Query Processing Concepts and Techniques to Support Business Intelligence Applications

Ralf Rantzau

University of Stuttgart
Germany
Motivation & Goals

Current Situation

- **Database Mining**
 Today, data mining tools do not analyze the data of the warehouse DBMS but they access flat files that have been extracted from the warehouse and that are adapted to the required input data structure of the mining method in use.

- **In-Memory Algorithms**
 SQL-based mining algorithms are considered inferior to highly tuned in-memory algorithms.

- **Powerful Technology Unused**
 Data sets to be analyzed typically reside in data warehouses, managed by powerful relational database systems.

Thesis Objectives

- **Identify Data Mining Primitives**
 Find basic operations that appear in data mining algorithms ("data mining primitives") and that require scalable and high-performance implementations. Example: *Frequent Itemset Discovery*

- **Design DB Operators Supporting the DM Primitives**
 Develop query processing strategies, like novel relational operators, to support SQL-based data mining algorithms. This includes investigating query optimization issues to enable a seamless integration of such operators into commercial database systems. Example: *Set Containment Division*
Pros and Cons of SQL-Based Data Mining

- **Data Currency**
 The latest updates applied to the data warehouse are reflected in the query result. No (replicated) data copies have to be maintained.

- **Scalability**
 If extremely large data sets are to be mined then it is much easier to design a scalable SQL-based algorithm than designing an algorithm that has to manage data in external files. The storage management is one of the key strengths of a database system.

- **Adaptability to Data**
 A database optimizer tries to find the best possible execution strategy based on the current data characteristics for a given query.

- **Less Portability**
 A data mining application that does not rely on a query language can be deployed more easily because no assumptions on the language's functionality have to be made.

- **Less Performance**
 A highly tuned black-box algorithm with in-memory data structures will always be able to outperform any query processor that employs a combination of generic algorithms.

- **Less Secrecy**
 A tool vendor does not want to reveal application logic. By employing SQL-based algorithms, the database administrator will be able to see these queries.
The Quiver Approach for Frequent Itemset Discovery

Universal Quantification

- \(c \) = candidate with fixed itemset value
- \(t \) = transaction with fixed \(tid \) value
- \(c \subseteq t \equiv \text{for all values } c.item \text{ there is a matching value } t.item \)

Vertical (1NF) Table Layout

- Transaction \((tid, item)\)
- \(C_k \) (itemset, pos, item)
- \(F_k \) (itemset, pos, item)

Quiver

(Quantified itemset discovery using a vertical table layout)

- SQL-based algorithm for computing frequent itemsets
- Both candidate generation phase and support counting phase can be expressed by universal quantifications over the items in itemsets and transactions
- Could make use of a new relational operator, called set containment division \((\div)\), which is similar to the well-known set containment join \((\subseteq)\) but assumes input tables in 1NF
Support Counting: K-Way-Join vs. Quiver Approach

Original K-Way-Join (Horizontal Layout)

```sql
INSERT INTO S3 (itemset, support)
SELECT a1.itemset, COUNT(*)
FROM C3 AS c, T AS t1, T AS t2, T AS t3
WHERE c.item1 = t1.item AND
c.item2 = t2.item AND
c.item3 = t3.item AND
t1.tid  = t2.tid AND
t1.tid  = t3.tid
GROUP BY c.itemset
HAVING COUNT(*) >= @minimum_support;
```

```sql
INSERT INTO F3 (itemset, item1, item2, item3)
SELECT c.itemset, c.item1, c.item2, c.item3
FROM C3 AS c, S3 AS s
WHERE c.itemset = s.itemset;
```

Adapted K-Way-Join (Vertical Layout)

```sql
INSERT INTO S3 (itemset, support)
SELECT a1.itemset, COUNT(*)
FROM C3 AS c1, C3 AS c2, C3 AS c3,
T  AS t1, T  AS t2, T  AS t3
WHERE c1.item = t1.item AND
c2.item = t2.item AND
c3.item = t3.item AND
c1.pos  = 1          AND
c2.pos  = 2          AND
c3.pos  = 3
GROUP BY c1.itemset
HAVING COUNT(*) >= @minimum_support;
```

```sql
INSERT INTO F3 (itemset, pos, item)
SELECT c.itemset, c.pos, c.item
FROM C3 AS c, S3 AS s
WHERE c.itemset = s.itemset;
```

Quiver (Vertical Layout)

```sql
INSERT INTO Sk (itemset, support)
SELECT itemset, COUNT(DISTINCT tid) AS support
FROM
(SELECT c1.itemset, t1.tid
FROM Ck AS c1, T AS t1
WHERE NOT EXISTS (
SELECT *
FROM   Ck AS c2
WHERE  NOT EXISTS (
SELECT *
FROM   T AS t2
WHERE  NOT (c1.itemset = c2.itemset) OR
t2.item  = c2.item))
)
GROUP BY itemset
HAVING support >= @minimum_support;
```

```sql
INSERT INTO Fk (itemset, pos, item)
SELECT c.itemset, c.pos, c.item
FROM Ck AS c, Sk AS s
WHERE c.itemset = s.itemset;
```

T (tid, item): transactions

S_k (itemset, support): support counts of candidate k-itemsets

Vertical Table Layout:

- **C_k (itemset, pos, item):** candidate k-itemsets
- **F_k (itemset, pos, item):** frequent k-itemsets

Horizontal Table Layout:

- **C_k (itemset, item_1, ..., item_k):** candidate k-itemsets
- **F_k (itemset, item_1, ..., item_k):** frequent k-itemsets
Which transactions contain ALL items of a given itemset?

Transaction $\div \supseteq$ Itemsets = Contains

<table>
<thead>
<tr>
<th>tid</th>
<th>item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>diapers</td>
</tr>
<tr>
<td>1001</td>
<td>beer</td>
</tr>
<tr>
<td>1001</td>
<td>chips</td>
</tr>
<tr>
<td>1002</td>
<td>chips</td>
</tr>
<tr>
<td>1002</td>
<td>diapers</td>
</tr>
<tr>
<td>1003</td>
<td>beer</td>
</tr>
<tr>
<td>1003</td>
<td>avocados</td>
</tr>
<tr>
<td>1003</td>
<td>chips</td>
</tr>
<tr>
<td>1003</td>
<td>diapers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>item</th>
<th>itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>chips</td>
<td>1</td>
</tr>
<tr>
<td>beer</td>
<td>1</td>
</tr>
<tr>
<td>diapers</td>
<td>1</td>
</tr>
<tr>
<td>avocados</td>
<td>2</td>
</tr>
</tbody>
</table>

Find frequent itemsets by counting

Definition of set containment division operator:

$$R(a, b) \div_{b \supseteq c} S(c, d) = \bigcup_{x \in p_d(S)} ((R \div p_c(s_{d=x}(S))) \times (x)) = ? (a, d)$$
Expected Results & Future Work

- Demonstrate that SQL-based data mining algorithms are **useful** under certain conditions despite known problems
- Find a set of **basic** query processing operations that are shared by more sophisticated data mining algorithms

- Compare set containment join algorithms (set-valued attributes) with **set containment division** algorithms (based on 1NF tables)
- Develop **optimization** strategies for set containment division
- Investigate **further data mining methods**: classification & clustering