
Champagne: Data Change Propagation for

Heterogeneous Information Systems

Ralf Rantzau Carmen Constantinescu Uwe Heinkel Holger Meinecke

Computer Science Department
University of Stuttgart

Breitwiesenstr. 20{22, 70565 Stuttgart, Germany
frantzau, constantinescu, heinkelg@informatik.uni-stuttgart.de

Abstract

Flexible methods supporting the data inter-
change between autonomous information sys-
tems are important for today's increasingly
heterogeneous enterprise IT infrastructures.
Updates, insertions, and deletions of data ob-
jects in autonomous information systems of-
ten have to trigger data changes in other au-
tonomous systems, even if the distributed sys-
tems are not integrated into a global schema.
We suggest a solution to this problem based
on the propagation and transformation of
data using several XML technologies. Our
prototype manages dependencies between the
schemas of distributed data sources and al-
lows to de�ne and process arbitrary actions
on changed data by manipulating all depen-
dent data sources. The prototype comprises
a propagation engine that interprets scripts
based on a work
ow speci�cation language,
a data dependency speci�cation tool, a sys-
tem administration tool, and a repository that
stores all relevant information for these tools.

1 Introduction

The IT infrastructures of many enterprises are highly
diversi�ed, and both applications and data manage-
ment systems are constantly evolving. The integra-
tion of data as well as of functionality is generally
termed enterprise application integration (EAI). In our

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,

Hong Kong, China, 2002

approach, we focus on data integration. Instead of de-
signing a single data model that �ts the needs of all
applications in an enterprise, we build "bridges" called
dependencies. They connect only those data subsets
managed by distributed information systems that ac-
tually share information. By de�ning such dependen-
cies between data schemas, a user can specify the ef-
fects of a source system's data change on the data in all
dependent systems. Such a loosely coupled approach
is of great importance to many companies for several
reasons: A full integration of the information models
that are managed by an enterprise is often too costly.
Rather, there is a trend for the past few years to keep
information systems as autonomous as possible. Fur-
thermore, new systems and legacy systems have to be
added and managed without much e�ort because IT
infrastructures are dynamically adapting to the needs
of an enterprise.

Our focus is not on providing a global view for
querying data sources but on providing a simple and

exible method for propagating data updates between
autonomous information systems.

We developed our prototype as part of a larger re-
search project on innovative concepts and techniques
to enable highly 
exible series production systems in
the manufacturing industry (SFB 467, funded by the
Deutsche Forschungsgemeinschaft) [2].

2 Terms and De�nitions

In our approach, any software system providing access
to data is called an information system.

A data schema is a speci�cation of data structures
for an information system. Every information sys-
tem may have one or more schemas, and a single
schema can be used in more than one information
system. A 1-to-N relationship between a source sys-
tem/schema combination and one or more destination
system/schema combinations is called a dependency.

A data change in one system may require a change
in all dependent systems, sometimes involving com-



plex data transformations that may be di�erent from
the operation applied to the original data. For exam-
ple, an insertion of an object in system A may lead to
an update of an object in system B, if B stores aggre-
gate values (sums, averages, etc.) of the object values
stored in A.

Change propagation is the process of forwarding a
data change from a source system to all dependent
systems. The process of change propagation includes
transformations and �ltering of the changed data.

A transformation is an operation that maps given
input data into output data according to a speci�ca-
tion. The speci�cation de�nes how the input data has
to be adapted to represent valid destination data.

A �lter is an operation that tests a boolean expres-
sion on input data. It returns the unchanged input
data if the condition is true, otherwise no output data
is returned.

3 Architecture

In this section, we present the building blocks of our
prototype and show how they are used to de�ne de-
pendencies and to propagate data changes.

The combination of XML technologies and the ex-
plicit treatment of dependencies via a modular design
guarantees the necessary functionality and 
exibility
of data propagation in EAI. We consider our prototype
somewhere between Microsoft BizTalk Server, o�ering
transformation facilities for business data, and IBM
DB2 DataPropagator, which is primarily designed for
database replication. Our system di�ers from these
products by o�ering a more 
exible speci�cation of
dependencies. Furthermore, unlike DataPropagator,
we propagate more than merely database contents.

3.1 System Overview

Our prototype, called Champagne (change
propagation manager), consists of two main
components:

� the dependency manager that allows to de�ne de-
pendencies between the data schemas of several
information systems, and

� the propagation manager that is responsible for
propagating changed data of a source system to
the respective destinations.

While the dependency manager is an interactive
tool used for dependency speci�cations during design-
time, the propagation manager is employed during
runtime of the change propagation process.

Both the dependency and the propagation manager
access the repository. It stores dependencies, schemas
of each information system involved, propagation spec-
i�cations, and further data to manage the processing
of propagations.

S1
. . . Information

Systems
SN

Repository

Systems & Schemas (XML Schema)

Propagation Scripts (XRL+)

Transformation Scripts (XSLT)

Dependencies

in
pu

t

ou
tp

ut
1

ou
tp

ut
N

tm
p 1

tm
p M . . .. . .

Queue
Manager

(JMS)

A1 AN
Adaptors. . .

Filter
(XPath)

Propagation Manager

Propag. Engine (XRL+)

Transformer
(XSLT)

Dependency Manager

Graphical User Interface

Schema Editor
(XML Schema)

Dependency Editor
(XRL+, XSLT)

5 6

(XML) (XML)2 8

3

4

7

Champagne: Change Propagation Manager

1 9

Figure 1: Architecture of Champagne. The technolo-
gies employed are indicated in brackets.

For the sake of platform independence, a vital re-
quirement in heterogeneous environments, we built all
components in Java.

Figure 1 illustrates the architecture of Champagne
as well as the control 
ow during the processing of
a data change in source system S1 and its e�ects on
the dependent system SN . This 
ow is described in
Section 4.

3.2 Dependency Manager

The dependency manager allows specifying all the in-
formation needed by the propagation manager to prop-
agate data. With the help of the dependency editor, a
user can create, update, and delete dependencies in the
repository. To create a dependency, one can browse
the names of the systems registered in Champagne, as
well as their associated schemas. These are speci�ed in
the schema editor using XML Schema. Furthermore,
editors can be used to modify propagation scripts that
refer to one or more transformation scripts. Both
propagation and transformation scripts are explained
in detail in Section 5.

3.3 Propagation Manager

The propagation manager is the runtime component
of our architecture. It processes changed source
data according to the propagation script that is as-
sociated with a dependency. The resulting data is
then delivered to another component of Champagne,
called adaptor. Adaptors map data between the local
schemas and the corresponding XML schemas.

A propagation script is interpreted by the propaga-
tion engine, which calls the components transformer



and �lter. The transformer processes a transforma-
tion script, while the �lter checks a condition on the
values of a data object.

3.4 Adaptors

An adaptor provides a bi-directional translation be-
tween a local data representation and a representation
that conforms to an XML schema. The designer of
the adaptor has to de�ne an appropriate schema in
the repository of Champagne using the schema editor.

Adaptors are responsible for putting a message de-
scribing changed data objects of their associated in-
formation system into the input queue of Champagne
and for fetching a message for their system from the
respective output queue.

Suppose, for example, that the information system
is a relational database system. If a table of a database
is the source of a dependency, then triggers can be
employed to deliver the changed data objects (set of
records) to the adaptor. If the database system is the
destination of a dependency, then the adaptor may
use SQL DML statements to update/insert/delete the
a�ected records in the database.

We distinguish two types of adaptors, depending
on the requirements of the dependency and the char-
acteristics of the data source: active adaptors that are
able to detect a change and passive adaptors that are
noti�ed by the data source.

3.5 Repository

The components of Champagne use a repository based
on an object-relational database system for all objects
that need to be stored persistently: (1) dependencies,
consisting of the IDs of the source and destination sys-
tems and schemas, as well as the ID of the propa-
gation script, (2) propagation scripts involved in any
dependency, (3) transformation scripts referenced in
any propagation script, (4) information system IDs
and names and their associated XML schemas, and
(5) authentication information needed when systems
connect to Champagne.

For the remainder of the project, we plan to store
even more data in the repository. Some examples are
the time when a system has connected to or discon-
nected from Champagne, and a log of (a subset of)
the messages exchanged. Such a data collection will
then be subject to analysis with business intelligence
tools and may reveal a potential for communication op-
timizations. For example, it may show that currently
distributed data should better be integrated into a sin-
gle schema because of a considerable communication
overhead observed for propagations.

3.6 Messages and Queues

To enable both synchronous and asynchronous com-
munication between the adaptors and the propagation

manager, we use Java Message Service (JMS). The
in- and output of an adaptor is a JMS message con-
sisting of three parts: header, properties, and body.
The action that has occurred in the source system (up-
date, insertion, or deletion) is speci�ed in the message
properties. The message body contains the XML rep-
resentation of one or more changed data objects and
it conforms to a single (source or destination) XML
schema. The XML document re
ects either the val-
ues of a newly inserted object, the new values of an
updated object, or the values of a deleted object.

The queue manager provides an output queue for
each adaptor and a single input queue for all adap-
tors. In addition, the propagation manager may use
temporary queues to store intermediate XML docu-
ments after each transformation.

4 Processing Model

We brie
y describe the control 
ow that is initiated
by a data change in an information system, as illus-
trated in Figure 1. First, the adaptor A1 of system
S1 either detects a changed data object or is noti-
�ed by S1 (1). Then, A1 maps the changed data
object into an XML representation conforming to an
XML schema, which has been stored in the reposi-
tory using the dependency manager. The adaptor puts
a message containing the XML representation of the
changed object into the input queue of the queue man-
ager (2). Then, the propagation manager fetches the
new message from the input queue (3) and retrieves
all dependencies from the repository where the source
matches the system/schema combination of the input
data object (4). A propagation script, described in the
next section, is associated with each dependency. The
script is interpreted by the propagation engine, which
interacts with the �lter and the transformer compo-
nents to process and �lter the given source data object
according to speci�cations in the propagation script
(5, 6). During the processing, intermediate transfor-
mation results are stored in temporary queues. The
�nal data objects that result from the transformations
de�ned in the propagation script are put into the re-
spective output queues of each dependent destination
system (7). Then, the adaptor of each destination sys-
tem fetches the message from its output queue (8),
maps the XML representation of the data object in
the message body into its local representation. Fi-
nally, the adaptor performs or triggers the operations
(insertion/update/deletion), which are also speci�ed
in the properties of the output message (9).

5 Propagation and Transformation
Scripts

The processing of an input XML document is speci-
�ed as a propagation script that conforms to an XML
language that we call XRL+, which is based on the



eXchangeable Routing Language (XRL). Originally,
XRL has been proposed for work
ow speci�cations [1].
Among other things, XRL+ provides constructs for
parallel and sequential execution, propagations, trans-
formations, �ltering, as well as event wait conditions.

We have implemented many elements of XRL and
extended the language with new elements that are tai-
lored for de�ning a propagation process. The key bene-
�t of propagation scripts is their 
exibility for de�ning
the operations to be performed on the data. The main
new elements and their attributes are:

� TRANSFORM (xml in, xml out, xslt),

� FILTER (xml in, xml out, xpath),

� MESSAGE EVENT (system, schema, xml out),
and

� PROPAGATE (system, schema, xml).

The attributes xml, xml in, and xml out are IDs of
XML documents, xslt is the ID of a transformation
script, xpath is an XPath expression, and system and
schema are the IDs of the source or destination system
and schema used.

Our XRL+ engine interprets a propagation script.
It delivers a transformation script to the transformer,
an XSLT (eXtensible Stylesheet Language: Transfor-
mations) processor, whenever it encounters an XRL+
TRANSFORM element. If the engine processes a FIL-
TER element, the �lter's XPath expression is evalu-
ated with an XML document as input. The MES-
SAGE EVENT element waits for the arrival of a spe-
ci�c message, belonging to a given system/schema
combination, and fetches it from the input queue. Fi-
nally, the PROPAGATE element sends a message con-
taining transformed data objects to a destination sys-
tem's output queue.

The example in Figure 2 illustrates the 
exibility
of this approach, using a concise graphical notation
instead of the actual XRL+ code. Here, the person
data of an information system is transformed into the
data structures and contents expected by two other
systems. Both destination systems store a person's age
instead of the birth date. All operations that follow
the �rst transformation are processed in two parallel
threads. While the marketing database is interested in
adults, the mailing system only stores data on female
customers.

A transformation is speci�ed in an XSLT �le that
we call transformation script. Such a script con-
sumes and produces an XML document, o�ering pow-
erful mapping operations. The input/output docu-
ment conforms to an input/output XML schema that
is de�ned in the repository.

6 Demonstration Outline

The �rst part of the demonstration shows how a new
dependency is de�ned using the graphical user inter-

(firstname, lastname, birthdate, gender)

(firstname, lastname, age, gender) (name, age, gender)

Transform
birthdate� age

Propagate
MailingSys.females

Filter
person.gender = „F“

Filter
person.age > 17

Transform
firstname, lastname� name

Wait for MessageEvent
Sales.person

Propagate
MarketingDB.customer

Figure 2: Sample propagation script with two output
schemas.

face of the dependency manager. After connecting to
the repository, a user can browse the XML schemas
of each information system that has been registered
in Champagne. Then, the user selects a system and
one of its schemas as the source of a new dependency.
The user edits a propagation script by selecting el-
ements from the GUI and supplying them with ap-
propriate parameter values. The dependency's desti-
nation systems and schemas can be selected from a
list. Then, the user can choose reusable transforma-
tion scripts from the repository and add them to the
propagation script or create new ones. Finally, the
user registers the dependency in the repository, which
automatically stores all newly de�ned transformation
scripts together with the propagation script.

The second part of the demonstration illustrates
how data changes are processed and propagated by
Champagne. First, the user can browse the list of ex-
ample information systems. We show several scenarios
involving relational database systems, like IBM DB2
UDB and Microsoft SQL Server, as well as a raw �le
system. We illustrate the e�ects of arbitrary manip-
ulations of tables and �les that are subject of one or
more dependencies.

Finally, we show an administration tool of Cham-
pagne that monitors the current propagation activi-
ties. In addition, the tool displays statistical informa-
tion, such as the number of messages that are waiting
in any queue, or the average message processing rates.
Furthermore, a user can specify various system param-
eters for tuning the performance of Champagne.

References

[1] W. v. d. Aalst and A. Kumar. XML Based Schema
De�nition for Support of Inter-Organizational
Work
ow. InMeeting on XML/SGML based Inter-
change Formats, Conf. on Application and Theory
of Petri Nets, Aarhus, Denmark, June 2000.

[2] C. Constantinescu, U. Heinkel, R. Rantzau, and
B. Mitschang. A System for Data Change Propa-
gation in Heterogeneous Information Systems. In
Proc. ICEIS, Cuidad Real, Spain, April 2002.


