

Mixed Mode XML Query Processing
Alan Halverson, Josef Burger, Leonidas Galanis, Ameet Kini, Rajasekar Krishnamurthy,

Ajith Nagaraja Rao, Feng Tian, Stratis D. Viglas, Yuan Wang, Jeffrey F. Naughton, David J. DeWitt
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, WI 53706

USA
{ alanh, bolo, lgalanis, akini, sekar, ajith, ftian, stratis, yuanwang, naughton, dewitt} @cs.wisc.edu

ABSTRACT

Querying XML documents typically involves both
tree-based navigation and pattern matching similar to
that used in structured information retrieval domains.
In this paper, we show that for good performance, a
native XML query processing system should support
query plans that mix these two processing paradigms.
We describe our prototype native XML system, and
report on experiments demonstrating that even for
simple queries, there are a number of options for how
to combine tree-based navigation and structural joins
based on information retrieval-style inverted lists, and
that these options can have widely varying
performance. We present ways of transparently using
both techniques in a single system, and provide a cost
model for identifying efficient combinations of the
techniques. Our preliminary experimental results
prove the viability of our approach.

1. INTRODUCTION
As the number of XML documents increases, the
importance of building and querying native XML
repositories becomes evident. An interesting and
challenging aspect of such repositories is that part of the
query evaluation process is the discovery of relevant data
in addition to its retrieval. This discovery operation often
requires a form of simple pattern matching: that is, it
requires operations like “ find all elements x containing a
string s” , or “ find all elements x that have an element y as
an ancestor.” To solve this problem, the database
community utilizes inverted list filtering, since the
problem is so similar to that addressed in structured
information retrieval applications. In addition to inverted
list filtering, XML query processing naturally includes
navigational access to XML data. Such access is similar to

that provided by a DOM interface; here the common
operations include finding the children of a given node, or
iterating through a set of descendants by doing a depth-
first search of the subtree rooted at a given node. In the
XML query processing literature to date, there has been a
sharp line demarcating the use of inverted list filtering and
tree navigation. The purpose of this paper is to show that
building systems that keep the two kinds of processing
separate is suboptimal, and that by tightly integrating the
two types of processing, one can obtain faster query
response times. We show this using the Niagara native
XML database system.

In more detail, as we will show, there are queries for
which inverted list filtering techniques alone are best;
there are other queries for which structural navigation
techniques alone are best; there are still other queries for
which inverted list filtering techniques followed by
structural navigation is best; and, perhaps most
surprisingly, there are queries for which structural
navigation followed by inverted list filtering is best. This
suggests that a native XML repository needs to support
query plans that utilize these query processing approaches,
and needs to be able to pipe intermediate results between
the two. Finally, given that no one style of processing
dominates, an XML query processor requires query
optimization techniques and statistics to decide how to
choose among the alternatives for any given query.

This paper makes the following contributions:

• We present the main structure of a scalable system for
storing and querying static XML data. In particular,
we explain in detail the approach used in two key
parts, a structure index module called the Index
Manager and a data storage module called the Data
Manager. The Niagara overview [19] describes the
system architecture in general terms, but the
presentation in that paper did not provide sufficient
detail to motivate the tight coupling of the Index
Manager and the Data Manager.

• We present algorithms for answering queries using
either module, along with a cost model for each

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment
Proceedings of the 29th VLDB Conference,
Ber lin, Germany, 2003

algorithm. The cost model is dependent on statistics
capturing the structure of XML documents, and we
propose new statistics necessary to ensure cost model
accuracy.

• We present a decision algorithm using the proposed
cost model to decide which combination of query
processing techniques (inverted list filtering and/or
tree navigation) should be used for a given query over
a specific dataset.

• We present an experimental study of this framework.

The rest of the paper is organized as follows: An overview
of the system and the relevant modules is presented in
Section 2. The specific algorithms for using each of the
modules to process queries over XML data, the costs
associated with each algorithm, and a decision process
selecting the correct algorithm are presented in Section 3.
An experimental evaluation of the proposed approach is
presented in Section 4. A discussion of related work is
contained in Section 5. Finally, the conclusions and the
future work directions are summarized in Section 6.

2. SYSTEM OVERVIEW
2.1 System Architecture
Our system is perhaps best described by examining how it
processes and stores an XML document. As shown in
Figure 1, the process of loading an XML document begins
by running it through a front-end parser. The parsed XML
is then fed into the Data Manager and the Index Manager.

• The Data Manager stores a DOM-style tree
representation of the XML document.

• The Index Manager stores a set of inverted lists,
mapping elements, attributes, and words found in the
XML document to lists of exact locations within the
document.

The Shore Storage Manager [6] is used for storage and
indexing.

Once a set of documents has been loaded into the Data
Manager and the Index Manager, the system is ready to
execute queries over those documents. To support this,
our system provides a query parser for XQuery, an
optimizer, and a tuple-based execution engine.

The system is designed with scalability and performance
in mind. To that end, physical operators within our query
execution engine are executed on separate threads, and
communicate with each other via a message queue. This
allows parallel execution of operators as well as a
straightforward extension to a distributed execution
environment.

Index
Manager

Data Manager
(XML Documents)

Query
Engine

Postings

Posting
Requests Xkeys + Data

Xkey + Data
Requests

Common Parser

IM Parse-event
Handler

DM Parse-event
Handler

Postings Data

Parse Events

XML
Documents

XML
Documents

 σ

Separate
threads per
operator

Communication
streams between

operators

Figure 1 – Basic System Architecture

2.1.1 Numbering Scheme
To facilitate mixed-mode query processing, the Data
Manager and Index Manager must share a common
scheme for numbering the elements in an XML document.
For performing structural joins using inverted lists, the
results in [2,16,25] have demonstrated that assigning a
start number, end number, and level to each element
suffices. Each element in the Data Manager is uniquely
identified by its start number and the id of the document
containing the element. An example XML document
showing the start and end number assignments for each
element appears in Figure 2. Additional numbers are
assigned to attributes and words occurring in attribute
values and element contents. We omit these details as they
are not relevant to the focus of this paper.

A

B

C C

D D D

(1, 18)

(2, 17)

(3, 8)

(4, 5)

(9, 16)

(10, 11) (14, 15)

Document 4

D
(12, 13)

D
(6, 7)

Level 1

Level 2

Level 3

Level 4

Figure 2 - Numbered XML Document

2.1.2 Data Manager
Each XML document is stored in the Data Manager using
a B+-tree structure. Figure 3 illustrates this structure for

the example document in Figure 2. The key of the B+-
tree index is a (document id, element id) pair that we refer
to as an XKey. In addition to an XKey, each leaf entry in
the B+-tree contains:

• Term id – The element name converted to an id
number via a hash table.

• A Record id (RID).

This RID specifies the address of a record in the data
manager which contains the following information about
the element:

• End number , Level

• Element Payload – The actual text for the
element

• A list of (term id, element id) pairs – All
children of the element, in document order

Attributes are stored in the leaves of the B+-tree following
their enclosing element.

The leaf level of the B+-tree shown in Figure 3 has nine
entries, corresponding to the nine elements of the XML
document from Figure 2. Consider the leaf entry
corresponding to the B element. It is comprised of the
XKey and the term id, which is ((4,2),26), and the rid. The
corresponding record has the end number and level (17,2),
and a list of child elements.

XKey

1 2 3 4 6 9 10 12

ElementID
2

TermID
26

DocID
4

RID

3 85 4

End, Level
17, 2

Payload
…

List of children: (TermID, ElementID)
(85, 3), (85, 9)

8, 3 Payload (11, 4), (11, 6)

Disk Page

Leaf Entry

14

B 26

C 85

D 11

A 20

Term TermID Hash
Table

Figure 3 - Data Manager tree structure

The Data Manager provides a DOM-like interface to its
clients. Two types of cursors are supported:

• The Child Axis (CA) cursor takes as input an
XKey and an optional tag name, and enumerates
the children of that element in document order. If
a tag name is specified, only child elements with
a matching tag name are returned by the cursor.

• The Descendent Axis (DA) cursor also takes an
XKey and an optional tag name as input, but
enumerates all proper descendant elements.
Element name filtering based on the input tag
name occurs in this case also.

2.1.3 Index Manager
In order to be able to efficiently identify XML documents
that contain a particular term [15,19], the Index Manager
maintains posting lists describing the occurrence of
elements, attributes, and text for the documents stored in
the Data Manager. We next describe how this information
is structured to facilitate the scalable retrieval of term
locations both on an intra- and inter-document basis.

This indexing information is stored in a two level index
structure. The top level index is a B+-tree with (term id,
doc id) as the key. The value associated with each leaf
entry is an inverted list that contains information about
occurrences of a particular term in a particular document.
Each occurrence is represented by a start number, end
number, and level triple as proposed in [2,16,25]. We
refer to this info as a posting, and the entire list as a
posting list.

The second level index is built on each posting list. This
index consists of a single index page stored in the leaf
level of the top level B+-tree. For each page in the posting
list, the index page has an entry with the start number of
the first posting in that page. When the cardinality of the
posting list is very small, we inline the posting list in the
top level B+-tree leaf level pages instead of using a
second level index. Similarly, when the number of
postings becomes so large that the second level index no
longer fits on a single page, we switch to a separate B+-
tree index for this posting list. Figure 4 illustrates how the
document in Figure 2 would be indexed.

TermID, DocID
Postings for D

TermID, DocID: (11, 4)

4 10 14

Start, End, Level
(4, 5, 4) (6, 7, 4)

(10, 11, 4) (12, 13, 4)

(14, 15, 4)

Inverted List

Leaf Entry

Figure 4 - Index Manager tree structure

To find all occurrences of a term in a repository of
documents, the system performs a range scan on the top
level B+-tree using the term id as a partial key. To find all
occurrences in a single document, the pair (term id, doc
id) is used as the search key to retrieve the entire posting
list. As will be demonstrated later, being able to efficiently
offset into the posting list for a particular document using
a start number will be beneficial for our structural join

algorithm. We support this through the use of the second
level index.

3. MIXED MODE QUERY PROCESSING
In this section, we first describe the relevant path
expression evaluation algorithms of our system. We
develop a cost model which estimates the cost for an
execution strategy for each algorithm given a set of
statistics. Finally, we conclude this section by describing
our plan enumeration strategy.

3.1 Notation
Our cost model depends on several statistics and cost
estimates of fundamental operations. The path expression
statistics are maintained on both a per document basis and
across all documents. Table 1 provides a list of common
notations used throughout this paper and explanations for
each. Note that the path expression statistics used can be
computed with any of the XML summary structures that
have been proposed in the literature [1,7,12,20,23], with
the exception of the skip factor SF(A,B) and the skip count
SC(A,B). A possible strategy for gathering these statistics
is discussed in section 3.3.2.

Table 1 – Notation used in cost formulas

|A| Cardinality of element A
|A/B|, |A//B| Number of B elements that have an A parent

(/) or A ancestor (//) – B can be ‘ *’ to count
all children/descendants of A

cac Time to open a child axis cursor in the Data
Manager (including I/O)

dac Time to open a descendant axis cursor in the
Data Manager (including I/O)

EBP Number of element entries per leaf page in
the Data Manager B+-tree

PBP Number of postings per Index Manager
backing store page

F B+-tree lookup cost (including I/O)
IO Cost for a single page I/O
OC Communication cost between operators per

XKey or posting
comp Time to compare integers in main memory
{ P1 | P2} Average number of P1 paths for an element

satisfying the context path P2
{ P1 | P2} NL Average number of P1 paths, which terminate

on a non-leaf element, for an element
satisfying the context path P2

SF(A,B) The fraction of comparisons which can be
skipped when processing A/B or A//B

SC(A,B) The count of skips that occur when
processing A/B or A//B

3.2 Data Manager
The Data Manager supports navigation-based algorithms
for evaluating path expression queries. This section
presents one such algorithm, which we call Unnest.

3.2.1 Unnest Algorithm
The Unnest algorithm takes as input a path expression and
a stream of XKeys. It evaluates the path expression for
each XKey in the input, and outputs XKeys corresponding
to the satisfying elements.

As an example, consider the path expression
document(“*”)/A/B/C. This path expression should return
all C elements matching the /A/B/C path from all
documents loaded and indexed by the system. To evaluate
this path expression, we create an Unnest operator with
A/B/C as the associated path expression query. A list of
XKeys for the root elements of all documents stored in the
Data Manager is the input for this operator. The
algorithm then applies the path expression to each of the
root elements, and returns the satisfying C element
XKeys.

We next describe the general algorithm that Unnest uses
to process path expressions using two specific examples.
The Unnest algorithm uses a Finite State Machine (FSM)
to evaluate path expressions. Each state of the FSM
represents having satisfied some prefix of the path
expression, while an accepting state indicates a full match.
Each state is also associated with a cursor that
corresponds to the next step to be applied for the path
expression. For each XKey obtained from the cursor, we
make the appropriate transition in the FSM. We then
continue with the new XKey in the new state. Upon
termination of a cursor, we return to the previous state and
continue enumerating its cursor.

1 2 3
A B

CA CA

Figure 5 – Unnest FSM for A/B

Consider the path expression A/B. The corresponding
FSM is given in Figure 5. This figure shows a simple
FSM which accepts paths of the form A/B – that is, B
elements which have an A parent. State 1 is the start state.
For each input XKey, a CA cursor is opened on term name
A. For each element returned by this cursor, we transition
to state 2. In state 2, we open another CA cursor with term
name B. For each B element in this cursor, we transition
to state 3, which is an accepting state. We then output the
B element XKey and return to state 2 to finish the CA
cursor enumeration. Similarly, we must return to state 1
whenever a state 2 CA cursor enumeration terminates, and
continue the CA cursor enumeration there.

1 2 3
A B

CA DA

Figure 6 - Unnest DA-FSM for A//B

1 2 3
A B

CA CA

*-B

* -B
CA B

Figure 7 - Unnest CA-FSM for A//B

Therefore, evaluating a CA path is quite straightforward.
In order to handle a descendant axis path expression such
as A//B, however, we choose among two possible state
machines. For this path, Figure 6 shows a deterministic
FSM that utilizes a DA cursor (DA-FSM), and Figure 7
shows a non-deterministic FSM that uses only CA cursors
(CA-FSM). We convert the non-deterministic FSM to a
deterministic FSM before evaluation using a standard
NFA to DFA conversion algorithm. The resulting DFA
also uses CA cursors only.

Each of the two solutions for evaluating a DA path using
Unnest has its own advantages and disadvantages. The
DA-FSM is a straightforward representation of the A//B
query. Most of the work in this case is pushed down to the
data manager through the use of a DA cursor. On the other
hand, the CA-FSM opens a CA cursor for every non-leaf
descendant element of each satisfying A element. Notice
how in the former case, a single scan of the leaf of the B+-
tree by the DA cursor identifies all satisfying B elements,
while in the latter case a much larger per descendant
overhead is incurred.

In certain cases, evaluating the DA-FSM on path
expressions may perform unnecessary computation and
produce duplicate results. For example, consider the query

Q=A//B//C. Recall that the result of this query according
to XQuery semantics is the set of C elements satisfying Q.
Suppose the XML document contains the path
A/B/B/C/C. Although each C has more than one A//B
ancestor path, it should appear only once in the result.
Using DA cursors, each C element will be output twice,
once for each B ancestor. A distinct operator is required
to remove duplicates from this result. Moreover, the
subtree under the second B will be examined twice during
query evaluation. By using the CA-FSM for this query,
duplicate-free results can be produced while avoiding
unnecessary reexamination of parts of the data. In this
case, the comparison between CA-FSM and DA-FSM is
similar to the comparison between stack-based and merge-
based algorithms for evaluating structural joins [2].

Even for simple queries like A//B/C for which the DA-
FSM is guaranteed to produce duplicate-free results, the
list of results may not be in document order. For example,
this can happen for the query above when a B element
parents another B element, and each B parents a C
element as its last child. The CA-FSM in contrast will
always produce results in document order. This may be a
factor if document order results are required either by the
query or an upper-level operator like a structural join.

3.2.2 Cost Model
We present two relevant cost formulas in this section – the
cost of a child axis unnest, and the cost of a descendant
axis unnest.

Let us now consider the costs of using cursors in more
detail. Opening a Child Axis cursor involves navigating
the B+-tree and following the rid to get the children list
for the element. Enumerating all satisfying elements

CostUnnest() = OC This represents the cost of outputting a single XKey from an Unnest
operator, and gives us a base case for stopping recursion.

CostUnnest(./A/P1) = cac For an input element, we must open a child access cursor
+ {/* | .} * 2 * comp Examine each of the average number of children for a single input

element
+ {/A | .} * CostUnnest(P1) For each A child of the input, we must pay the cost of unnesting the

rest of the path
CostUnnest(.//A/P1) = min(Choose the best DA plan

(dac For an input element, we must open a descendant access cursor
+ {//* | .} * 2 * comp
+ ����{//* | .} / EBP���� * IO

Examine each of the average number of descendants for a single
input element, factoring in the I/O cost for the leaf pages loaded

+ {//A | .} * CostUnnest(P1)), For each A descendant of an input, we must pay the cost of
unnesting the rest of the path

(cac For an input element, we must open a child access cursor
+ {//* | .} * 2 * comp Examine each of the average number of descendants for a single

input element
+ {//* | .}NL * cac For each non-leaf descendant of a single input element, we must

open a child access cursor
+ |.//A/P1| *CostUnnest()) Cost of outputting the result

)
Equation 1: The cost of Unnest

involves a traversal of the children list.

To open a Descendant Axis cursor, we follow the same
path to find the element information. Enumerating all
satisfying elements involves a leaf-level scan of the B+-
tree of all descendants of this element.

Each cost formula is defined recursively. The cost of this
algorithm is given in Equation 1. We omit the potential
costs of duplicate elimination and document order sorting
from the cost formulae for readability.

3.3 Index Manager
3.3.1 ZigZag Join Algorithm
A/B and A//B paths are processed in the Index Manager
using the ZigZag Join algorithm. This algorithm is a
natural extension of the Multi-Predicate Merge Join
(MPMGJN) algorithm described in [25] to make use of
the indices present on the posting lists. A similar
algorithm was recently proposed in [8]. These algorithms
assume that the A and B posting lists are sorted in order
by (document id, start number).

The MPMGJN algorithm optimizes the backtracking step
by never reconsidering the postings in one list that are
guaranteed not to have any further matches in the other
list. The main extension our algorithm provides is to use
the index on the postings to skip forward over parts of a
posting list that are guaranteed not to have any matching
postings on the other list. For example, consider the
evaluation of the query A//B over the XML document
represented by Figure 8. The ZigZag Join algorithm
checks the containment of the first B within the first A,
and outputs the pair. It then advances the B posting list
pointer, and finds that the second B is not contained by
the first A, causing an advance of the A posting list
pointer. When the algorithm discovers that the second A is
beyond the second B, it needs to advance the B posting
list pointer. Since the current B posting had no matching
A posting, it uses the second level index to seek forward
using the current A posting’s start number. In this case, it
skips over two B postings to the fifth B posting. For this
example, we were able to use the index to skip parts of the
descendant (B) posting list. In a similar fashion, we may
be able to skip parts of the ancestor posting list as well.

 root

A A A

B B B B B B B

A

B

Figure 8 - ZigZag of A//B will attempt 1 skip

The above example involved a single document. In
general, the skipping is done across documents by using

the (term id, doc id) pair. The index can be used when one
or both posting lists are scanned directly from the Index
Manager. For the case when an input posting list has been
created by a previous operator, we maintain a dynamic
one level index on this posting list and utilize this index to
perform the skipping. We must also buffer a posting in the
posting list until the algorithm identifies that it will no
longer backtrack to this posting.

3.3.2 Cost Model
Determining an accurate cost model for the ZigZag Join is
somewhat complicated. Because the algorithm can “skip”
over sections of either input posting list and can backtrack
in a complex fashion, the CPU cost can be quite
dependent on actual document structure. In the best case
we may only need to do O(|A//B|) comparisons of start
and end numbers. In the worst case, we may have to
perform O(|A|*|B|) comparisons.

 root

A A A A

B B B B B B B

Figure 9 - ZigZag of A//B will attempt 3 skips

Two factors need to be considered for properly estimating
the cost of the ZigZag Join algorithm. The first is the
percentage of comparisons avoided by efficient
backtracking and forward skipping using the second level
index. The second is a total count of the index lookups to
seek forward. We next give an example to show why the
latter is required. Consider the two XML documents
represented by Figure 8 and Figure 9. Both documents
have exactly the same number of A elements, B elements,
and A//B paths. However, the distribution of these
elements within the document is different. This leads to
the algorithm using the B+-tree (to skip forward) once for
the document in Figure 8 and three times in Figure 9.

We define the skip factor, SF(A,B), to be the ratio of
comparisons avoided by our algorithm to the maximum
number of comparisons, that is (|A|*|B|). The skip count,
SC(A,B), is defined as the number of second level index
lookups performed for purposes of skipping forward by
our algorithm. We believe that accurate and efficient
computation of these statistics is an interesting and
important area for future work. As a simple initial
approach, a brute force execution of the ZigZag algorithm
for each possible pair of elements in the document will
work. We only need to count the number of skips along
the way, and directly compute the skip factor at the end.
As a trivial optimization, we can avoid running the

algorithm for any pair of elements A and B for which
|A//B| is zero.

The cost formula for A//B is given by Equation 2. In a
similar fashion, we define the cost formula for A/B and
other variants where only one of the two postings is
projected. Scaling the I/O cost by the Skip Factor is a
first level approximation of the potential for avoiding
entire page I/Os.

3.4 Enabling Mixed Mode Execution
Recall that the ZigZag Join operator takes posting lists as
input, and the Unnest operator takes a list of XKeys as
input. To enable query plans that use a mixture of these
two operators, we must provide efficient mechanisms for
switching between the two formats.

Converting a list of postings into XKeys is as simple as
removing the end number and level. This is possible since
the start number and element id for a given element are
identical in our numbering scheme.

On the other hand, in order to convert an XKey into a
posting, we need to look up an end number and level. To
support this operation, we store the end number and level
in the information record for each element. A simple B+-
tree lookup followed by a potential I/O to retrieve this
page is therefore required to perform the conversion from
an XKey to a posting. As an alternate approach, we could
include the end number with the entries in the child list of
each element. The conversion of XKeys to postings
would benefit from this at the expense of increasing the
Data Manager storage requirements. We explore this
issue more fully in Section 4.3.

3.5 Selecting a Plan
Given a path expression query, let us now look at how we
can combine the ZigZag Join and Unnest algorithms to
produce alternate query plans. Recall that the ZigZag Join
algorithm executes one step of the path expression query.
The Unnest algorithm can execute one or more steps using
a single FSM.

We heuristically limit our search space to include only
left-deep evaluation plans for structural joins. To choose
the best plan, we use a dynamic programming approach.
For a path expression query, the cost can be expressed as

the sum of cost of the last operation and the minimum cost
for the rest of the path expression. For example, consider
the query /A/B/D//F.

• If the last operation is a ZigZag Join, then it
corresponds to the operation D//F. So, the cost of the
query is the ZigZag cost of D//F plus the minimum
cost for evaluating /A/B/D.

• If the last operation is an Unnest, then it may
correspond to one of the proper suffixes of the path
expression. We must consider the cost of Unnest for
.//F, ./D//F, ./B/D//F, and /A/B/D//F, adding to each
the minimum cost of evaluating the corresponding
prefix.

Table 2 – Sample Cost Calculation Matr ix for Unnest

IU 0 1 /A 2 /B 3 /D 4 //F
0 0 24025 48047 72869 9910886
1 /A X X 48050 72872 9910889
2 /B X X X 72871 9910888
3 /D X X X X 9910889
4 //F X X X X X

Table 3 – Sample Cost Calculation Matr ix For ZigZag
Join

IZ 0 1 /A 2 /B 3 /D 4 //F
0 0 38042 48042 X X
1 /A X X 86084 X X
2 /B X X X 4290885 X
3 /D X X X X 146932
4 //F X X X X X

Given a path expression with N elements, we construct
two (N+1) x (N+1) matrices – one each for Unnest (IU)
and ZigZag Join (IZ). We maintain the costs for each
algorithm separately to account for the possible penalties
incurred due to changing formats in mixed mode
execution. We will explain the process on the example
query /A/B/D//F. The corresponding matrices are shown
in Table 2 and Table 3. We create a 5x5 matrix in this
case. For each cell in the matrix, we calculate the
minimum cost for evaluating the prefix of the path
expression along the X axis, given a prefix along the Y
axis as the input. For example, the gray square in the IZ

matrix (IZ(4,3)) is the minimum cost for having used
ZigZag Join to evaluate .//F given that /A/B/D is our
input. Similarly, IU(3,0) is the minimum cost for

CostZigZag = 2 * F * comp Cost of index lookup for 1st A and B.
+ (|A| * |B| * comp * 2
+ (����|A| / PBP����+����|B| / PBP����)*
IO) * (1 - SF(A,B))

Cost of comparisons necessary to determine A/B or A//B relationship. This is
scaled by the skipping factor to account for the unnecessary comparisons, and
includes the I/O cost for loading pages of postings.

+ {A//B|.} * OC Factor in the cost of outputting all matching B element postings.
+ SC(A,B) * F * comp*
({A//B|.} / |A//B|)

When a skip occurs, we go back to the B+-tree to find the next position in the
posting list.

Equation 2: The cost of ZigZag join

evaluating /A/B/D in a single Unnest operator with the
root of the document as the single input element.

We use an ‘X’ to show cells within each matrix that do not
need to be calculated. For example, the diagonal of each
matrix and values below the diagonal are not of interest.
Cell IZ(2,0) refers to a single ZigZag Join operator with A
and B posting scans as the left and right inputs,
respectively. Here, a check on the level number for A
postings is performed in the ZigZag Join to ensure that
only root A elements are chosen. Cell IZ(2,1) still has a B
posting scan as the right input, but the left input is the
output of any operator capable of having evaluated /A.

To calculate the value for each interesting cell in Tables 2
and 3, we define the formulae of Equation 3. Notice that
the cost of the optimal plan is the minimum cost in the 4th
column (corresponding to //F) of IU and IZ.

4. EXPERIMENTS
This section presents experimental results to validate the
necessity and viability of the mixed mode query
processing approach.

All experiments were executed on a dual processor 550
MHz Pentium III PC running RedHat Linux 6.2, equipped
with 1GB of main memory with SCSI disks. A single 8GB
disk for storing both the Shore log and database volume
was utilized. All queries are read only, so no logging
occurs during query execution. The buffer pool size was
set to 64MB throughout our experiments. All timings
reported in this section are an average of 10 runs. We
calculated that all timings for each average are within 1%
of the average value with 99% confidence.

The experiments conducted used the XML Schema of
Figure 10. Three documents of varying sizes were
generated in the following manner. The schema of Figure
10 contains four *-edges. By fixing the average fan-out of

each *-edge, the width of a document conforming to the
schema can be varied. For the smallest document, the
average fan-outs of the B/C, C/D, D/E and E/G edges
were set to 4, 256, 4, and 256, respectively. By increasing
the average fan-outs of the B/C and D/E edges to 40 and
then to 400, two new documents were obtained. To reflect
the relative sizes of the three documents, the expected
number of D elements in each is used as an identifier. The
statistics about the documents are presented in Table 4.
For all documents the average number of keywords per
PCDATA element was set to 8.

Table 4 - Synthetic document statistics

Document Actual number
of D elements

Total number of
elements

File size
(KB)

1K 1143 2140 116
10K 11676 21935 1,182
100K 107807 216666 11,588

 A

B

C D

D E

G F PCDATA

*

*

*

*

Figure 10 - Test XML Document Schema

Table 5 shows the four queries that were used along with
the expected optimal evaluation plan for each query. The
four queries were selected to illustrate a scenario where a
particular evaluation strategy dominates. We now explain
our notation for representing mixed mode plans in this
section. Consider the predicted optimal plan for Query 3.
This corresponds to a single Unnest operator evaluating

subpath(P,m,n)

Given path P, extract a partial path starting with the m’th
element, extending n elements and including the leading
path axis

IU(x, y) = |subpath(P, 1, y)| *
CostUnnest(subpath(P, y+1, x-y+1))

The cost of running Unnest over the next subpath for all
input XKeys which were output from a length y prefix

+ min (min0<=j<y(IU(y, j)) ,
IZ(y,y-1) + |subpath(P, 1, y)| * (comp+OC))

The best subplan which evaluates the length y prefix, taking
into account the cost of converting postings to XKeys

IZ(x,y) = CostZigZag(subpath(P, y,1), subpath(P, x, 1)) The cost of running ZigZag Join given a list of postings
which were output from a length y prefix

+ min(
min0<=z<y(IU(y, z)) +

|subpath(P, 1, y)| * (F+OC) ,
IZ(y,y-1))

The best subplan which evaluates the length y prefix,
factoring in the XKey->posting conversion cost

|subpath(P,1,0)| = 1
IZ(0,0) = IU(0,0) = 0

Initialization steps

Equation 3: Choosing a plan

/A/B/D, and feeding a ZigZag Join evaluating D//F.
PostingScan(//D) refers to a simple scan of the entire
posting list for element D.

Table 5 - Test Quer ies with predicted optimal plans

Number Query Predicted optimal plan
1 /A/B/D Unnest(A/B/D)
2 //B/D PostingScan(//B) + Unnest(./D)
3 /A/B/D//F Unnest(/A/B/D) + ZigZag(//F)
4 //D PostingScan(//D)

In the case of a query over a single document, if the
bottommost operator is a ZigZag Join, the doc id is passed
to the join to restrict the computation to the required
document. If the bottommost operator is an Unnest
operator instead, the root element of the document is
passed as input. On the other hand, for queries over all
documents (in-*), if the bottommost operator is Unnest, a
list of document root elements is retrieved from the
catalog and used as input. No additional work is required
when the bottommost operator is a ZigZag Join.

4.1 Mixed Mode Evaluation Exper iments
Previous work has argued that structural joins are
preferable to navigational style processing for path
expression evaluation. In the experiments conducted we
present three cases in which the optimal evaluation took
place either entirely or in part in the Data Manager. All
results in this section refer to single document queries.
Please refer to section 4.3 for scalability results.

The execution times of four alternate plans for Query 1
are given in Table 6 (all times in Tables 6 through 9 are
with a cold buffer pool). In this section, we refer to an
Unnest operator as UN and a ZigZag Join operator as ZZ.
The UN(/A/B/D) plan offers the best performance among
the four plans considered. The gap between this plan and
the others widens considerably as the size of the document
is increased. The intuition behind this result is as follows.
The Unnest operator only considers the A element, the B
element, and all the children of B. Even for the document
containing 100K D elements, the total number of elements
considered by Unnest is under 500. On the other hand, a
ZigZag Join evaluating B/D must consider all of the D
descendants of B. This is because any of these D
descendants may actually be a child element of a B
element. As a result, this algorithm has to consider
roughly 100K postings. For the other queries, we only
present the two extreme plans and the optimal plan.

In Table 7, we see the execution times for //B/D. The
optimal plan is quite fast, regardless of the size of the
document. The slight increase is execution time as the
document size increases is due to the increasing number of
C child elements of B. This query clearly demonstrates
the benefits of a mixed mode approach. The leading //B is
an expensive operation if performed using the Unnest
operator, but comparatively cheaper if a posting scan is

used instead. The B/D operation, as we saw above, is very
cheap if executed by Unnest as compared to the ZigZag
Join. Combining these two operators into a hybrid plan
offers the optimal performance for executing this query.

Query 3 is very similar to Query 1, but adds a descendant
lookup for F for each matching /A/B/D. The
corresponding execution times are presented in Table 8.
The best plan in this case is predicted to be an Unnest of
/A/B/D feeding the left input of a ZigZag Join with an F
posting scan on the right. In contrast with Query 2, this
query has a descendant axis after the B/D step. As a result,
an Unnest followed by a ZigZag Join has the best
performance.

Query 4 is a very simple query, and there are only two
choices to evaluate it. We can either Unnest //D or run a
posting scan for D elements. This query is, of course, the
exact query that inverted lists are designed to handle with
optimal efficiency. On the other hand, the Unnest operator
must examine the entire document to evaluate this query.
As illustrated by the results in Table 9 the posting scan
provides the best results.

The results in this section show that for varying document
sizes, hybrid strategies are worth considering.

Table 6 - Execution times in milliseconds for Query 1

Document Size ZZ ZZ→UN UN→ZZ UN
1K 15.2 9.3 18.1 6.3
10K 102.8 13.6 108.3 10.3
100K 719.0 17.2 728.5 17.6

Table 7 - Execution times in milliseconds for Query 2

Document Size ZZ UN ZZ→UN
1K 10.1 190.8 8.6
10K 78.0 1878.6 13.7
100K 425.3 18471.1 17.2

Table 8 - Execution times in milliseconds for Query 3

Document Size ZZ UN UN→ZZ
1K 18.9 93.7 11.7
10K 110.3 896.8 27.8
100K 749.9 9308.3 57.7

Table 9 - Execution times in milliseconds for Query 4

Document Size ZZ UN
1K 35.4 244.9
10K 323.6 2442.5
100K 2834.3 23641.2

4.2 Cost Model Validation
In this section we compare the predictions of the cost
model to the measured performance of each query. The
cost estimations were made using the values in Table 10.
The values for PBP and EBP are the actual parameters we

set for the experiments in Shore. We set IO to be a factor
of 10K more expensive than a comparison.

Table 10 - Values for var ious cost model parameters

IO comp EBP PBP
10000 1 82 256

OC F cac dac
3 20*comp+1.4*IO F+IO F+IO

We present our results for Query 1 across various
document sizes, and for all queries over the 100K
document. The comparisons for cold buffers for Query 1
are shown in Table 11. The entries are normalized to the
minimum entry in the corresponding row. Even though the
cost model ratios can be off significantly from the actual
ratios, the estimated ratios are close enough that an
optimizer using our cost estimates orders the plans
correctly. For each document size, our cost model orders
the four plans correctly. The relative ratios are predicted
reasonably and the accuracy increases as the document
size increases.

Table 11 – Compar ison of Cost Model estimates to
Actual costs for Query 1, normalized to the UN plan

 UN UN→ZZ ZZ→UN ZZ

Estimated 1.0 2.0 1.0 1.8
1K

Actual 1.0 3.0 2.2 2.5

Estimated 1.0 7.2 1.0 7.0
10K

Actual 1.0 11.0 1.3 10.7

Estimated 1.0 72.8 1.0 58.9
100K

Actual 1.0 83.5 1.1 83.5

In Table 12 we show a comparison of cost model
estimates to actual costs for the four queries evaluated
over the 100K document. Even in this case, for each query
the cost model arranges the plans in the same order as the
actual execution times.

Table 12 - Compar ison of Cost Model estimates to
Actual costs for the 100K Document, normalized to the

best plan for each query

 UN UN→ZZ ZZ→UN ZZ

Estimated 1.0 59.1 1.0 58.9 Q1
Actual 1.0 173.2 1.3 172.2

Estimated 566.3 1.0 121.8 Q2
Actual 5134.0 1.0 78.0

Estimated 67.5 1.0 29.6 Q3
Actual 466.2 1.0 31.6

Estimated 4.7 1.0
Q4

Actual 8.3 1.0

4.3 Scalability Exper iments
All results reported in sections 4.1 and 4.2 are
measurements of queries executed over a single
document. We now consider the effects of loading several
document size distributions and executing the same

queries over the entire set of loaded documents. Our
results indicate that the mixed mode query processing
approach does continue to show benefit as the total
number of documents increases. This section details our
scalability experiments and results.

For these experiments, we chose to create a set of
documents clustered around each of our previous
document sizes of 1K, 10K, and 100K. For each of these
sizes, we created documents with approximately 50%,
75%, 100%, 125%, and 150% of the original sizes. These
documents were then loaded based upon six distributions,
as detailed in Table 13. The distributions were chosen in
an attempt to keep the total element count of each
document set constant. Distribution I consists of the 1K
document set only. Using Table 4, we can calculate that
Distribution I represents approximately 250 MB of XML
data. Similarly, distributions II and III consist of the 10K
and 100K document sets, respectively. Distribution IV is a
60%, 30%, 10% D element split, while V gets equal
numbers of D elements from each document set. Finally,
distribution VI is simply an equal number of each
document, and therefore the majority of D elements come
from the 100K document set.

Table 13 - Document distr ibutions for the scalability
exper iments

Distribution 1K 10K 100K

I 2500 0 0
II 0 250 0

III 0 0 25

IV 1500 75 3

V 888 88 8

VI 25 25 25

 Our expectation is that the query performance of a
distribution comprised of mostly small documents should
be similar to that of a query executed over a single
document scaled by the number of documents in the
distribution. Similarly, we expect queries over
distributions with more large documents to have
performance more like that of queries over a single large
document, again scaled by the total document count.
Below in Table 14, we show the results for executing the
four query plans for Query 1 over the distributions listed
above. As expected, the Unnest plan is the best plan for
Query 1, and the ZigZag followed by Unnest is tied for
the top spot. It also appears that using the ZigZag join to
process the D element list becomes a very poor choice for
distributions which contain a large amount of the 100K
document cluster. For example, distribution I (2500 1K
docs) shows only a 1.5x performance penalty for using
ZigZag, while distribution III (25 100K docs) shows a
68.7x penalty. Comparing the results reported here with
those in Table 6, we find that a similar effect exists in the
single document case as well. A similar pattern can be

found in the execution times for Queries 2 and 4, so those
tables are omitted for brevity.

One interesting anomaly exists for Query 3, however. For
the 2500 1K docs, the ZigZag plan turns in the best
execution time, although the Unnest feeding ZigZag plan
should win easily. We determined that converting each
XKey to a posting required more I/O than expected for
this case. With a larger number of documents loaded into
the Data Manager, our cost model underestimates the
conversion cost. To verify this theory, we modified the
format of the element information record stored in the
Data Manager to include the end number for each child of
the element, and reran the experiments using this new
format. The cost of converting XKeys to postings with
this new format is very small, and the UN->ZZ plan
becomes the best plan as originally predicted. Although
this modification allows queries such as query 3 to convert
XKeys to postings much more efficiently, it does so at the
cost of redundantly storing the end number. This could
have the effect of slowing down some Data Manager-only
queries due to the possibility of retrieving additional
record storage pages during execution.

Table 14 – Cost of executing the four plans for Query
1 over each distr ibution, normalized to the UN plan

Distribution ZZ ZZ->UN UN->ZZ UN
I 1.5 1.0 4.1 1.0
II 7.2 1.0 25.3 1.0
III 68.7 1.0 199.1 1.0
IV 2.6 1.0 6.7 1.0
V 3.0 1.0 8.6 1.0
VI 27.6 1.0 76.2 1.0

5. RELATED WORK
There has been a lot of work on developing efficient
algorithms for structural joins that identify occurrences of
structural relationships like ancestor-descendant and
parent-child relationships. Using “pre-order” and “post-
order” numbers to determine such structural relationships
was presented in [10]. In [25], the authors proposed the
multi-predicate merge join algorithm (MPMGJN) to
efficiently merge two sorted lists. A merge based join
algorithm was proposed in [16]. In [2], two families of
structural join algorithms were proposed: tree-merge and
stack-merge. The tree-merge algorithms were extensions
of the traditional merge algorithms. They also showed that
the stack-tree algorithms have better worst-case linear
guarantees (linear in size of inputs and output) than the
tree-merge algorithms. In [8], the authors enhanced the
stack-merge algorithms to make use of B-tree indices on
the inverted lists. The structural join in this case uses the
index to skip those parts of the inverted lists that do not
participate in the join. The ZigZag join algorithm
presented in this paper is a similar extension to the
MPMGJN join in the presence of indices on the inverted
lists. One of the stack-merge algorithms (Stack-Tree-

Ancestor) is only a partially non-blocking algorithm,
while the tree-merge algorithms are all non-blocking. This
was one of the reasons why we started with the MPMGJN
algorithm. We would like to emphasize the fact that the
hybrid strategy presented in this paper works irrespective
of the actual structural join algorithm used. Also, since the
dataset we used in our experiments does not have any
structural recursion in it, the stack-based and merge-based
algorithms perform similar number of comparisons. So,
even when we use a stack-based structural join, the
experimental results we presented to motivate the
necessity for a hybrid strategy still hold.

There has also been some work on the notion of
converting path expression queries into state machines has
been previously proposed in [3,14]. In [14], the authors
present the X-Scan operator for evaluating regular path
expression queries over streaming XML data. Their work
is similar to the CA-FSM presented in this paper, but they
handle a wider class of queries, including those with
references. In [3], the authors develop indexing and
matching mechanisms on a modified finite state machine
approach to match XML documents with a large number
of user profiles (each expressed as a path expression). The
main goal there is to share computation across the
evaluation over multiple path expressions. On the other
hand, in this paper we are looking at hybrid plans for
evaluating a single path expression. An efficient algorithm
for processing XPath queries in the presence of
navigational access methods only is presented in [13].
This provides an alternate algorithm for the Unnest
operator.

In [17], several algorithms were proposed for optimizing
branching path expressions in the presence of navigational
access methods only. In [24], five algorithms for structural
join optimization for XML tree pattern matching queries
were presented. In this paper we considered the
optimization of path expression queries using both
structural joins and navigational access methods.

Recent research studies [1,7,12,20,23] have considered
the problem of maintaining summary structures of XML
documents to provide statistics information. This work
would be useful in estimating the relative cost of the
various plans presented in this paper.

XML management systems have been also built on top of
either relational [22] or object-oriented [11] systems.
Since our system is a native XML database system, our
main difference to those approaches is that we do not have
to go through the intermediate steps of mapping XML
documents to relations or persistent objects and translating
queries over the XML documents to the underlying
system's query language. An interesting approach is the
one in [4] in which the authors employ a hybrid storage
mechanism for storing XML documents; they can either

store it in flat files, an RDBMS or an OODBMS
depending on the XML document structure. Again, our
approach is orthogonal to this one. Finally, [21] is a
commercial native XML management system; however,
there is not enough information about its architecture to
date.

Our system is most closely related to [15] which
implements a similar system architecture, keeping the
same basic distinction between an IR component and an
XML data component. Our approach of mixed mode
XML query processing would apply to that and other
similar systems.

6. CONCLUSIONS AND FUTURE WORK
We have shown that a mixed mode XML query
processing system can outperform inverted list filtering
and standard query engine navigation techniques when
considered separately. Our cost model is accurate enough
to choose a quality plan from a large search space.

With our current implementation of ZigZag Join, we only
consider single axis paths such as A/B or A[B]. This
means that handling a path with N axes requires N ZigZag
Join operators. We could consider a more complex
structural join operator such as the one presented in [5].
Integrating such an algorithm into our system and
extending our cost model and search strategy to explore
this larger space of hybrid plans is interesting future work.

Our system is designed to support parallel execution of
operators, and thus could benefit from allowing bushy
execution plans. We plan to extend the cost model to
allow the possibility of choosing a bushy plan. Because
the ZigZag join algorithm requires both inputs to be sorted
by start number, this will require the optimizer to consider
a large number of sort orders for internal nodes in the
plans.

Our query workload and cost model are somewhat simple,
but they illustrate our key points. Extending these results
to include more complex queries and cost models is an
area for future research.

Acknowledgement: This work was supported by the
National Science Foundation under grant ITR 0086002.

7. REFERENCES
[1] Aboulnaga et al. Estimating the Selectivity of XML Path

Expressions for Internet Scale Applications. International
Conference on Very Large Data Bases, Rome, Italy,
September 2001, pp. 591-600.

[2] Al-Khalifa et al. Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. In Proc. of ICDE, San Jose,
Feb. 2002.

[3] Altinel, Mehmet, Michael J. Franklin. Efficient Filtering of
XML Documents for Selective Dissemination of
Information. VLDB 2000

[4] Barbosa et al. ToX - the Toronto XML Engine. Workshop
on Information Integration on the Web 2001: 66-73

[5] Bruno et al. Holistic Twig Joins: Optimal XML Pattern
Matching In Proc. of the 2002 ACM SIGMOD
International Conference On Management of Data, 2002.

[6] Carey et al. Shoring up Persistent Applications. SIGMOD
1994

[7] Chen et al. Counting Twig matches in a Tree. ICDE 2001

[8] Chien et al. Efficient Structural Joins on Indexed XML
Documents. VLDB 2002

[9] dbXML Group. dbXMLCore. Available at
http://www.dbxml.org

[10] Dietz, Paul F.. Maintaining order in a linked list. In
Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, pages 122-127, San Francisco,
California, 5-7 May 1982.

[11] Fegaras, Leonidas, Ramez Elmasri. Query Engines for
Web-Accessible XML Data, VLDB 2001

[12] Freire et al. StatiX. Making XML Count. SIGMOD
Conference 2002

[13] Gottlob et al. Efficient Algorithms for Processing XPath
Queries. VLDB 2002.

[14] Ives et al. Efficient Evaluation of Regular Path Expressions
on Streaming XML Data. Technical Report UW-CSE-
2000-05-02, University of Washington, 2000.

[15] Jagadish et al. TIMBER: A Native XML Database. The
VLDB Journal, Volume 11 Issue 4 (2002) pp 274-291

[16] Li, Quanzhong, Bongki Moon. Indexing and Querying
XML Data for Regular Path Expressions, VLDB 2001

[17] McHugh, Jason, Jennifer Widom. Query Optimization for
XML. VLDB 1999: 315-326

[18] McHugh et al. Lore: A Database Management System for
Semistructured Data. SIGMOD Record 26(3): 54-66
(1997)

[19] Naughton et al. The Niagara Internet Query System. IEEE
Data Engineering Bulletin 24(2): 27-33 (2001)

[20] Polyzotis, Neoklis, Minos N. Garofalakis. Structure and
Value Synopses for XML Data Graphs. VLDB 2002

[21] Schoning, Harald. Tamino - A DBMS designed for XML.
ICDE 2001: 149-154

[22] Shanmugasundaram et al. A General Techniques for
Querying XML Documents using a Relational Database
System. SIGMOD Record 30(3): 20-26 (2001)

[23] Wu et al. Estimating answer sizes for XML queries. In
Proc. of EDBT, Prague, Czech Rep, Mar.2002

[24] Wu et al. Structural Join Order Selection for XML Query
Optimization, In Proc. ICDE 2003 (to appear)

[25] Zhang et al. On Supporting Containment Queries in
Relational Database Management Systems, SIGMOD
Conference, 2001.

