
BANKS: Browsing and Keyword Searching
in Relational Databases∗

B. Aditya Gaurav Bhalotia † Soumen Chakrabarti Arvind Hulgeri
Charuta Nakhe ‡ Parag S. Sudarshan

Computer Science and Engg. Dept., I.I.T. Bombay
{baditya,soumen,aru,parag,sudarsha}@cse.iitb.ac.in

bhalotia@eecs.berkeley.edu charuta@pspl.co.in

Abstract

The BANKS system enables keyword-based
search on databases, together with data and
schema browsing. BANKS enables users to
extract information in a simple manner with-
out any knowledge of the schema or any need
for writing complex queries. A user can get
information by typing a few keywords, follow-
ing hyperlinks, and interacting with controls
on the displayed results. Extensive support
for answer ranking forms a critical part of the
BANKS system.

1 Introduction

Relational databases store large amounts of data which
are queried using structured query languages. A user
needs to know the underlying schema and the query
language in order to make meaningful ad hoc queries
on the data. This is a substantial barrier for casual
users, such as users of Web-based information systems.
HTML forms can be provided for predefined queries.
For example, a university Web site may provide a form
interface to search for faculty and students. Searching
for departments would require yet another form, as
would searching for courses offered. However, creating
an interface for each such task is laborious, and is also
confusing to users since they must first expend effort

∗Partly supported by an IBM Faculty Fellowship grant and
an Infosys Ph.D. Fellowship.

† Current affiliation: Univ. California, Berkeley
‡ Current affiliation: Persistent Systems, Pune, India

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

finding which form to use. Furthermore, they are not
suitable for ad hoc querying or exploratory browsing.

Search engines on the Web have popularized
an alternative unstructured querying and browsing
paradigm that is simple and user-friendly. Users type
in keywords and then follow hyperlinks to navigate
from one document to the other. No knowledge of
schema is needed. Keyword search can provide a very
simple and easy-to-use mechanism for casual users to
get information from databases.

Unfortunately, keyword search techniques used for
locating information from collections of (Web) doc-
uments cannot be used directly on data stored in
databases. In relational databases, information needed
to answer a keyword query is often split across the ta-
bles/tuples, due to normalization. A keyword search
system for databases must therefore take into account
the fact that an answer to a keyword query can con-
sist of multiple linked tuples. One possible approach
to keyword search on databases is to create artificial
documents that collect related information from mul-
tiple tuples, and provide keyword search on these doc-
uments. This results in duplication of data, and it
is not feasible to create documents corresponding to
every meaningful combination of data. It is therefore
best to provide support for keyword querying directly
on databases.

In this paper we outline key features of the BANKS
system (BANKS is an acronym for Browsing ANd
Keyword Searching) which we have developed to ad-
dress the above problems. The BANKS system enables
keyword search together with data and schema brows-
ing on relational databases. BANKS allows a user to
get information by typing a few keywords, following
hyperlinks, and interacting with controls on the dis-
played results; absolutely no programming is required,
and the query ‘language’ is as simple as in Web search
engines.

There may be multiple answers to a query, and a
mechanism for ranking answers based on a relevance
score is critical. The keyword search component of



Mining Surprising Patterns Using
Temporal Description Length

ChakrabartiSD98 ...
Paper Tuple

PaperId PaperName

ByronD ChakrabartiSD98

Writes Tuple

SunitaS ChakrabartiSD98

Writes Tuple

...Sunita SarawagiSunitaS

Author Tuple

AuthorId AuthorName

...Soumen ChakrabartiSoumenC

Author Tuple

...Byron DomByronD

Author Tuple

AuthorId

SoumenC ChakrabartiSD98

Writes Tuple

PaperId

Figure 1: A Fragment of the DBLP Database

BANKS, including relevance score computation, is de-
scribed in more detail in Section 2.

BANKS provides a rich interface to browse data,
with automatic generation of hyperlinks. The brows-
ing component of BANKS is described in more de-
tail in Section 3. The BANKS system is developed in
Java using servlets and JDBC, and can be run on any
database, without any programming. We are also de-
veloping a version of BANKS that handles XML data.

The greatest value of BANKS lies in almost zero-
effort Web publishing of relational data which would
otherwise remain invisible to the Web [2]. For exam-
ple, BANKS may be used to publish organizational
data, bibliographic data, and electronic catalogs.

A demo of the BANKS system is accessible over the
Web at the URL:

http://www.cse.iitb.ac.in/banks/

2 Keyword search

Consider a fragment of a bibliographic database shown
in Figure 1. This database contains paper titles, their
authors and citations extracted from the DBLP reposi-
tory. As we can see, due to normalization, information
about a single paper is distributed across seven tuples
related through foreign key references. A user looking
for this paper may use queries like “sunita temporal”
or “soumen sunita”.

The BANKS system models the database as a di-
rected graph, with each tuple in the database corre-
sponding to a node in the graph. Each foreign-key–
primary-key link is modeled as a directed edge between
the corresponding tuples. (This can be easily extended
to other type of connections.)

A keyword query in BANKS consists of n ≥ 1 search
terms t1, t2, . . . , tn. The first step is to locate the set of
nodes matching search terms; a node matches a search
term if it contains the search term as part of an at-
tribute value or metadata (such as column, table or
view names). Let Si denote the set of nodes match-

Figure 2: Result of query “soumen sunita”

ing ti; a node may match more than one search term,
so the Si’s may overlap. Intuitively, an answer to a
query is a subgraph connecting some set of nodes A
that “cover” the keywords, i.e., each keyword must
match one of the nodes in A. Just by looking at a
subgraph it may not be apparent what information it
conveys. We wish to also identify a “central” node
in the subgraph, that connects all the keyword nodes,
and strongly reflects the relationship amongst them.

An answer to a query is therefore modeled as a
rooted directed tree containing at least one node from
each Si; edges are directed away from the root. The
motivation for directionality is outlined later in this
section. Note that the tree may also contain nodes
not in any Si and is therefore a Steiner tree. Fig-
ure 2 shows a sample result of a query containing the
keywords soumen and sunita executed on the biblio-
graphic database. Indentation is used to depict the
tree structure, and nodes containing keywords are dis-
tinguished by their color.

2.1 Answer Relevance

In general, the importance of a link depends upon the
type of the link, i.e., what relations it connects and on
its semantics; for example, in a bibliographic database,
the link between the Paper table and the Writes table
is seen as a stronger link than the link between the
Paper table and the Cites table. The link between
Paper and Cites tables can correspondingly be given
a higher weight. The weight of a tree is proportional
to the total of its edge weights, and the relevance of a
tree is inversely related to its weight.

The example in Figure 1 illustrates that some links
point toward the root of the tree, instead of away from
the root as required by our model. For instance, the
Writes relation has foreign keys to the Paper and Au-
thor relations, whereas we require paths from Paper



to Author, traversing a foreign key edge in the op-
posite direction. However, we cannot simply regard
the edges as undirected. Ignoring directionality would
cause problems because of “hubs” that are connected
to a large numbers of nodes. For example, in a uni-
versity database a department with a large number of
faculty and students would act as a hub. As a result,
many nodes would be within a short distance of many
other nodes, reducing the effectiveness of tree-weight
based scoring mechanism.

To solve the problem, we create for each edge (u, v)
a backward edge (v, u); in the example from Figure 1,
the backward edges ensure that there is a directed tree
rooted at the paper, with a path to each leaf. We set
the weight of (v, u) to the weight of (u, v) multiplied by
a function of the number of links to v from the nodes
of the same type as u. Experiments with different
functions indicated that the function log(1+x), where
x is the number of inlinks, provided good results [3].
(If there was already an edge from v to u, we set the
edge weight to the lower of the original edge weight
and the weight computed above.)

BANKS incorporates another interesting feature,
namely node weights, inspired by prestige rankings
such as PageRank in Google [4]. With this feature,
nodes that have multiple pointers to them get a higher
node weight (higher node weight corresponds to higher
prestige). E.g., in a bibliography database containing
citation information, if the user gives a query Query
Optimization our technique would give higher prestige
to the papers with more citations. As another exam-
ple, in a TPCD database storing information about
parts, suppliers, customers and orders, the orders in-
formation contains references to parts, suppliers and
customers. As a result, if a query matches two parts
(or suppliers, or customers) the one with more orders
would get a higher prestige.

In the current implementation we set the node
weight to a function of the in-degree of the node. We
experimented with different functions, and got good
results with the function log(1 + x), where x is the
in-degree. Our use of logarithms in edge and node
weights is similar to term weighting schemes in infor-
mation retrieval.

Node weights and tree weights are combined to get
an overall relevance score. We experimented with ad-
ditive and multiplicative combinations, and found that
both worked well when the relative weights for the two
scores were appropriately chosen. Details of the search
algorithm and the relevance computation, along with
a preliminary performance study can be found in [3].

Although a few other systems implement keyword
search on databases (e.g., [5, 1, 6]) BANKS differs from
all prior work in several ways: notably, in the tech-
niques for edge weight computation and prestige based
ranking, and the use of an in-memory graph structure
for very efficient search while keeping the bulk of the

data disk resident. The connections of BANKS to re-
lated work are described in more detail in [3].

2.2 Extensions

The BANKS system supports iterative refinement of
queries:

• If multiple nodes match a keyword, the user can
select one or more nodes as being relevant and
ignore others; as an example, two authors in the
DBLP database match the keyword “sudarshan”,
and the user can choose one of them and execute
a query matching it with other keywords.

• Users can request more answers similar to one of
the displayed answers; similarity can be defined
on the basis of the answer tree structure.

Other refinements to tune node and edge weights are
also under development.

Instead of displaying trees consisting of explicit tu-
ples, system developers can specify answer formats
based on the type of the root of the answer trees. For
instance, one can specify author, conference/journal
and year be displayed whenever the root node is from
the paper relation. We are currently working on imple-
menting answer formatting, and on supporting nega-
tion and disjunction in queries.

3 Browsing

The BANKS system provides a rich interface to browse
data stored in a relational database. The system au-
tomatically generates browsable views of database re-
lations and query results; no content programming or
user intervention is required.

Every displayed foreign key attribute value becomes
a hyperlink to the referenced tuple. In addition, pri-
mary key columns can be browsed backwards, to find
referencing tuples, organized by referencing relations
(users can select a specific referencing relation).

Each table displayed comes with a variety of tools
for interacting with data.

• Columns can be projected away (dropped), and
selections can be imposed on any column.

• For foreign key columns, clicking on “join” results
in the referenced table being joined in, and its
columns also displayed. This eliminates the need
for explicitly writing join queries for the normal
case of foreign key join. The join feature can also
be used in the other direction, from a primary key
to a referencing foreign key.

• Results can be grouped by a column; this results
in only the distinct values for that column being
displayed. The user can click on any of the values
to see the tuples associated with that value.

• Tuples in the displayed table can be sorted by a
specified column.



Figure 3: Browsing Examples: (a) Sample browsing session (b) Pie chart

Controls for these operations can be accessed by
clicking on the column names in the table header.
In addition, displayed data is paginated, and schema
browsing is supported.

Figure 3(a) shows the result of browsing the the-
sis database starting with the student relation, using
a pop-up menu on the roll number attribute to effect
a join with the thesis relation and dropping several
columns. The join is made possible since the thesis re-
lation has a foreign-key attribute referencing the stu-
dent relation. A sample pop-up menu is shown for the
femail attribute which references the faculty table.

Hyperlinks in the displayed data are automatically
generated by the system. Each hyperlink corresponds
to an SQL query that is executed when a user clicks on
the links. Thus, all the pages in the system are gen-
erated on the fly by executing corresponding queries
against the underlying relational database. No pre-
computation is required.

BANKS templates provide several predefined ways
of displaying data. Template instances are customized,
stored in the database, and given a hyperlink name,
which is used to access the template. The BANKS
system currently provides four types of templates:

• Cross-tabs (similar to OLAP cross-tabs), with
drill-down facilities.

• The group-by template provides a hierarchical
view of data, by specifying a sequence of grouping
attributes.

• Folder-tree views, which provide another hierar-
chical view of data.

• The graphical interface template permits informa-
tion to be displayed in bar chart, line chart or
pie chart format. Hyperlinks are provided on the
graphical data via HTML image maps, to allow
drill down on the data. Figure 3(b) shows an ex-
ample pie chart generated by BANKS.

Another interesting feature of templates is that they
can be composed together in a hyperlinked, visual

manner. Several example templates are available on
the BANKS web site.

4 Conclusions

To summarize, we have developed an integrated sys-
tem for keyword searching and browsing of databases.
The system has many useful features which allow ca-
sual users to access database information in an intu-
itive manner. BANKS enables almost effortless Web
publishing of relational and XML data that would oth-
erwise remain (at least partially) invisible to the Web.

We have also developed a prototype version of
BANKS that works on XML data, supporting key-
word searching and scalable browsing of large XML
data sets. We are working on integrating XML
search/browsing with the rest of the BANKS system.

References

[1] Sanjay Agrawal, Surajit Chaudhuri, and Gautam
Das. DBXplorer: A system for keyword-based
search over relational databases. In Procs. ICDE,
Feb. 2002.

[2] Peter Bailey, Nick Craswell, and David Hawking.
Dark matter on the Web. In Poster Proceedings,
9th World-Wide Web Conference, 2000.

[3] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe,
Soumen Chakrabarti, and S. Sudarshan. Key-
word searching and browsing in databases using
BANKS. In Procs. ICDE, Feb. 2002.

[4] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems, 30(1–7), 1998.

[5] Shaul Dar, Gadi Entin, Shai Geva, and Eran Pal-
mon. DTL’s DataSpot: Database exploration us-
ing plain language. In Procs. VLDB, 1998.

[6] Vagelis Hristidis and Yannis Papakonstanti-
nou. DISCOVER: Keyword search in relational
databases. In Procs. VLDB, Aug. 2002.


