
RTMonitor: Real-Time Data Monitoring
Using Mobile Agent Technologies

Kam-Yiu Lam1, Alan Kwan1 and Krithi Ramamritham2

Department of Computer Science1
City University of Hong Kong

83 Tat Chee Avenue, Kowloon, Hong Kong

Department of Computer Science and
Engineering2

Indian Institute of Technology Bombay
Mumbai, India 400076

Email: cskylam@cityu.edu.hk Email: krithi@iitb.ac.in

Abstract
RTMonitor is a real-time data management system
for traffic navigation applications. In our system,
mobile vehicles initiate time-constrained
navigation requests and RTMonitor calculates and
communicates the best paths for the clients based
on the road network and real-time traffic data. The
correctness of the suggested routes highly depends
on how well the system can maintain temporal
consistency of the traffic data. To minimize the
overheads of maintaining the real-time data,
RTMonitor adopts a cooperative and distributed
approach using mobile agents which can greatly
reduce the amount of communications and
improves the scalability of the system. To
minimize the space and message overheads, we
have designed a two-level traffic graph scheme to
organize the real-time traffic data to support
navigation requests. In the framework, the agents
use an Adaptive PUSH OR PULL (APoP) scheme
to maintain the temporal consistency of the traffic
data. Our experiments using synthetic traffic data
show that RTMonitor can provide efficient support
to serve navigation requests in a timely fashion.
Although several agents may be needed to serve a
request, the size of each agent is very small (only a
few kilobytes) and the resulting communication
and processing overheads for data monitoring can
be maintained within a reasonable level.

Keywords: real-time data, mobile agents, data
monitoring, mobile computing

1. Motivation
Owing to advances in mobile communication
technologies and devices, many new data-intensive
applications are emerging, e.g., mobile stock trading
systems and real-time navigation systems. Many of these
new applications need to manage a large amount of real-
time data items, which are used to record the real-time
status of the entities in the external environment. Each
access may be associated with a soft-deadline on its
completion time and it is important to meet the deadline.
Requests may be submitted as continuous queries [LPT99]
and exist in the system until their deadlines have expired.
For example, in a real-time traffic navigation system, a
mobile client may generate a navigation request for the
best path to its destination from its current position and
the best path will have to be continuously tracked until a
client reaches his/her destination. RTMonitor, is a real-
time navigation system designed to support navigation
requests efficiently (i.e., meeting the deadlines and
providing correct results). To improve the scalability of
the system, a distributed database system is used to
manage real-time traffic data. The costs for monitoring
the real-time data items for execution of complex queries
should not be very high since their values are highly
dynamic and the execution overheads of a complex query
can be expensive [LTP99]. To ensure the correctness of
the results, the data items used by the queries must be to
be temporally consistent. Otherwise, incorrect results may
be generated. However, maintaining data temporal
consistency is a difficult problem in such a distributed
mobile environment [DKPR01]. To support the
navigation function efficiently, in the design of
RTMonitor, we have adopted a cooperative and
distributed approach using mobile agents to adaptively
monitor real-time traffic data based on the urgency of the
requests and the system workload. In the framework, the
agents use an Adaptive PUSH OR PULL (APoP) scheme
to maintain the temporal consistency of the traffic data for
best path calculation. In formulating the APoP scheme,
methods are designed based on the urgency of the
requests, the system status and the dynamic properties of
the traffic data to minimize data monitoring overheads.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

2. Mobile Agents and Real-Time Data
Monitoring
Mobile agents are software agents that can move from one
host to another. Usually, a creating process initiates and
dispatches the mobile agent to a target host where the
agent executes in the environment provided by the target
host. A mobile agent may communicate and cooperate
with other mobile agents locally or remotely for achieving
its function. It has been shown that the mobile agent
framework is an efficient way for searching information,
especially with complex conditions in a distributed
environment [DNM99, PSP00]. Our RTMonitor system
shows how this framework is also suitable for real-time
data monitoring applications.

In real-time data monitoring, complex conditions may
be defined over time-critical data items, which are
distributed over multiple sources/servers. For example, in
a navigation system, the traffic conditions for road
segments are maintained by a distributed set of servers
and each server maintains a directed graph corresponding
to the road segments in a designated part of the system
and the traffic conditions. The length of an edge in the
graph indicates the time normally required to travel from
the start point to the end point of a road segment. Due to
the dynamics of the traffic conditions, the length of an
edge varies with time. (Re)Calculating the best path could
be very expensive when we want to have a close
monitoring of the best path to satisfy the navigation
request from a client such that whenever there is any
change in the best path, the client is informed
immediately. This is important when clients have
specified deadlines on their arrival times. Using mobile
agents to solve the data monitoring problems in such
applications has many advantages:
♦ The distributed and autonomous properties of

mobile agents can minimize the communication
overheads and the amount of data to be transmitted
amongst the servers for calculating and monitoring
the best path for a client.

♦ It makes the system more adaptive to the changing
situations of the environment.

♦ Since a mobile agent can execute asynchronously
and autonomously, a fixed connection is not
necessary and it can operate even under in
disconnected environments.

3. Main Design Issues
RTMonitor assumes that the whole service area is divided
into regions with each server responsible for managing
the traffic data items and servicing the clients within a
region. We adopt a cooperative and distributed approach
for managing the real-time traffic data in which a two-
level traffic graph method is used for organizing the
traffic data and a mixed agent framework is designed to
monitor the traffic graphs using an adaptive PoP scheme.

3.1 Two-Level Traffic Graph

Instead of building a complete global traffic graph, we use
a distributed graph approach to organize the traffic data.
Each region server maintains a local traffic graph based
on the road connections and traffic data of its region. It
also maintains a global virtual traffic graph for the whole
system as shown in Figure 1. A local traffic graph
connects to its neighbouring local traffic graphs through
its external nodes. There are two types of external nodes:
entry-nodes and exit-nodes. Through an entry-node, a
path is provided from a neighbouring local graph into the
local graph. Through an exit-node, a path is provided to
go into a neighbouring local graph. The external nodes of
all the local graphs form the global virtual graph for the
whole system. The external nodes are pre-defined based
on the connections of the roads in the whole system.
Virtual graphs are constructed using periodic traffic
updates from remote servers. An important advantage of
using the two-level traffic graph scheme is that it can
significantly reduce the data volume for building the
global graphs and the searching overheads and the size of
the graphs is greatly reduced.

3.2 Mix Agent Framework

In our proposed mixed agent framework, the system
consists of two types of agents, stationary and mobile
agents. Stationary agents are mainly used for managing
the traffic graphs such that the temporal consistency of the
traffic data of the graphs can be maintained in accordance
with the client requirements. The mobile agents are used
mainly for serving the navigation requests, and they will
move along with the clients. At each regional server, there
is a LocalServerAgent (a stationary agent) that represents
the regional server for creating other agents at run-time.
The GraphAgent (another stationary agent) sitting on top
of the LocalServerAgent maintains the local graph of its
region and a virtual graph. The GraphAgent generates
GraphMonitors (mobile agents), which are dispatched and
parked at remote regions to collect traffic data from
remote GraphAgents for updating the virtual graph.
QueryAgents (mobile agents), which are initiated by
mobile clients and move along with the clients, generate
requests to GraphAgent for getting the best path
information on behalf of the clients.

3.3 Using PUSH/PULL for Data Monitoring

It is assumed that there are traffic sensors to capture
the latest traffic data for road segments. A traffic update
will be sent to the server of its region sporadically
whenever its new value is significantly different from the
previous value. In calculating the best path, it is important
to use the latest traffic data (temporally consistent data).
However, frequent re-computations of the shortest path
will induce a heavy workload at the servers.

C

D

C

A

B

E

F

Local Server

Entry vertex

Exit vertex

Figure 1. The global virtual graph (left) and a local traffic graph of region C (right)

L o ca lS erv erA g en t

G ra p h A g en t

M o v in g
O b jec t M o v in g

O b ject
M o v in g
O b ject

Q u ery
A g en t Q u ery

A g en t
Q u ery
A g en t

G ra p h
M o n ito r

R g n 1
G ra p h

M o n ito r
R g n 2 G ra p h

M o n ito r
R g n 3

In it ia te
Q u ery

R etu rn
R esu lts

R
egister

Subm
it

Q
uery

Su
bs

et
 o

f
gr

ap
h

U
pd

at
ed

 p
at

hs P
eriodic
P

U
L

L
request

U p d a te re tu rn to o r ig in a ted
G ra p h A g en t

U p da ted p a th retur ne d
fro m r em o te

G ra ph M o n ito r

M essg a e
fro m o th er

serv er

M essg a e
to o th er
S erv er

G lo b a lG ra p h

L o ca lG ra p h
P ersisten t

G ra p h D a ta

Figure 2. Agent Model of RTMonitor

To minimize the re-computation workload without
significantly affecting the correctness of the navigation
results, we have formulated an adaptive PUSH or PULL
(APoP) scheme for data monitoring in which the
monitoring period is defined based on the urgency of the
request, the system status and the dynamic properties of
the traffic data.

When the LocalServerAgent at a region receives a
navigation request, it generates a QueryAgent for the
client and at the same time, it generates a request to its
GraphAgent to calculate the best path for the request
using the shortest path algorithm, i.e., Dijkstra’s
algorithm, on its local graph and the virtual graph. If the
destination of the request is in a remote region, it will
send requests to GraphMonitors at the remote regions to
collect the updated virtual path information connecting
the originating region with other remote regions. The best
path computed for the client consists of three parts: a path
in the local graph of the originating region, a virtual path
to the destination region, which is the region containing
the destination of the request, and the local path from an
entry point to the destination in the destination region. In
addition, the GraphAgent also calculates the estimated
arrival time at the destination and the slack time of the
request, which is equal to the arrival deadline of the
request minus the estimated arrival time. After serving the
request for the first time, the GraphAgent will monitor the
best path by: (1) monitoring its local graph, (2) sending
requests to its MonitorAgents which are at the remote
regions in the virtual path of the client, to monitor virtual
path at the remote regions, and (3) sending a request to its

MonitorAgent at the destination region to monitor the
local graph at the destination region. If the initiating client
enters another region, the monitoring job will be taken up
by the GraphAgent of the new region and its
MonitorAgents.

Initially, the system uses PUSH to monitor the best
paths for the requests. The GraphAgent at a region may be
serving multiple navigation requests. An important
parameter in data monitoring is what should be the period
for a GraphAgent to re-calculate its local graph and then
regenerate new virtual path information. The new virtual
graph information will be passed to the MonitorAgents at
its region, and then the MonitorAgents will pass the
information to their initiating GraphAgents for building
new virtual graphs at their regions. The GraphAgent at a
region determines the period based on the slack times of
the current set of requests which it is serving, the
workload at its server, the dynamic properties of its traffic
data. In principle, if the slack time is smaller and the
values of the edges change rapidly, a smaller re-
calculation period will be used so as to provide a closer
monitoring of the local graph. When the workload at the
server is heavy, some less critical and urgent requests will
be switched to PULL mode. In PULL mode, the
QueryAgent of the client will generate path calculation
request to the GraphAgent of its current region
periodically and the GraphAgent will pull virtual path
information from its MonitorAgents. The next time to pull
from the client is defined again based on the slack time
and the dynamic properties of the traffic data.

Figure 3. Tahiti server of IBM Aglet and The graphical user interface of the mobile client

In real-time data monitoring, it is important to

minimize the set of data to be monitored. So, in our
design, the monitoring of the best path will initially
concentrate on the regions on the best path if the slack
time of the request is greater than zero, i.e., it is estimated
that the client can arrive before its arrival deadline.
However, if the slack time is zero or very small, the
GraphAgent, which is serving the request, may also send
requests to its MonitorAgents, which are not on the
virtual path, with the purpose of closely monitoring the
best path. The actual number of regions to be monitored
depends on the urgency of the request and the existing
workload at each server. The same principle is used for
serving a request in PULL mode.

4. Implementation
RTMonitor is implemented in Java using IBM Aglet .We
use Tahiti as the servers for creation and execution of the
agents. As IBM Aglet and the implementation is Java
based, it can be running on any operating system that
supports standard Java Virtual Machine (JVM) such as
MS Windows NT and UNIX. A database is used to
maintain the pre-defined connections of the roads and this
information will be used for building the local graph and
virtual graph at each server at system startup. In our
implementation, we choose MS Windows NT and
MSSQL for their simplicity of setup and availability. We
have developed both thin clients, i.e., handheld PC
running the Win CE, and ordinary clients, in Windows 98.
To simulate the real-time traffic data, we have defined a
process to generate traffic data randomly for each server.

5. Demonstration
In the demonstration, we set up a simulation environment
with three servers using Tahiti where each server is
responsible for maintaining a region of traffic data. At
system startup, the servers build the traffic graphs based
on the definitions of the road connections in the database
and the initial traffic data from the traffic generation
process defined for their regions. Client processes reside
both in WinCE and Windows 98 environments. Several

client processes are assigned to each region. Through a
graphic user interaction a client specifies the criticality,
current location, and other query input parameters. A
client follows the path suggested by the system. In order
to demonstrate the effectiveness of the designed
techniques, we have included procedures in RTMonitor
to collect performance statistics in run-time such as the
number of messages transferred between Aglets, and
computation cost of path searching, for analysis purposes.
Furthermore, an event log is implemented to log the
activities in the system while it is in operation. Figure 3
shows the screen captured from the execution of the
Tahiti server when the Aglets are running, and the screen
for inputting the parameters for a client.

References
[DKPR01] P. Deolasee, A. Katkar, A. Panchbudhe, K.
Ramamritham, and P. Shenoy, “Adaptive Push-Pull:
Dissemination of Dynamic Web Data”, in Proceedings of
10th International World Wide Web Conference , Hong
Kong, May 2001.
[DNM99] P. Dasgupta, N. Narasimhan, L.E. Moser, P.M.
Melliar-Smith, “Magnet: Mobile Agents for Networked
Electronic Trading”, IEEE Transactions on Knowledge
and Data Engineering, vol. 11, no. 4, 1999.
[LPT99] Ling Liu, Calton Pu, Wei Tang. “Continual
Queries for Internet Scale Event-Driven Information
Delivery”, in Special issue on Web Technologies, IEEE
Transactions on Knowledge and Data Engineering, vol.11,
no.4, pp610-628, 1999.
[PSP00] S. Papastavrou, G. Samaras and E. Pitoura,
“Mobile Agents for World Wide Web Distributed
Database Access”, IEEE Transactions on Knowledge and
Data Engineering, vol. 12, no. 5, pp 802-820, 2000.

Acknowledgement: The work described in this paper was
partially supported by a grant from the Research Grants Council
of Hong Kong SAR, China [Project No. CityU 1078/00E].

