisfying elements. 

As an example, consider the path expression 
document(“*” )/A/B/C. This path expression should return 
all C elements matching the /A/B/C path from all 
documents loaded and indexed by the system. To evaluate 
this path expression, we create an Unnest operator with 
A/B/C as the associated path expression query. A list of 
XKeys for the root elements of all documents stored in the 
Data Manager is the input for this operator.  The 
algorithm then applies the path expression to each of the 
root elements, and returns the satisfying C element 
XKeys. 

We next describe the general algorithm that Unnest uses 
to process path expressions using two specific examples. 
The Unnest algorithm uses a Finite State Machine (FSM) 
to evaluate path expressions.  Each state of the FSM 
represents having satisfied some prefix of the path 
expression, while an accepting state indicates a full match. 
Each state is also associated with a cursor that 
corresponds to the next step to be applied for the path 
expression. For each XKey obtained from the cursor, we 
make the appropriate transition in the FSM. We then 
continue with the new XKey in the new state. Upon 
termination of a cursor, we return to the previous state and 
continue enumerating its cursor. 

 

1 2 3 
A B 

CA CA  

Figure 5 – Unnest FSM for  A/B 

Consider the path expression A/B. The corresponding 
FSM is given in Figure 5. This figure shows a simple 
FSM which accepts paths of the form A/B – that is, B 
elements which have an A parent. State 1 is the start state. 
For each input XKey, a CA cursor is opened on term name 
A. For each element returned by this cursor, we transition 
to state 2. In state 2, we open another CA cursor with term 
name B. For each B element in this cursor, we transition 
to state 3, which is an accepting state. We then output the 
B element XKey and return to state 2 to finish the CA 
cursor enumeration. Similarly, we must return to state 1 
whenever a state 2 CA cursor enumeration terminates, and 
continue the CA cursor enumeration there. 

 

1 2 3 
A B 

CA DA  

Figure 6 - Unnest DA-FSM for  A//B 
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Figure 7 - Unnest CA-FSM for  A//B 

Therefore, evaluating a CA path is quite straightforward. 
In order to handle a descendant axis path expression such 
as A//B, however, we choose among two possible state 
machines. For this path, Figure 6 shows a deterministic 
FSM that utilizes a DA cursor (DA-FSM), and Figure 7 
shows a non-deterministic FSM that uses only CA cursors 
(CA-FSM). We convert the non-deterministic FSM to a 
deterministic FSM before evaluation using a standard 
NFA to DFA conversion algorithm. The resulting DFA 
also uses CA cursors only. 

Each of the two solutions for evaluating a DA path using 
Unnest has its own advantages and disadvantages. The 
DA-FSM is a straightforward representation of the A//B 
query. Most of the work in this case is pushed down to the 
data manager through the use of a DA cursor. On the other 
hand, the CA-FSM opens a CA cursor for every non-leaf 
descendant element of each satisfying A element. Notice 
how in the former case, a single scan of the leaf of the B+-
tree by the DA cursor identifies all satisfying B elements, 
while in the latter case a much larger per descendant 
overhead is incurred. 

In certain cases, evaluating the DA-FSM on path 
expressions may perform unnecessary computation and 
produce duplicate results. For example, consider the query 

Q=A//B//C. Recall that the result of this query according 
to XQuery semantics is the set of C elements satisfying Q. 
Suppose the XML document contains the path 
A/B/B/C/C. Although each C has more than one A//B 
ancestor path, it should appear only once in the result. 
Using DA cursors, each C element will be output twice, 
once for each B ancestor. A distinct operator is required 
to remove duplicates from this result. Moreover, the 
subtree under the second B will be examined twice during 
query evaluation. By using the CA-FSM for this query, 
duplicate-free results can be produced while avoiding 
unnecessary reexamination of parts of the data. In this 
case, the comparison between CA-FSM and DA-FSM is 
similar to the comparison between stack-based and merge-
based algorithms for evaluating structural joins [2]. 

Even for simple queries like A//B/C for which the DA-
FSM is guaranteed to produce duplicate-free results, the 
list of results may not be in document order. For example, 
this can happen for the query above when a B element 
parents another B element, and each B parents a C 
element as its last child.  The CA-FSM in contrast will 
always produce results in document order. This may be a 
factor if document order results are required either by the 
query or an upper-level operator like a structural join. 

3.2.2 Cost Model 
We present two relevant cost formulas in this section – the 
cost of a child axis unnest, and the cost of a descendant 
axis unnest. 

Let us now consider the costs of using cursors in more 
detail. Opening a Child Axis cursor involves navigating 
the B+-tree and following the rid to get the children list 
for the element. Enumerating all satisfying elements 

CostUnnest() = OC This represents the cost of outputting a single XKey from an Unnest 
operator, and gives us a base case for stopping recursion.  

CostUnnest(./A/P1) = cac For an input element, we must open a child access cursor 
+ {/*  | .} *  2 *  comp Examine each of the average number of children for a single input 

element 
+ {/A | .} *  CostUnnest(P1) For each A child of the input, we must pay the cost of unnesting the 

rest of the path 
CostUnnest(.//A/P1) = min( Choose the best DA plan 

( dac For an input element, we must open a descendant access cursor 
+ {//*  | .} *  2 *  comp 
+ ����{//*  | .} / EBP���� *  IO 

Examine each of the average number of descendants for a single 
input element, factoring in the I/O cost for the leaf pages loaded 

+ {//A | .} *  CostUnnest(P1) ), For each A descendant of an input, we must pay the cost of 
unnesting the rest of the path 

( cac For an input element, we must open a child access cursor 
+ {//*  | .} *  2 *  comp Examine each of the average number of descendants for a single 

input element 
+ {//*  | .}NL *  cac For each non-leaf descendant of a single input element, we must 

open a child access cursor 
+ |.//A/P1| *CostUnnest() ) Cost of outputting the result 

)  
Equation 1: The cost of Unnest 

 



 

involves a traversal of the children list. 

To open a Descendant Axis cursor, we follow the same 
path to find the element information. Enumerating all 
satisfying elements involves a leaf-level scan of the B+-
tree of all descendants of this element. 

Each cost formula is defined recursively. The cost of this 
algorithm is given in Equation 1. We omit the potential 
costs of duplicate elimination and document order sorting 
from the cost formulae for readability.   

3.3 Index Manager 
3.3.1 ZigZag Join Algorithm 
A/B and A//B paths are processed in the Index Manager 
using the ZigZag Join algorithm. This algorithm is a 
natural extension of the Multi-Predicate Merge Join 
(MPMGJN) algorithm described in [25] to make use of 
the indices present on the posting lists. A similar 
algorithm was recently proposed in [8]. These algorithms 
assume that the A and B posting lists are sorted in order 
by (document id, start number). 

The MPMGJN algorithm optimizes the backtracking step 
by never reconsidering the postings in one list that are 
guaranteed not to have any further matches in the other 
list. The main extension our algorithm provides is to use 
the index on the postings to skip forward over parts of a 
posting list that are guaranteed not to have any matching 
postings on the other list. For example, consider the 
evaluation of the query A//B over the XML document 
represented by Figure 8. The ZigZag Join algorithm 
checks the containment of the first B within the first A, 
and outputs the pair. It then advances the B posting list 
pointer, and finds that the second B is not contained by 
the first A, causing an advance of the A posting list 
pointer. When the algorithm discovers that the second A is 
beyond the second B, it needs to advance the B posting 
list pointer. Since the current B posting had no matching 
A posting, it uses the second level index to seek forward 
using the current A posting’s start number. In this case, it 
skips over two B postings to the fifth B posting. For this 
example, we were able to use the index to skip parts of the 
descendant (B) posting list. In a similar fashion, we may 
be able to skip parts of the ancestor posting list as well. 

 root 

A A A 

B B B B B B B 

A 

B 

 

Figure 8 - ZigZag of A//B will attempt 1 skip 

The above example involved a single document. In 
general, the skipping is done across documents by using 

the (term id, doc id) pair. The index can be used when one 
or both posting lists are scanned directly from the Index 
Manager. For the case when an input posting list has been 
created by a previous operator, we maintain a dynamic 
one level index on this posting list and utilize this index to 
perform the skipping. We must also buffer a posting in the 
posting list until the algorithm identifies that it will no 
longer backtrack to this posting.  

3.3.2 Cost Model 
Determining an accurate cost model for the ZigZag Join is 
somewhat complicated. Because the algorithm can “skip”  
over sections of either input posting list and can backtrack 
in a complex fashion, the CPU cost can be quite 
dependent on actual document structure. In the best case 
we may only need to do O(|A//B|) comparisons of start 
and end numbers. In the worst case, we may have to 
perform O(|A|*|B|) comparisons. 

 root 

A A A A 

B B B B B B B 

 

Figure 9 - ZigZag of A//B will attempt 3 skips 

Two factors need to be considered for properly estimating 
the cost of the ZigZag Join algorithm. The first is the 
percentage of comparisons avoided by efficient 
backtracking and forward skipping using the second level 
index. The second is a total count of the index lookups to 
seek forward. We next give an example to show why the 
latter is required. Consider the two XML documents 
represented by Figure 8 and Figure 9. Both documents 
have exactly the same number of A elements, B elements, 
and A//B paths. However, the distribution of these 
elements within the document is different. This leads to 
the algorithm using the B+-tree (to skip forward) once for 
the document in Figure 8 and three times in Figure 9. 

We define the skip factor, SF(A,B), to be the ratio of 
comparisons avoided by our algorithm to the maximum 
number of comparisons, that is (|A|*|B|). The skip count, 
SC(A,B), is defined as the number of second level index 
lookups performed for purposes of skipping forward by 
our algorithm. We believe that accurate and efficient 
computation of these statistics is an interesting and 
important area for future work.  As a simple initial 
approach, a brute force execution of the ZigZag algorithm 
for each possible pair of elements in the document will 
work. We only need to count the number of skips along 
the way, and directly compute the skip factor at the end.  
As a trivial optimization, we can avoid running the 



 

algorithm for any pair of elements A and B for which 
|A//B| is zero.  

The cost formula for A//B is given by Equation 2. In a 
similar fashion, we define the cost formula for A/B and 
other variants where only one of the two postings is 
projected.  Scaling the I/O cost by the Skip Factor is a 
first level approximation of the potential for avoiding 
entire page I/Os. 

3.4 Enabling Mixed Mode Execution 
Recall that the ZigZag Join operator takes posting lists as 
input, and the Unnest operator takes a list of XKeys as 
input. To enable query plans that use a mixture of these 
two operators, we must provide efficient mechanisms for 
switching between the two formats. 

Converting a list of postings into XKeys is as simple as 
removing the end number and level. This is possible since 
the start number and element id for a given element are 
identical in our numbering scheme. 

On the other hand, in order to convert an XKey into a 
posting, we need to look up an end number and level. To 
support this operation, we store the end number and level 
in the information record for each element. A simple B+-
tree lookup followed by a potential I/O to retrieve this 
page is therefore required to perform the conversion from 
an XKey to a posting. As an alternate approach, we could 
include the end number with the entries in the child list of 
each element.  The conversion of XKeys to postings 
would benefit from this at the expense of increasing the 
Data Manager storage requirements.  We explore this 
issue more fully in Section 4.3. 

3.5 Selecting a Plan 
Given a path expression query, let us now look at how we 
can combine the ZigZag Join and Unnest algorithms to 
produce alternate query plans. Recall that the ZigZag Join 
algorithm executes one step of the path expression query. 
The Unnest algorithm can execute one or more steps using 
a single FSM. 

We heuristically limit our search space to include only 
left-deep evaluation plans for structural joins. To choose 
the best plan, we use a dynamic programming approach. 
For a path expression query, the cost can be expressed as 

the sum of cost of the last operation and the minimum cost 
for the rest of the path expression. For example, consider 
the query /A/B/D//F. 

• If the last operation is a ZigZag Join, then it 
corresponds to the operation D//F. So, the cost of the 
query is the ZigZag cost of D//F plus the minimum 
cost for evaluating /A/B/D. 

• If the last operation is an Unnest, then it may 
correspond to one of the proper suffixes of the path 
expression. We must consider the cost of Unnest for 
.//F, ./D//F, ./B/D//F, and /A/B/D//F, adding to each 
the minimum cost of evaluating the corresponding 
prefix. 

Table 2 – Sample Cost Calculation Matr ix for  Unnest 

IU 0 1 /A 2 /B 3 /D 4 //F 
0 0 24025 48047 72869 9910886 
1 /A X X 48050 72872 9910889 
2 /B X X X 72871 9910888 
3 /D X X X X 9910889 
4 //F X X X X X 

Table 3 – Sample Cost Calculation Matr ix For  ZigZag 
Join 

IZ 0 1 /A 2 /B 3 /D 4 //F 
0 0 38042 48042 X X 
1 /A X X 86084 X X 
2 /B X X X 4290885 X 
3 /D X X X X 146932 
4 //F X X X X X 

Given a path expression with N elements, we construct 
two (N+1) x (N+1) matrices – one each for Unnest (IU) 
and ZigZag Join (IZ). We maintain the costs for each 
algorithm separately to account for the possible penalties 
incurred due to changing formats in mixed mode 
execution. We will explain the process on the example 
query /A/B/D//F. The corresponding matrices are shown 
in Table 2 and Table 3. We create a 5x5 matrix in this 
case. For each cell in the matrix, we calculate the 
minimum cost for evaluating the prefix of the path 
expression along the X axis, given a prefix along the Y 
axis as the input. For example, the gray square in the IZ 

matrix (IZ(4,3)) is the minimum cost for having used 
ZigZag Join to evaluate .//F given that /A/B/D is our 
input. Similarly, IU(3,0) is the minimum cost for 

CostZigZag = 2 *  F *  comp Cost of index lookup for 1st A and B. 
+ (|A| *  |B| *  comp *  2 
+ (����|A| / PBP����+����|B| / PBP���� )*  
IO) *  (1 - SF(A,B)) 

Cost of comparisons necessary to determine A/B or A//B relationship. This is 
scaled by the skipping factor to account for the unnecessary comparisons, and 
includes the I/O cost for loading pages of postings. 

+ {A//B|.} *  OC Factor in the cost of outputting all matching B element postings. 
+ SC(A,B) *  F *  comp*  
({A//B|.} / |A//B|)  

When a skip occurs, we go back to the B+-tree to find the next position in the 
posting list. 

Equation 2: The cost of ZigZag join 



 

evaluating /A/B/D in a single Unnest operator with the 
root of the document as the single input element.  

We use an ‘X’  to show cells within each matrix that do not 
need to be calculated. For example, the diagonal of each 
matrix and values below the diagonal are not of interest. 
Cell IZ(2,0) refers to a single ZigZag Join operator with A 
and B posting scans as the left and right inputs, 
respectively. Here, a check on the level number for A 
postings is performed in the ZigZag Join to ensure that 
only root A elements are chosen. Cell IZ(2,1) still has a B 
posting scan as the right input, but the left input is the 
output of any operator capable of having evaluated /A. 

To calculate the value for each interesting cell in Tables 2 
and 3, we define the formulae of Equation 3. Notice that 
the cost of the optimal plan is the minimum cost in the 4th 
column (corresponding to //F) of IU and IZ. 

4. EXPERIMENTS 
This section presents experimental results to validate the 
necessity and viability of the mixed mode query 
processing approach. 

All experiments were executed on a dual processor 550 
MHz Pentium III PC running RedHat Linux 6.2, equipped 
with 1GB of main memory with SCSI disks. A single 8GB 
disk for storing both the Shore log and database volume 
was utilized. All queries are read only, so no logging 
occurs during query execution. The buffer pool size was 
set to 64MB throughout our experiments. All timings 
reported in this section are an average of 10 runs. We 
calculated that all timings for each average are within 1% 
of the average value with 99% confidence. 

The experiments conducted used the XML Schema of 
Figure 10. Three documents of varying sizes were 
generated in the following manner. The schema of Figure 
10 contains four *-edges. By fixing the average fan-out of 

each *-edge, the width of a document conforming to the 
schema can be varied. For the smallest document, the 
average fan-outs of the B/C, C/D, D/E and E/G edges 
were set to 4, 256, 4, and 256, respectively. By increasing 
the average fan-outs of the B/C and D/E edges to 40 and 
then to 400, two new documents were obtained. To reflect 
the relative sizes of the three documents, the expected 
number of D elements in each is used as an identifier. The 
statistics about the documents are presented in Table 4. 
For all documents the average number of keywords per 
PCDATA element was set to 8. 

Table 4 - Synthetic document statistics 

Document Actual number 
of D elements 

Total number of 
elements 

File size 
(KB) 

1K 1143 2140 116 
10K 11676 21935 1,182 
100K 107807 216666 11,588 

 A 

B 

C D 

D E 

G F PCDATA 

*  

*  

*  

*  

 

Figure 10 - Test XML Document Schema 

Table 5 shows the four queries that were used along with 
the expected optimal evaluation plan for each query. The 
four queries were selected to illustrate a scenario where a 
particular evaluation strategy dominates. We now explain 
our notation for representing mixed mode plans in this 
section. Consider the predicted optimal plan for Query 3. 
This corresponds to a single Unnest operator evaluating 

subpath(P,m,n)  
 
 

Given path P, extract a partial path starting with the m’th 
element, extending n elements and including the leading 
path axis 

IU(x, y) = |subpath(P, 1, y)| *  
CostUnnest(subpath(P, y+1, x-y+1)) 

The cost of running Unnest over the next subpath for all 
input XKeys which were output from a length y prefix 

+ min (min0<=j<y(IU(y, j )) , 
IZ(y,y-1) + |subpath(P, 1, y)| *  (comp+OC) ) 

The best subplan which evaluates the length y prefix, taking 
into account the cost of converting postings to XKeys 

IZ(x,y) = CostZigZag(subpath(P, y,1), subpath(P, x, 1)) The cost of running ZigZag Join given a list of postings 
which were output from a length y prefix 

+ min( 
min0<=z<y(IU(y, z)) + 

|subpath(P, 1, y)| *  (F+OC) , 
IZ(y,y-1) ) 

The best subplan which evaluates the length y prefix, 
factoring in the XKey->posting conversion cost 

|subpath(P,1,0)| = 1 
IZ(0,0) = IU(0,0) = 0 

Initialization steps 

Equation 3: Choosing a plan 
 



 

/A/B/D, and feeding a ZigZag Join evaluating D//F. 
PostingScan(//D) refers to a simple scan of the entire 
posting list for element D. 

Table 5 - Test Quer ies with predicted optimal plans 

Number Query Predicted optimal plan 
1 /A/B/D Unnest(A/B/D) 
2 //B/D PostingScan(//B) + Unnest(./D) 
3 /A/B/D//F Unnest(/A/B/D) + ZigZag(//F) 
4 //D PostingScan(//D) 

In the case of a query over a single document, if the 
bottommost operator is a ZigZag Join, the doc id is passed 
to the join to restrict the computation to the required 
document. If the bottommost operator is an Unnest 
operator instead, the root element of the document is 
passed as input. On the other hand, for queries over all 
documents (in-*), if the bottommost operator is Unnest, a 
list of document root elements is retrieved from the 
catalog and used as input. No additional work is required 
when the bottommost operator is a ZigZag Join. 

4.1 Mixed Mode Evaluation Exper iments 
Previous work has argued that structural joins are 
preferable to navigational style processing for path 
expression evaluation. In the experiments conducted we 
present three cases in which the optimal evaluation took 
place either entirely or in part in the Data Manager.  All 
results in this section refer to single document queries.  
Please refer to section 4.3 for scalability results. 

The execution times of four alternate plans for Query 1 
are given in Table 6 (all times in Tables 6 through 9 are 
with a cold buffer pool). In this section, we refer to an 
Unnest operator as UN and a ZigZag Join operator as ZZ. 
The UN(/A/B/D) plan offers the best performance among 
the four plans considered. The gap between this plan and 
the others widens considerably as the size of the document 
is increased. The intuition behind this result is as follows. 
The Unnest operator only considers the A element, the B 
element, and all the children of B. Even for the document 
containing 100K D elements, the total number of elements 
considered by Unnest is under 500. On the other hand, a 
ZigZag Join evaluating B/D must consider all of the D 
descendants of B. This is because any of these D 
descendants may actually be a child element of a B 
element. As a result, this algorithm has to consider 
roughly 100K postings. For the other queries, we only 
present the two extreme plans and the optimal plan. 

In Table 7, we see the execution times for //B/D. The 
optimal plan is quite fast, regardless of the size of the 
document. The slight increase is execution time as the 
document size increases is due to the increasing number of 
C child elements of B.  This query clearly demonstrates 
the benefits of a mixed mode approach. The leading //B is 
an expensive operation if performed using the Unnest 
operator, but comparatively cheaper if a posting scan is 

used instead. The B/D operation, as we saw above, is very 
cheap if executed by Unnest as compared to the ZigZag 
Join. Combining these two operators into a hybrid plan 
offers the optimal performance for executing this query. 

Query 3 is very similar to Query 1, but adds a descendant 
lookup for F for each matching /A/B/D. The 
corresponding execution times are presented in Table 8. 
The best plan in this case is predicted to be an Unnest of 
/A/B/D feeding the left input of a ZigZag Join with an F 
posting scan on the right. In contrast with Query 2, this 
query has a descendant axis after the B/D step. As a result, 
an Unnest followed by a ZigZag Join has the best 
performance. 

Query 4 is a very simple query, and there are only two 
choices to evaluate it. We can either Unnest //D or run a 
posting scan for D elements. This query is, of course, the 
exact query that inverted lists are designed to handle with 
optimal efficiency. On the other hand, the Unnest operator 
must examine the entire document to evaluate this query. 
As illustrated by the results in Table 9 the posting scan 
provides the best results. 

The results in this section show that for varying document 
sizes, hybrid strategies are worth considering. 

Table 6 - Execution times in milliseconds for  Query 1 

Document Size ZZ ZZ→UN UN→ZZ UN 
1K 15.2 9.3 18.1 6.3 
10K 102.8 13.6 108.3 10.3 
100K 719.0 17.2 728.5 17.6 

 

Table 7 - Execution times in milliseconds for  Query 2 

Document Size ZZ UN ZZ→UN 
1K 10.1 190.8 8.6 
10K 78.0 1878.6 13.7 
100K 425.3 18471.1 17.2 

 
Table 8 - Execution times in milliseconds for  Query 3 

Document Size ZZ UN UN→ZZ 
1K 18.9 93.7 11.7 
10K 110.3 896.8 27.8 
100K 749.9 9308.3 57.7 

 
Table 9 - Execution times in milliseconds for  Query 4 

Document Size ZZ UN 
1K 35.4 244.9 
10K 323.6 2442.5 
100K 2834.3 23641.2 

4.2 Cost Model Validation 
In this section we compare the predictions of the cost 
model to the measured performance of each query. The 
cost estimations were made using the values in Table 10. 
The values for PBP and EBP are the actual parameters we 



 

set for the experiments in Shore. We set IO to be a factor 
of 10K more expensive than a comparison. 

Table 10 - Values for  var ious cost model parameters 

IO comp EBP PBP 
10000 1 82 256 

OC F cac dac 
3 20*comp+1.4*IO F+IO F+IO 

We present our results for Query 1 across various 
document sizes, and for all queries over the 100K 
document. The comparisons for cold buffers for Query 1 
are shown in Table 11. The entries are normalized to the 
minimum entry in the corresponding row. Even though the 
cost model ratios can be off significantly from the actual 
ratios, the estimated ratios are close enough that an 
optimizer using our cost estimates orders the plans 
correctly.  For each document size, our cost model orders 
the four plans correctly. The relative ratios are predicted 
reasonably and the accuracy increases as the document 
size increases.  

Table 11 – Compar ison of Cost Model estimates to 
Actual costs for  Query 1, normalized to the UN plan 

 UN UN→ZZ ZZ→UN ZZ 

Estimated 1.0 2.0 1.0 1.8 
1K 

Actual 1.0 3.0 2.2 2.5 

Estimated 1.0 7.2 1.0 7.0 
10K 

Actual 1.0 11.0 1.3 10.7 

Estimated 1.0 72.8 1.0 58.9 
100K 

Actual 1.0 83.5 1.1 83.5 

In Table 12 we show a comparison of cost model 
estimates to actual costs for the four queries evaluated 
over the 100K document. Even in this case, for each query 
the cost model arranges the plans in the same order as the 
actual execution times. 

Table 12 - Compar ison of Cost Model estimates to 
Actual costs for  the 100K Document, normalized to the 

best plan for  each query 

 UN UN→ZZ ZZ→UN ZZ 

Estimated 1.0 59.1 1.0 58.9 Q1 
Actual 1.0 173.2 1.3 172.2 

Estimated 566.3  1.0 121.8 Q2 
Actual 5134.0  1.0 78.0 

Estimated 67.5 1.0  29.6 Q3 
Actual 466.2 1.0  31.6 

Estimated 4.7   1.0 
Q4 

Actual 8.3   1.0 

4.3 Scalability Exper iments 
All results reported in sections 4.1 and 4.2 are 
measurements of queries executed over a single 
document. We now consider the effects of loading several 
document size distributions and executing the same 

queries over the entire set of loaded documents. Our 
results indicate that the mixed mode query processing 
approach does continue to show benefit as the total 
number of documents increases. This section details our 
scalability experiments and results. 

For these experiments, we chose to create a set of 
documents clustered around each of our previous 
document sizes of 1K, 10K, and 100K. For each of these 
sizes, we created documents with approximately 50%, 
75%, 100%, 125%, and 150% of the original sizes. These 
documents were then loaded based upon six distributions, 
as detailed in Table 13. The distributions were chosen in 
an attempt to keep the total element count of each 
document set constant. Distribution I consists of the 1K 
document set only. Using Table 4, we can calculate that 
Distribution I represents approximately 250 MB of XML 
data.  Similarly, distributions II and III consist of the 10K 
and 100K document sets, respectively. Distribution IV is a 
60%, 30%, 10% D element split, while V gets equal 
numbers of D elements from each document set. Finally, 
distribution VI is simply an equal number of each 
document, and therefore the majority of D elements come 
from the 100K document set. 

Table 13 - Document distr ibutions for  the scalability 
exper iments 

Distribution 1K 10K 100K 

I 2500 0 0 
II 0 250 0 

III 0 0 25 

IV 1500 75 3 

V 888 88 8 

VI 25 25 25 

 Our expectation is that the query performance of a 
distribution comprised of mostly small documents should 
be similar to that of a query executed over a single 
document scaled by the number of documents in the 
distribution. Similarly, we expect queries over 
distributions with more large documents to have 
performance more like that of queries over a single large 
document, again scaled by the total document count.  
Below in Table 14, we show the results for executing the 
four query plans for Query 1 over the distributions listed 
above. As expected, the Unnest plan is the best plan for 
Query 1, and the ZigZag followed by Unnest is tied for 
the top spot. It also appears that using the ZigZag join to 
process the D element list becomes a very poor choice for 
distributions which contain a large amount of the 100K 
document cluster. For example, distribution I (2500 1K 
docs) shows only a 1.5x performance penalty for using 
ZigZag, while distribution III (25 100K docs) shows a 
68.7x penalty. Comparing the results reported here with 
those in Table 6, we find that a similar effect exists in the 
single document case as well. A similar pattern can be 



 

found in the execution times for Queries 2 and 4, so those 
tables are omitted for brevity. 

One interesting anomaly exists for Query 3, however. For 
the 2500 1K docs, the ZigZag plan turns in the best 
execution time, although the Unnest feeding ZigZag plan 
should win easily.  We determined that converting each 
XKey to a posting required more I/O than expected for 
this case.  With a larger number of documents loaded into 
the Data Manager, our cost model underestimates the 
conversion cost.  To verify this theory, we modified the 
format of the element information record stored in the 
Data Manager to include the end number for each child of 
the element, and reran the experiments using this new 
format. The cost of converting XKeys to postings with 
this new format is very small, and the UN->ZZ plan 
becomes the best plan as originally predicted. Although 
this modification allows queries such as query 3 to convert 
XKeys to postings much more efficiently, it does so at the 
cost of redundantly storing the end number.  This could 
have the effect of slowing down some Data Manager-only 
queries due to the possibility of retrieving additional 
record storage pages during execution.  

Table 14 – Cost of executing the four  plans for  Query 
1 over  each distr ibution, normalized to the UN plan 

Distribution ZZ ZZ->UN UN->ZZ UN 
I 1.5 1.0 4.1 1.0 
II 7.2 1.0 25.3 1.0 
III 68.7 1.0 199.1 1.0 
IV 2.6 1.0 6.7 1.0 
V 3.0 1.0 8.6 1.0 
VI 27.6 1.0 76.2 1.0 

5. RELATED WORK 
There has been a lot of work on developing efficient 
algorithms for structural joins that identify occurrences of 
structural relationships like ancestor-descendant and 
parent-child relationships. Using “pre-order”  and “post-
order”  numbers to determine such structural relationships 
was presented in [10]. In [25], the authors proposed the 
multi-predicate merge join algorithm (MPMGJN) to 
efficiently merge two sorted lists. A merge based join 
algorithm was proposed in [16]. In [2], two families of 
structural join algorithms were proposed: tree-merge and 
stack-merge. The tree-merge algorithms were extensions 
of the traditional merge algorithms. They also showed that 
the stack-tree algorithms have better worst-case linear 
guarantees (linear in size of inputs and output) than the 
tree-merge algorithms. In [8], the authors enhanced the 
stack-merge algorithms to make use of B-tree indices on 
the inverted lists. The structural join in this case uses the 
index to skip those parts of the inverted lists that do not 
participate in the join. The ZigZag join algorithm 
presented in this paper is a similar extension to the 
MPMGJN join in the presence of indices on the inverted 
lists. One of the stack-merge algorithms (Stack-Tree-

Ancestor) is only a partially non-blocking algorithm, 
while the tree-merge algorithms are all non-blocking. This 
was one of the reasons why we started with the MPMGJN 
algorithm. We would like to emphasize the fact that the 
hybrid strategy presented in this paper works irrespective 
of the actual structural join algorithm used. Also, since the 
dataset we used in our experiments does not have any 
structural recursion in it, the stack-based and merge-based 
algorithms perform similar number of comparisons. So, 
even when we use a stack-based structural join, the 
experimental results we presented to motivate the 
necessity for a hybrid strategy still hold. 

There has also been some work on the notion of 
converting path expression queries into state machines has 
been previously proposed in [3,14]. In [14], the authors 
present the X-Scan operator for evaluating regular path 
expression queries over streaming XML data. Their work 
is similar to the CA-FSM presented in this paper, but they 
handle a wider class of queries, including those with 
references. In [3], the authors develop indexing and 
matching mechanisms on a modified finite state machine 
approach to match XML documents with a large number 
of user profiles (each expressed as a path expression). The 
main goal there is to share computation across the 
evaluation over multiple path expressions. On the other 
hand, in this paper we are looking at hybrid plans for 
evaluating a single path expression. An efficient algorithm 
for processing XPath queries in the presence of 
navigational access methods only is presented in [13]. 
This provides an alternate algorithm for the Unnest 
operator.  

In [17], several algorithms were proposed for optimizing 
branching path expressions in the presence of navigational 
access methods only. In [24], five algorithms for structural 
join optimization for XML tree pattern matching queries 
were presented. In this paper we considered the 
optimization of path expression queries using both 
structural joins and navigational access methods. 

Recent research studies [1,7,12,20,23] have considered 
the problem of maintaining summary structures of XML 
documents to provide statistics information. This work 
would be useful in estimating the relative cost of the 
various plans presented in this paper. 

XML management systems have been also built on top of 
either relational [22] or object-oriented [11] systems. 
Since our system is a native XML database system, our 
main difference to those approaches is that we do not have 
to go through the intermediate steps of mapping XML 
documents to relations or persistent objects and translating 
queries over the XML documents to the underlying 
system's query language. An interesting approach is the 
one in [4] in which the authors employ a hybrid storage 
mechanism for storing XML documents; they can either 



 

store it in flat files, an RDBMS or an OODBMS 
depending on the XML document structure. Again, our 
approach is orthogonal to this one. Finally, [21] is a 
commercial native XML management system; however, 
there is not enough information about its architecture to 
date. 

Our system is most closely related to [15] which 
implements a similar system architecture, keeping the 
same basic distinction between an IR component and an 
XML data component. Our approach of mixed mode 
XML query processing would apply to that and other 
similar systems.  

6. CONCLUSIONS AND FUTURE WORK 
We have shown that a mixed mode XML query 
processing system can outperform inverted list filtering 
and standard query engine navigation techniques when 
considered separately. Our cost model is accurate enough 
to choose a quality plan from a large search space. 

With our current implementation of ZigZag Join, we only 
consider single axis paths such as A/B or A[B]. This 
means that handling a path with N axes requires N ZigZag 
Join operators. We could consider a more complex 
structural join operator such as the one presented in [5]. 
Integrating such an algorithm into our system and 
extending our cost model and search strategy to explore 
this larger space of hybrid plans is interesting future work.  

Our system is designed to support parallel execution of 
operators, and thus could benefit from allowing bushy 
execution plans. We plan to extend the cost model to 
allow the possibility of choosing a bushy plan. Because 
the ZigZag join algorithm requires both inputs to be sorted 
by start number, this will require the optimizer to consider 
a large number of sort orders for internal nodes in the 
plans. 

Our query workload and cost model are somewhat simple, 
but they illustrate our key points.  Extending these results 
to include more complex queries and cost models is an 
area for future research. 
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