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Abstract

We devise in this paper a regression-based al-
gorithm, called algorithm FTP-DS (Frequent
Temporal Patterns of Data Streams), to mine
frequent temporal patterns for data streams.
While providing a general framework of pat-
tern frequency counting, algorithm FTP-DS
has two major features, namely one data scan
for online statistics collection and regression-
based compact pattern representation. To at-
tain the feature of one data scan, the data
segmentation and the pattern growth scenar-
ios are explored for the frequency counting
purpose.  Algorithm FTP-DS scans online
transaction flows and generates candidate fre-
quent patterns in real time. The second im-
portant feature of algorithm FTP-DS is on
the regression-based compact pattern repre-
sentation.  Specifically, to meet the space
constraint, we devise for pattern representa-
tion a compact ATF (standing for Accumu-
lated Time and Frequency) form to aggre-
gately comprise all the information required
for regression analysis. In addition, we de-
velop the techniques of the segmentation tun-
ing and segment relaxation to enhance the
functions of FTP-DS. With these features, al-
gorithm FTP-DS is able to not only conduct
mining with variable time intervals but also
perform trend detection effectively. Synthetic
data and a real dataset which contains net-
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work alarm logs from a major telecommunica-
tion company are utilized to verify the feasi-
bility of algorithm FTP-DS.

1 Introduction

The discovery of temporal relationship among a huge
database has been known to be useful in selective mar-
keting, decision analysis, and business management.
An important application area of mining temporal re-
lationship is the market basket analysis, which studies
the buying behaviors of customers by searching for sets
of items that are frequently purchased in a given tem-
poral order.

In recent years, several query problems and min-
ing capabilities have been explored for a data stream
environment, including those on the statistics [7], the
aggregate query [8, 12, 25], association rules [20], data
clustering [13, 22], and data classification [9, 14], to
name a few. For data stream applications, the vol-
ume of data is usually too huge to be stored on per-
manent devices or to be scanned thoroughly for more
than once. It is hence recognized that both approxi-
mation and adaptivity are key ingredients for execut-
ing queries and performing mining tasks over rapid
data streams. With the computation model presented
in Figure 1 [11], a stream processor and the synop-
sis maintenance in memory are two major components
for generating results in the data stream environment.
Note that a buffer can be optionally set for temporary
storage of recent data from data streams.

For time-variant databases, there is a strong de-
mand for developing an efficient and effective method
to mine various temporal patterns [6]. However, most
methods which were designed for a traditional data-
base cannot be directly applied to a dynamic data
stream due not only to the high complexity of mining
temporal patterns but also to the pass-through nature
of data streams. Without loss of generality, a typical
market-basket application is used in this paper for il-
lustrative purposes. The transaction flow in such an
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Figure 1: Computation model for data streams
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Figure 2: An example of online transaction flows

application is shown in Figure 2 where items a to g
stand for items purchased by customers. For example,
the third customer bought item ¢ during time t=[0,
1), items ¢, e and g during t=[2, 3), and item g during
t=[4, 5). It can be seen that in such a data stream
environment it is intrinsically very difficult to conduct
the frequent pattern identification due to the limited
time and space constraints.

Consequently, we devise in this paper an algorithm
FTP-DS (standing for Frequent Temporal Patterns of
Data Streams) to mine frequent temporal patterns for
data streams. While providing a general framework
of pattern frequency counting, algorithm FTP-DS has
two major features, namely one data scan for online
statistics collection and regression-based compact pat-
tern representation, which are designed to address, re-
spectively, the time and the space constraints in a data
stream environment. To attain the feature of one data
scan, the occurrence frequency of a temporal pattern
is first defined in accordance with the time constraint
of sliding windows. Specifically, the data segmenta-
tion and the pattern growth scenarios are explored for
this frequency counting purpose. Algorithm FTP-DS
then scans online transaction flows and generates can-
didate frequent patterns in real time. With the down-
ward closure property [24], longer patterns are grad-
ually formed from their subsets as time advances. As
such, frequent patterns are incrementally discovered
and recorded by only one database scan. Note, how-
ever, that since a pattern is not deemed frequent until
all its subsets are found frequent, the efficient frequent

pattern identification with one data scan by FTP-DS is
in fact at the cost of having some patterns recognized
with delays due to the candidate pattern generation
process. This phenomenon is referred to as delayed
pattern recognition in this paper.

The second important feature of algorithm FTP-DS
is on the regression-based compact pattern representa-
tion which is designed to address the space constraint
of a data stream environment. Note that the data
stream is generated continuously in a dynamic environ-
ment with huge volume, infinite flow, and fast chang-
ing behaviors. To maintain the synopsis of frequency
variations for frequent temporal patterns, the regres-
sion analysis is utilized. After being transformed into
a time series, the data stream is segmented and rep-
resented by one or more segments. Each segment of a
time series is identified through the regression process.
This regression analysis is employed to capture the
trends of frequent patterns. Specifically, to meet the
space constraint, we devise for pattern representation
a compact ATF (standing for Accumulated Time and
Frequency) form to comprise all the information re-
quired for regression analysis. In fact, it can be shown
that using ATF forms to represent patterns, not only
is the amount of storage space significantly reduced
but also the trends can be efficiently detected. Conse-
quently, only required synopses rather than historical
details of frequent patterns are maintained during our
discovering process, thereby leading to the ideal result
that the required space is bounded.

With these two important features, algorithm FTP-
DS is equipped with the adaptivity to answering
queries and performing mining tasks with variable
time periods, which is, in our opinion, very difficult to
achieve by conventional methods. Moreover, this ca-
pability enables FTP-DS to perform trend detection
effectively. Specifically, through the help of approx-
imation results of regression analysis, the occurrence
frequencies of frequent patterns can be retrospectively
investigated. In addition, two enhanced segmenta-
tion techniques are employed for performance improve-
ment. The first enhanced technique is the segmenta-
tion tuning which aims to reducing the error of con-
structing fit lines. Segmentation tuning can result in
more precise segments, which in turn leads to more ac-
curate mining results. The other enhanced technique is
the segment relaxation which refers to the adjustment
of segment periods along the time dimension in ac-
cordance with their corresponding importance to save
the storage required. For example, people are usually
more interested in recent changes than old ones. In
view of this, one may want to model recent changes at
a fine scale and old changes at a coarse scale. That is,
the time is expected to be investigated at different lev-
els of granularity [4, 25]. Therefore, as time advances,
segments identified at prolonged time can be relaxed
and merged to form an integrated segment, leading



to the guaranteed space bound for maintaining these
historical segments.

Extensive experimental studies have been con-
ducted to provide many insights into algorithms pro-
posed. It is shown by empirical results that algorithm
FTP-DS can meet both time and space limitations in
a data stream environment. A real dataset which con-
tains network alarm logs from a major telecommuni-
cation company is utilized to verify the feasibility of
algorithm FTP-DS. As shown by our experimental re-
sults, while allowing of one data scan to meet the time
constraint in a data stream environment, the delayed
pattern recognition phenomenon in fact barely com-
promises the quality of mining results. In addition,
the compact ATF form proposed for pattern represen-
tation and the segmentation techniques adopted by al-
gorithm FTP-DS are shown to be very effective to limit
the storage required, and lead to the efficient genera-
tion of temporal patterns of good quality. Moreover,
sensitivity analysis on the lift of support threshold has
also been conducted to provide more insights into al-
gorithm FTP-DS.

The rest of the paper is organized as follows. The
framework of frequency counting is presented in Sec-
tion 2. The regression-based framework and the al-
gorithm FTP-DS proposed are described in Section 3.
Advantages of algorithm FTP-DS showing its practical
usefulness are described in Section 4. Empirical stud-
ies are conducted in Section 5. This paper concludes
with Section 6.

2 Preliminaries
2.1 Types of Temporal Patterns

In a temporal database, frequent patterns are usu-
ally targets of mining tasks. In many applications,
a time-constraint is usually imposed during the min-
ing process to meet the respective constraint. Specif-
ically, the sliding window model is employed in this
study, i.e., data expires after exactly N time units af-
ter its arrival where N is the user-specified window size.
Consequently, a temporal pattern is frequent if its sup-
port, i.e., occurrence frequency, in the current window
is no less than the threshold. Prior works have devel-
oped several models of temporal patterns, including
the inter-transaction association rule [19], the causal-
ity rule [18], the episode [21] and the sequential pattern
[1].

Note that the very difference among the above tem-
poral patterns lies the ordering of occurrences. Mining
of sequences corresponds to the one with strict order
of events, while mining inter-transaction associations
corresponds to the one without limitation on order of
events. Between these two extremes, mining of causal-
ities and episodes mainly emphasizes the ordering of
triggering events and consequential events. Although
the mining procedures may vary when being applied to

discover different types of temporal patterns, a typical
Apriori framework is commonly adopted. By utiliz-
ing the downward closure property in this framework
[24], a fundamental issue of mining frequent tempo-
ral patterns is the frequency counting of patterns. In
this paper, a frequency counting mechanism for a data
stream environment is proposed.

2.2 Support Framework for Temporal Pat-
terns

In market-basket analysis, the transaction data con-
sists of records in the form of <TzTime, CustomeriD,
ITtemset> where Itemset is a set of items. In other
words, a transaction record maps to a purchasing log
generated by a single customer in a specific time. To
evaluate the importance of a temporal pattern, the
support, i.e., occurrence frequency, is a metric com-
monly used. However, the definition of support for
a pattern may vary from one application to another.
Consider again the market-basket database as an ex-
ample. In mining sequential patterns [1], all the trans-
actions of a customer can be viewed as a sequence
together and the support for a sequential pattern is
the fraction of customers whose purchasing sequences
contain that pattern. Analogously, we have the model
of frequency counting in mining causality rules [18].
On the other hand, in mining inter-transaction associ-
ation rules [19], the repetitive occurrences of a pattern
from an identical customer are counted cumulatively.
Moreover, when the sliding window constraint is intro-
duced in mining episodes [21], the support is defined to
be the fraction of windows in which an episode occurs.

To deal with data streams, problems arise due to
different support definitions. Specifically, since it is
not possible to store all the historical data in the mem-
ory, to identify repetitive occurrences of a pattern is
difficult. As a result, it is very important to properly
formulate the support of temporal patterns. With the
sliding window model, we define the support of a tem-
poral pattern as follows.

Definition 1 The support or the occurrence frequency
of a temporal pattern X at a specific time t is denoted
by the ratio of the number of customers having pattern
X in the current time window to the total number of
customers.

Given the window size N=3, three sliding windows,
ie., w[0,3], w[1,4] and w[2,5], are shown in Figure 2
for the transaction flows. For example, according to
Definition 1, supports of the inter-transaction itemset
{¢, g} from TxTime t=1 to t=5 are obtained as in
Table 1. Accordingly, the support variations can be
presented as a time series as shown in Figure 3. For
simplicity, the total number of customers is a constant
in this example, and could be a variable as time ad-
vances in real applications.



TxTime Occurrence(s) of {c, g} | Support
t=1 | w[0,1] | none 0
t=2 | w[0,2] | CustomerID={2, 4} 2/5=0.4
t=3 | w[0,3] | CustomerID={2, 3, 4} | 3/5=0.6
t=4 | w[1,4] | CustomerID={2, 3} 2/5=0.4
t=5 | w[2,5] | CustomerID={1, 3, 5} | 3/5=0.6

Table 1: The support values of the inter-transaction
itemset {c, g}
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Figure 3: Support variations of the inter-transaction
itemset (¢, g)

As shown in Definition 1, the support variation of a
specific temporal pattern as time advances can be rep-
resented as a single time series. Note that the support
of a temporal pattern is generally defined to be a ratio
of customers having that pattern without referring to
any specific type of mining patterns, i.e., either inter-
transaction associations, causalities, episodes, or the
sequences. Without loss of generality, the temporal
pattern of inter-transaction association is considered
in this paper. With proper provisions, the same meth-
ods can be utilized in this support framework for other
types of temporal patterns. Consequently, to conduct
mining of the temporal patterns, the primary task is
then to handle time series effectively and efficiently,
which is in fact the design objective of algorithm FTP-
DS proposed in this paper.

3 Mining Temporal Patterns in a Data
Stream

The major features of algorithm FTP-DS proposed are
described in Section 3.1. Algorithmic forms of FTP-
DS are shown in Section 3.2. Section 3.3 presents two
enhanced segmentation techniques, i.e., segmentation
tuning and segment relaxation.

3.1 Major Features of Algorithm FTP-DS
3.1.1 One Scan for Statistics Collection

In essence, the frequency counting process is similar
to that of incremental mining [5, 10, 17] in that new
arriving transactions are being dealt with while some
obsolete transactions are discarded due to the sliding
window constraint, and is, however, different from the
latter in that approximate answers in the model of

data stream are allowed as a trade-off of having only
one data scan.

As pointed out in [20], there are two major ap-
proaches to dealing with the frequency counting prob-
lem of data streams, i.e., one with a probabilistic error
bound and the other with a deterministic error bound.
Due to the limitation in processing data streams, both
approaches are designed for obtaining approximate an-
swers. The one with a probabilistic error bound is
based on the sampling technique and that with a de-
terministic error bound is based on data segmenta-
tion technique. Note that although these approaches
work successfully for counting supports of singleton
items, as the number of items increases, the rapidly
increasing number of temporal patterns can cause se-
vere problems which include prohibitive storage and
computing overheads. Explicitly, if the lossy count-
ing scheme proposed in [20] is adopted, patterns with
supports no less than e are maintained during the min-
ing process to guarantee the error range to be within
€. However, since the threshold €, whose value could
be one-tenth of MinSup, is usually too small to filter
out uninteresting patterns, the storage space could be
quite large. To address this point, in the sliding win-
dow model employed, only the occurrences of singleton
items are being counted in the first time window. Af-
ter the counting iteration, frequent items which have
supports no less than the specified threshold are iden-
tified. These frequent items can be joined to gener-
ate candidate patterns of size two, which are then be-
ing counted in later iterations. After some patterns of
size two are identified frequent, the candidate patterns
of size three are generated and counted subsequently.
As a result, longer candidate patterns are gradually
generated, counted and verified to be frequent during
the counting iterations. From the downward closure
property [24], it follows that only patterns whose sub-
patterns are all frequent are taken as candidates and
to be counted subsequently.

Example 1: Given the support threshold Min-
Sup=0.4, the window size N=3 and the transac-
tion flows in Figure 2, suppose the frequent inter-
transaction associations are being generated. Since the
temporal order is not required for inter-transaction as-
sociations, we have the frequent temporal itemset gen-
eration shown in Table 2. The support calculation of
each itemset is the same as the process in Table 1.
The averaged support value is represented by (accu-
mulated supports over windows)/(number of recorded
windows) in Table 2 where only itemsets with sup-
ports no less than MinSup=0.4 are listed. In addition,
frequent itemsets generated in previous time window
are used to generate longer candidates to be exam-
ined later. For example, according to Definition 1,
the supports of itemset {d} during t=1 to t=>5 are 0,
0.2, 0.4, 0.4 and 0.2, respectively. Not until t=3 does
the support value satisfy the threshold, meaning that



itemset {d} is being tracked since t=3 as shown in Ta-
ble 2(c) and Table 2(d). However, the averaged sup-
port of itemset {d} is (0.44-0.4+0.2)/3=1.0/3 which
is less than the MinSup=0.4, making this itemset dis-
carded in Table 2(e). Moreover, the inclusion of item-
set {d} at t=3 results in the generation of related can-
didate itemsets, i.e., {c¢,d} and {d,g}, to be examined
at t=4. However, only itemset {d, g} satisfies the sup-
port threshold and is included in Table 2(d).

t=1 =2 =3
{c¥ 06/1 cf 1272 I 273

(a) {g} 04/1 {d} 0.4/1
(b) {ey 172
t=4 {c,g} 0.6/1
{c} 2.8/4 (c)
{d}  0.8/2 t=5
(g} 1.6/3 T 3475
{if 04/1 {e} 2.4/4
{cg} 1/2 {it  08/2
{dg} 04/1] | {cg} 1.6/3

(d) (e)
Table 2: Generation of frequent temporal itemsets
(MinSup=0.4)

It can be seen that this approach can generate pat-
terns of various lengths as time advances. However, as
pointed out earlier, since a pattern is not taken as a
candidate to accumulate its occurrence counts before
all its subsets are found frequent, the phenomenon of
delayed pattern recognition exists, i.e., some patterns
are recognized with delays due to the candidate form-
ing process in the data stream. For example, since
items ¢ and g are not both identified frequent until
t=2, the candidate itemset {c¢, g} is generated and
counted at t=3. However, it can be verified from Table
1 that {¢, g} is actually frequent at t=2. Therefore, a
delay of one time unit is introduced for discovering this
itemset {c, g}. It is worth mentioning that only long
transient frequent patterns could be neglected in this
pattern generation process. As time advances, pat-
terns with supports near the threshold will be further
examined and identified to be frequent if so qualified.
This is the very feature of delayed pattern recognition.

With a support threshold MinSup to filter out un-
interesting patterns, only new patterns whose frequen-
cies in the current time unit meet this threshold are
being recorded. Supports of existing patterns, i.e.,
patterns which were already being recorded in previ-
ous time unit, are updated according to their support
values in the current time unit. Note that, as time
advances, patterns whose averaged supports fall below
the threshold are removed from the records. Therefore,
only frequent patterns are monitored and recorded. In
practice, since a frequent pattern is not always with
a very steady frequency, we can certainly delay the
above mentioned removal and allow a pattern whose

statistics are already recorded to stay in the system
longer with an expectation that this pattern will be-
come frequent again soon. This will be an application-
dependent design alternative.

3.1.2 Regression-Based Analysis on Frequent
Patterns

In the frequency counting model, the online transac-
tion flows are transformed into numerical time series.
Among various techniques used for analyzing time se-
ries, the regression analysis is adopted as the basis in
our framework to mine temporal patterns in this pa-
per. Through regression analysis, the estimated rela-
tionship can be used to predict frequency of patterns
from previous experience [4]. A straight-line fit for a
time series s(t), which corresponds to the frequency
variation/\of a tem/poral pattern, is a linear estimation
function f = a + St that conforms to the principle of
least squares. Specifically, the regression parameters a
and [ are chosen to make the residual sum of squares

n ~

D = Y (f; — @ — ($t)? minimal, where f; is the actual
i=1

frequency in the i-th recorded point.

To perform the calculations for getting best esti-

mates of @ and B, the following quantities are main-
tained,

A DU S oF

Su = Y-ip-ye- B
sy = sU-Tr-x - S
S = N-(f-H =yt - =S

n

Then, the least square estimates of & and B are com-
puted by

- ~ S
a:ffﬁt,andﬁzif

St
In addition, the strength of a linear relation is mea-
sured by
r2 = (St )?
SuSrs

which is the square of the sample correlation coefficient
r and is also called the coefficient of determination.
Due to the nature of a data stream, some jitters
may occur in our support framework which makes the
corresponding time series rugged. However, since we
are interested in the averaged supports of patterns,
the individual occurrence frequency over time of a pat-
tern can be aggregately transformed into the averaged
support of that pattern, which will in fact make the
time series much smoother and facilitate the subse-
quent processing work. A time series of averaged sup-
port (solid line) for the inter-transaction itemset {c,



g} in Figure 2 is shown in Figure 4. The starting time
of recording this pattern is t=3 since before that point
the support constraint, i.e., MinSup=0.4, is not met.
Delayed recognition occurs for this pattern {¢, g} as
mentioned earlier. The regression technique is then
applied to process the time series corresponding to the
frequent patterns.

1

0.8

04 MinSup = 0.4

support

02 -

0 - ‘ L L
0 1 2 3(ts) 4 5

Figure 4: The time series of averaged support for the
inter-transaction itemset (¢, g)

Note that in a data stream environment, the data
amount in the time series to track the frequency vari-
ations of individual temporal patterns could be very
large. To meet the corresponding space constraint, we
devise a compact form representation to maintain the
information required for the regression-based analy-
sis on frequent patterns. Specifically, only four mea-
sures are required to maintain during the regression
process, i.e., the starting time (ts), the accumulative
product of time and frequencies (> tf), the accumu-
lative sum of pattern frequencies (> f) and the accu-
mulative squared sum of pattern frequencies (Y f2).
Consequently, the corresponding representation form
is referred to as the ATF form where ATF stands for
Accumulated Time and Frequency.

Definition 2 The ATF form of the time series corre-
sponding to the frequency variation of a temporal pat-
tern is (ts, S tf, S_f, 3 f?), where t, is the start-
ing time, Y tf is the accumulated product of time and
support, and >_ f and >_ f% are, respectively, the sum
and the squared sum of pattern frequencies since the
pattern is recorded.

By utilizing this compact ATF form for pattern
recording, the storage needed for maintaining statis-
tics of temporal patterns can be significantly reduced,
thereby meeting the limited space requirement in a
data stream environment. As shown by our experi-
mental results, the memory usage in real applications
can be kept very small. With its proof given below,
Theorem 1 shows the feasibility of this compact ATF
form.

Theorem 1: The least square error linear fit for a

frequent temporal pattern can be obtained losslessly
from its compact ATF form (ts, Y. tf, S f, D f?).

Proof: In a data stream environment, the current time
trow 18 always known and up-to-date as time advances.
Using the starting time tg, the accumulated values of
S>>t and > t? in the ATF form of a pattern can be ob-

trnow tnow
tained by S2t = > t; and Y #2 = Y 2, since the
ti=ts ti=ts
corresponding time series for a pattern is composed of
the averaged support values at every time unit dur-
ing t=[ts, tnow]. In addition, the number of recorded
points is n=t,,p-ts+1.
Together with the other three measures, i.e., > ¢ f,
S°f, > f?, the values of Sy, Sy and Sif can be ob-
tained through the equations:

(>Ct)?

S = ZtQ*Tv
Sff —_ Zfo (an)Q, and
Sy = pu- COED

Consequently, the least square estimates of a and B
are computed by

N Sy
= -, d
15} 5, an
a = T—Af:—f—ﬁx—t.
n n

Therefore the fit line f = a + Bt for this pattern can
be precisely extracted from the ATF compact form.
Q.E.D.

Example 2: Given the frequency threshold Min-
Sup=0.4, and the averaged support variations of the
inter-transaction itemset {c, g} in Figure 4, we have
the following measures according to Definition 2,

ts = 3,
Stf = 3x0.6+4x0.5+5x0.5333 = 6.4665,
S f = 0.6+0.5+0.5333 =1.6333, and

3 f2 0.62 4+ 0.5% 4 0.5333% = 0.8944.

Therefore, the ATF form for itemset {c, g} at t=5,

is (3, 6.4665, 1.6333, 0.8944). In addition, we have

the following quantities Yt = 34+ 4+ 5 = 12, and

S t2 = 3% + 42 + 52 = 50. Consequently, Sy = 50 —
2 2

W% — 9 555 = 0.8944 — LB — 519770 x 1073

and Sy = 6.4665 — 12216333 — _( 0667.

Finally, 5 = S = =0066T — (0333, and & =
f— Bt = L6333 1+ 0.0333 x 42 = 0.6777. The fit line is
then f=0.6777-0.0333t.

In practice, the compact ATF form of a frequent
temporal pattern can be obtained when this pattern
starts to be recorded. According to Definition 2, ex-
cept for the starting time ts which is a fixed value, the
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Figure 5: The regression analysis for Example 2 where
the dotted line represents the variations of averaged
supports for itemset (¢, ¢g) and the solid line is the
corresponding fit line

other three measures are all aggregate values. Conse-
quently, as time advances these three measures mainly
change according to the corresponding time and fre-
quency values and the compact ATF form of a frequent
pattern can always be precisely obtained.

3.2 Algorithm of FTP-DS

With its two major features described above, the al-
gorithmic form of FTP-DS is next presented.

3.2.1 Piecewise Linear Representation

To efficiently and effectively represent the data of
time series, several representations with related ap-
proaches have been proposed, including Fourier trans-
forms, wavelets, symbolic mappings and piecewise lin-
ear representation. Without loss of generality, we em-
ploy the piecewise linear representation in this work.
In [16], the problem of transforming a time series into
a piecewise linear representation is referred to as a
segmentation problem. Among various approaches for
time series segmentation, the one utilizing sliding win-
dows is deemed appropriate to meet the requirement
of online processing for data streams. To evaluate the
quality of a fit line, the measure of the residual error
or the sum of squares is commonly used.

In essence, the segmenting algorithm is to cut at
some time points where the error for corresponding
segment exceeds the user-specified threshold. As such,
segments are generated and represented as a list of
ATF forms when a mining task is performed. In fact,
the actual time series for a temporal pattern can be ap-
proximately reconstructed by this ATF list. Since the
residual error is bounded by a user-specified thresh-
old, the error resulting from this approximation for
the whole time series is hence bounded. Note that
since mining over data streams may continue forever,
the three summations in Definition 2 could grow in-
definitely in theory. We comment that since the sum-
mations are reset as a new data segment is created,
one can certainly have another segment deliberately
created so as to limit the growth of summations if so

necessary in practice.

3.2.2 Flow of Algorithm FTP-DS

Given the support framework of temporal patterns for
data streams and the regression-based techniques, the
algorithmic form of mining frequent temporal patterns
can be outlined below.

Algorithm FTP-DS: Frequent Temporal Patterns of
Data Streams
Input: The window size N, and the support threshold
MinSup
Output: The set of frequent temporal patterns F with
their ATF forms

1. t=0;

2. buf=NULL; //buffer for storing recent transactions
3. F={all singleton items}; //initial candidate patterns
4. while(1){

5. wait until t=t-+1;

6. data;=transactions in time slot t;

7. buf=(bufUdata;)—datas—pn; //data;_pn is expired
8.  foreach(p€F){

9. p-count=0;

10. p-nWindow+=1;

1.}

12. count occurrences of each p€F from buf;

13. foreach(p€F){
14. p.sup=(p.sup—+p.count /nCustomer) /p.nWindow;
15. if(p.sup<MinSup) remove p from F;

16. else update the ATF forms of p;
17. }

18. F=FU{candidates generated from F};

19.}

As mentioned earlier, since a frequent pattern does
not always have a very steady frequency, the frequency
threshold can be slightly lifted to be higher than the
real threshold MinSup. This option can help reducing
the overhead for recording unnecessary patterns with
the trade-off of a delayed recognition of some frequent
patterns.

3.3 Enhanced Techniques for FTP-DS

3.3.1 Compensation for Delayed Pattern

Recognition

The basic approach of one data scan adopts a levelwise
style to construct candidates for future examination.
There could be some drawbacks when potential fre-
quent patterns are long. A direct and significant im-
pact is introduced on the memory required for main-
taining all the frequent patterns under this circum-
stance. Suppose a frequent pattern of size 10 is identi-
fied, one would need to track 210 sub-patterns, which is
very costly. Therefore, an alternative approach is that
only the maximum patterns and some near-maximum
patterns are tracked. This will help on saving memory
usage while sacrificing a little recovery ability when



patterns become infrequent gradually. A redundant
process is then crucial for rebuilding list of frequent
patterns.

Another compensation technique for alleviating the
phenomenon of delayed pattern recognition is to use
depth first or look ahead approaches instead of the
levelwise one. Consequently, longer patterns could be
identified earlier which reduces the potential time de-
lay. Moreover, the border collapsing technique pro-
posed in [23] can also be employed. These approaches
have a common feature that a more complex policy on
pattern development is employed while a little more
space could be needed for examining extra candidate
patterns of longer sizes. To compensate the delayed
pattern recognition, these techniques can be seam-
lessly incorporated into our framework proposed as
design alternatives.

3.3.2 Segment Tuning and Relaxation

As noted in [16], to raise the accuracy of segmenta-
tion, a process which utilizes the buffer to facilitate
the fine-tuning of segments is devised as an enhance-
ment. Specifically, the transition point between two
recent segments is adjusted according to the buffered
data to raise the accuracy of using these segments to
represent the whole time series. This technique is em-
ployed in our implementation and shown to be able
to greatly improve the effectiveness of the piecewise
linear regression representation.

In addition, to ease the problem of memory explo-
sion as time advances, the segment relaxation tech-
nique is proposed. It is noted that though the piece-
wise linear regression is able to improve accuracy of
the approximation to a time series, the storage of cor-
responding ATF form grows as time advances. In fact,
with the piecewise linear regression representation em-
ployed, we can adjust the level of temporal granularity
[4, 25] in accordance with the interestingness of the
data period. For example, people are often interested
in recent changes at a fine scale, but old changes at
a coarse scale. Therefore, as time advances, some old
segments can be relaxed and merged, as illustrated
by the region between point ¢ and point b in Fig-
ure 6, to form an integrated segment covering those
time periods, thus achieving the purpose of saving stor-
age for maintaining these historical segments. Though
the approximation accuracy is lowered due to this seg-
ment relaxation, the storage space required is reduced.
With this enhancement, the proposed approach is able
to guarantee a bounded storage required for handling
data streams. In all, this technique not only exploits
the key ingredients, i.e., approximation and adaptiv-
ity, in performing data processing over rapid data
streams but also supports the model of having im-
plied weights on data segments with different interests,
showing another advantage of the regression-based fre-
quency counting framework proposed.

averaged support
averaged support

time now time now

(a) (b)

Figure 6: An example of segment relaxation: (a) the
original segments; (b) with some old segments merged

4 Advantages of Algorithm FTP-DS

In this section, we present two advantages of algorithm
FTP-DS, namely mining with flexible time intervals
and trend detection, which are, in our view, not only
of practical importance but also difficult to achieve by
conventional methods.

4.1 Mining with Flexible Time Intervals

As stated in [3], an example query specification in a
data stream environment can be as follows:

SELECT *

FROM DataStream
WHERE (Query Clause)
BEGIN (BeginTime)
END (EndTime).

The BEGIN-END clause can either be constant, rel-
ative time to the current system clock, i.e., NOW, or
a variable. In the proposed framework, since the fre-
quency variations of frequent patterns are recorded,
the answers to queries with variable time intervals are
directly supported. Furthermore, this result can be
extended to the mining with variable time intervals.
Specifically, the support variations of a temporal pat-
tern can be retrospectively investigated through the
use of its fit lines extracted from corresponding ATF
forms if this pattern is frequent during the time inter-
val queried.

Example 3: Consider the inter-transaction itemset
{¢, g} again. Since the regression-based approach is
adopted in algorithm FTP-DS, instead of the actual
support values at each time in Figure 4, the ATF com-
pact form of {¢, g} is the only information maintained.
Suppose that one would like to answer a query of aver-
aged supports during the time interval t=[4, 5]. The fit
line of {¢, g} is extracted from its ATF form at the time

t=5. The corresponding equation is =0.6777-0.0333¢

o~

which is derived in Example 2. Thus, we have f(3)

o~ ~

=0.5778 and f(5)=0.5112. Since t;=3 and f(5) is the
average value of the 3 support values during t=[3,5],



we consequently have the averaged support queried as:

1 Py ~
1

= 5 x(3x05112-1x05778)

= 0.4779.

Note that the actual answer should be (241060 _ 0.5,
showing a very small approximation error of about
4%. Using the regression approach, answers to similar
queries of different time intervals can be estimated.
Analogous retrospection process can be conducted
on performing mining tasks with variable time inter-
vals. Provided that the patterns are previously fre-
quent in requested time interval, the support vari-
ations of these patterns can be estimated similarly.
Therefore, even if a higher frequency threshold is spec-
ified, supports of each pattern in a given time interval
can be retrospectively estimated and then verified to
see if this pattern is frequent. Consequently, without
resorting to any data scans, the set of frequent pat-
terns subject to new constraints can be produced.

4.2 Trend Identification and Change Detec-
tion

The mining results in our framework can be reported
in two alternative ways. The snapshot reports gener-
ated at distinct time are basically the same as those
generated in a batch environment, stating the current
frequent patterns. The snapshot reports for frequent
patterns are obtained through carefully tracking of fre-
quency variations as shown in our examples. However,
in practical applications, reporting some patterns con-
stantly is of little importance. On the other hand, as
also noted in many recent works [2, 15], a great interest
has been developed in identifying trends and detecting
changes over time. By utilizing the one data scan ap-
proach proposed, the frequent patterns being added or
removed from the ATF list in each time window can
be obtained in real time. Moreover, the regression-
based framework is able to provide insights into the
trends of frequent patterns. Specifically, the slope of a
segment can clearly represent the trend of occurrence
frequencies for a temporal pattern. In addition, the
disjunctive points of segments when performing piece-
wise linear regression are critical for detecting changes.

To evaluate the usefulness of algorithm FTP-DS
on these aspects, some changes of item distribution
have been deliberately introduced into the synthetic
datasets in our empirical studies. Also, the change re-
ports are provided in addition to the snapshot reports
for comparison purposes.

5 Experimental Results

The simulation model of our experimental studies is
described in Section 5.1. To assess the performance of

algorithm FTP-DS, we conduct two empirical studies
based on both the synthetic and the real datasets. The
feasibility and the scalability of algorithm FTP-DS are
examined in Section 5.2. FTP-DS is compared with
a batch mode algorithm in Section 5.3. Sensitivity
analysis on the lift of support threshold is conducted
in Section 5.4. Performance of algorithm FTP-DS on
a real dataset is evaluated in Section 5.5.

5.1 Simulation Model

In our experiments, we use two synthetic datasets gen-
erated by a randomized transaction generation algo-
rithm in [1]. The synthetic data generation program
takes the parameters shown in Table 3, and the values
of parameters used to generate the datasets are sum-
marized in Table 4. Both the environments of long
transactions with fewer items and short transactions
with more items are considered. In addition, a real
dataset of network alarm logs provided by a major
telecommunication company is employed to verify the
feasibility of algorithm FTP-DS. In this real dataset,
various alarms generated by a huge number of base
station controllers are logged and the corresponding
parameters for this dataset are also listed in Table 4.

N | Number of items

T | Average numbers of items per transaction
C | Number of customers

D | Number of transactions

Table 3: Parameters of the synthetic datasets

Name N T C D
N200T3C1000 | 200 | 3 | 1000 | 500,000
N100T5C1000 | 100 | 5 | 1000 | 500,000

AlarmLog 287 | 1.6 | 5788 | 128,815

Table 4: Parameter settings of synthetic datasets

The simulation is coded in C++ and performed in
a 1.7GHz IBM compatible PC. The default values of
support threshold are 20% (for N200T3C1000) and
25% (for N100T5C1000) respectively. The memory
usage reported refers to the memory space consumed
for storing frequent patterns. To emulate the process-
ing of data streams, the testing datasets are input to
algorithm FTP-DS in a pass-through fashion. Explic-
itly, except for a limited amount of transaction data
buffered in compliance with the sliding window con-
straint, algorithm FTP-DS will never look over the
historical transaction details.

5.2 Feasibility and Scalability of FTP-DS

To evaluate the feasibility and the scalability of al-
gorithm FTP-DS, a scale-up experiment is first con-
ducted. Specifically, in the temporal pattern mining of
a market-basket application, the number of customers
is increased from 1,000 to 10,000. As shown in Figure
7, the execution time grows smoothly as the dataset



size increases. The major reason incurring the slightly
nonlinear growth is that as the dataset size increases,
the corresponding time required for processing recent
data in the buffer increases.
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Figure 7: The scale-up results for synthetic datasets

The memory and the execution time required are
two primary factors in the mining of a data stream,
since both should be bounded online as time advances.
Since the transaction data is fed in a pass-through
fashion, the memory consumption is recorded as the
number of processed transactions increases. This is
represented by the ratio to the whole transactional
dataset and is labeled as "relative time" on the x-axis.
Note that the memory usage in Figure 8(a) for both
synthetic datasets is steadily bounded, owing to the
advantageous features of using the compact ATF form
and also the segment relaxation technique. In addi-
tion, the execution time shown in Figure 8(b) is also
very stable as time advances, indicating the feasibility
of algorithm FTP-DS. Note that the execution time
here refers to the time consumed on processing online
transactions during a time window.
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Figure 8: Required resources for synthetic datasets:
(a) memory; (b) execution time

5.3 Comparison with Batch Mode Algorithm

Note that FTP-DS which is an online algorithm in na-
ture is intrinsically different from a traditional batch
mode algorithm. To illustrate the advantage gained
by the online nature of FTP-DS, we implement a typ-
ical Apriori algorithm which works in batch mode and
is allowed to scan data multiple times to get corre-

sponding intermediate results. At a specific time, only
transactions within current window are fed to FTP-
DS whereas all transactions generated so far are in-
put to Apriori. Clearly, Apriori will process more
transactions as time advances. Consequently, the min-
ing process is performed iteratively and the results of
patterns discovered and the corresponding execution
times are recorded accordingly. The experimental re-
sults on the dataset N100C5T1000 are shown in Fig-
ure 9. Note that since a candidate pattern cannot be
formed and counted before all its subsets are identified
frequent, the number of frequent patterns discovered
by the one scan approach will be no greater than the
actual number of frequent patterns. In addition, as
discussed earlier, the phenomenon of delayed pattern
recognition occurs due to the limitation imposed by
the one data scan in a data stream environment. To
capture the resulting effects from this phenomenon, it
is observed from Figure 9(a) that the number of pat-
terns generated by FTP-DS is noticeably smaller at
first, but quickly approaches the actual number of fre-
quent patterns. This result shows that though there is
some short delays due to the one scan approach, most
of the frequent patterns can be quickly and effectively
discovered. Moreover, from Figure 9(b) the execution
time (with a logarithmic scale on the y-axis) incurred
by FTP-DS is quite steady and is much shorter than
that of Apriori, i.e., the batch mode approach, showing
that FTP-DS performs more efficiently without com-
promising the quality of results.
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Figure 9: Comparison of online and batch mode algo-
rithms

5.4 Sensitivity Analysis

Note that since a frequent pattern is not always with
a very steady frequency in practice, the frequency
threshold can be slightly lifted to a higher value to
reduce the overhead for recording unnecessary pat-
terns. The lift of a support threshold will mainly filter
out transient frequent patterns which are only frequent
during short time periods. On the other hand, frequent
patterns which last for long periods are essentially not
affected by this lifted support threshold. To conduct
this sensitivity analysis, experiments on the synthetic
dataset N100T5C1000 are performed. From the results



shown in Figure 10, frequent patterns are successfully
discovered, meaning that algorithm FTP-DS can gen-
erate frequent patterns precisely with less memory and
shorter execution time. Note that the lift of a support
threshold will unavoidably aggravate the delayed pat-
tern recognition scenario. However, this drawback in-
troduces little extra overhead in our framework since
iterative frequency counting is already employed in our
scheme for mining a data stream. In addition, the lossy
counting scheme proposed in [20] is also tested with
error bound €=10%. The execution time is plotted in
Figure 10(b), whose value, as indicated in the second
y-axis, is in orders of magnitude larger than those by
FTP-DS.
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Figure 10: Impact of lifting support threshold: (a)
number of patterns discovered; (b) execution time

5.5 Experiments on a Real Dataset

Analogous experiments are conducted on the real
dataset, i.e., AlarmLog, to evaluate the performance of
algorithm FTP-DS. The alarm records are first divided
into windows of hours and the window size is selected
to be eight hours in the sliding window mechanism.
Experimental results on other granularities of window
sizes did not provide additional insight and are omit-
ted here. Unlike the item occurrences for synthetic
datasets that are steady over time due to the random
generation, those for a real dataset are of a big variance
over time, indicating data skew over time. This feature
can be observed from Figure 11 where both the mem-
ory usage and the execution time consumed in each
window are quasi-periodic with the period of exactly
a day. Though not being steady over time, the mem-
ory consumed and the corresponding execution time
are still bounded since there is no increasing trend for
either curve in Figure 11, showing the robustness of
algorithm FTP-DS.

Moreover, it is interesting to observe the item dis-
tribution and the pattern distribution. From Figure
12, the alarm distribution is indeed of the period of
a day and the peaks fall on the afternoons. It is also
noted that during the weekends, i.e., 2/4, 2/5, 2/11
and 2/12, the alarms are fewer than those on week-
days. These observations confirm to the application
nature in this dataset.
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Figure 11: Memory and execution time required for
the real dataset AlarmLog
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Figure 12: Comparison of alarm and pattern distribu-
tions

Furthermore, the number of patterns discovered is
also depicted in Figure 12 for comparison purposes. It
is observed that the pattern distribution is of about
two hour delay to the alarm distribution, which in
fact confirms to our expectation and indeed shows a
scenario resulting from a combination of the use of a
sliding window approach and also the delayed pattern
recognition phenomenon. It is interesting to note that
if a batch mining task is performed daily, the aver-
age delay is up to half a day, i.e., 12 hours, which is
significantly larger than the period of 2 hours in our
experiments.

6 Conclusions

We have devised in this paper a regression-based al-
gorithm FTP-DS to mine frequent temporal patterns
for data streams. Algorithm FTP-DS has two ma-
jor features, namely one data scan for online statistics
collection and regression-based compact pattern repre-
sentation which are designed to address, respectively,
the time and the space constraints in a data stream
environment. With these features, algorithm FTP-DS
is able to not only conduct mining with variable time
intervals but also perform trend detection effectively.
As shown by our experimental results, while allowing
of one data scan to meet the time and space constraints
in a data stream environment, FTP-DS is able to ob-
tain the mining results of very good quality. Moreover,



sensitivity analysis on the lift of support threshold has
also been conducted to provide more insights into al-
gorithm FTP-DS.
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