
Database Technologies for Electronic Commerce

Rakesh Agrawal Ramakrishnan Srikant Yirong Xu

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120, USA

1 Introduction
Electronic commerce applications have posed new chal-
lenges for database systems. In this demonstration, we
present three technologies for electronic commerce that
solve the following problems:

� How do you support nameless querying of databases
from Google-style search boxes, where queries may
not include attribute names?

� How do you efficiently store and query electronic
commerce data that may have thousands of very
sparse attributes?

� How do you merge catalogs (i.e., set of categorized
products) from different sources and with different
categorization schemes into a single master catalog?

We encountered the above problems when building an ex-
perimental B2B portal called Pangea, whose catalog con-
tained nearly 2 million electronic components and 200,000
data-sheets in more than 2000 categories. We now present
solutions to these problems.

2 Querying with Numbers
Electronic commerce applications have made it imperative
for databases to support direct querying of database content
from the web. However, the most popular web interface is
the Google-style search box, and queries submitted from
such an interface may include neither attribute names nor
units. For example, an user searching for a laptop with
a processor rated around 800 MHz and around 150 MB
of memory might simply submitflaptop 800 150g. This
problem also arises in federated database systems, where
the same attribute might be called with different names in
different constituent databases.

We conjecture that if we get a close match on the num-
bers, then it is likely that we have correctly matched the

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of thepublication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

attribute names [AS02]. The extent to which a dataset sat-
isfies the above conjecture can be quantified; we call this
value the non-reflectivity of the dataset. For a simple exam-
ple of a dataset with high non-reflectivity, assume that the
records contain only two attributes: ‘memory’ and ‘disk-
size’. Further assume that the range of values for memory
is 64 to 512 and that for disk-size is 10 to 40. Given a
queryf20, 128g, the system can correctly retrieve records
that have disk-size and memory values close to 20 and
128 respectively. In this example, the attributes have non-
overlapping domains. However, high non-reflectivity is not
limited to data having such non-overlapping attributes. If
memory and disk-size overlapped, but were correlated such
that high memory configurations had high disk-size, the
data would still have high non-reflectivity.

We now give a formal definition of non-reflectivity.
Let D = fx1; : : : ; xng be a set ofm-dimensional points
(records). Let~ni denote the co-ordinates of pointxi. We
define thereflectionsof the pointxi to be the set of co-
ordinates obtained by permuting~ni (including ~ni). For
example, ifxi were h1; 2i, the reflections ofxi would
be fh1; 2i,h2; 1ig. Let �(~ni) denote the number of points
within distancer of ~ni (in m-dimensional space). The
value ofr is so chosen that the average value of�(~ni) (over
all xi 2 D) is close to the number of top answers that users
will be interested in. Let�(~ni) denote the number of points
in D that have at least one reflection within distancer of
~ni. The non-reflectivity ofD in m-dimensional space is
then defined as:

Non-Reflectivity(m; r) =
1

jDj

X

xi2D

�(~ni)

�(~ni)

Non-reflectivity over subsets of attributes is defined in a
similar manner (see [AS02]).

We consider nearest neighbor queries where the user is
interested in retrieving the topt records containing values
close to the query terms. For a given record and query, we
find the set of numbers in the record that will minimize the
Lp distance between the record and the query. This prob-
lem can be mapped to the bipartite graph matching problem
and the corresponding algorithms directly apply here. The
set of records that are matched is limited by using an adap-
tation of the Threshold Algorithm (TA) [FLN01].
Demonstration The demonstration compares our ap-
proach with existing search engines when searching over



Figure 1: Querying with numbers

database records embedded in text, i.e., we do not know
the attribute names either in the data or the query. Our
datasets are topics from Amazon (e.g. notebooks currently
available at Amazon). The demo system allows users to
enter arbitrary search queries. The same query is also au-
tomatically submitted to Amazon and Google (the Google
search is restricted to the Amazon site to keep the compar-
ison fair). Figure 1 shows a snapshot of the demonstration.
This screen shot shows the result of a search for a notebook
with a processor speed close to 800 MHz, memory around
150 MB, and weight close to 6 pounds. For this query
(“800 150 6”), Amazon does not find any matches since
it treats numbers as strings, and none of the laptops have
exactly 150 MB of memory. Google also treats the num-
bers as strings, goes on to match the 150 with the number
of tools for each of the top 10 hits; thusnone of these hits
are correct. In contrast, our approach correctly matched
all three attributes in 8 of the top 10 matches and returned
notebooks close to the user’s preference.

3 Efficient Storage and Querying of Elec-
tronic Commerce Data

In relational database systems, data objects are convention-
ally stored using a horizontal scheme, as shown in Fig-
ure 2(a). However, this representation is ill suited for elec-
tronic commerce data for the following reasons:

� Schema Evolution: We need frequent altering of
the table to accommodate new parts and categories.
Schema evolution is expensive in the current database
systems.

� Large Number of Columns:The current database sys-
tems do not permit a large numbers of columns in a
table. This limit is 1012 columns in DB2 (also in Or-
acle), whereas in Pangea we had nearly 5000 product
attributes across different categories.

� Sparsity: Even if the database system were to allow
the desired number of columns, we would have had
nulls in most of the fields, which creates storage over-
head and increases the size of the index.

� Performance: A query incurs a large performance
penalty if the data records are very wide but only a



(a) Horizontal (H)
Oid A1 A2 A3
1 a b ?
2 ? c d
3 ? ? a
4 b ? d

(b) Vertical (V )
Oid Key Val
1 A1 a
1 A2 b
2 A2 c
2 A3 d
3 A3 a
4 A1 b
4 A3 d

Figure 2: Horizontal and Vertical Table Representations

few columns are used in the query.

We explore an alternative method where objects are
stored in a vertical format as a set of tuples. Each tuple con-
sists of an object identifier and attribute name-value pair.
Figure 2(b) shows the vertical format corresponding to the
horizontal table in Figure 2(a). The symbol? represents a
null value. Schema evolution is now easy, and data storage
is much more efficient.

However, once the data is stored in the vertical for-
mat, new problems arise. Writing SQL queries against
this scheme becomes cumbersome and error-prone. More
importantly, the current application development tools de-
signed for the horizontal format no longer work. For exam-
ple, an original simple query

SELECT A1 FROM H
WHERE A1 = ‘a’

now may have to be written as

SELECT Val FROM V
WHERE Key = ‘A1’ and Val = ‘a’

To solve this problem, we propose an enablement layer
[ASX01] that hides the complexity of the queries over the
vertical table and gives a horizontal view of the vertical rep-
resentation to the user (application). Figure 3 shows the ar-
chitecture of the enablement layer. The layer accepts user’s
query against the horizontal view, parses the query, and au-
tomatically transforms it to a query against the vertical ta-
ble. Then the layer submits the transformed query to the
underlying database engine, and returns the query results.

We explore two transformation strategies of the enable-
ment layer:
� VerticalSQL:The implementation assumes only SQL-

92 level of capabilities from the underlying database
engine.

� VerticalUDF: The implementation exploits object-
relational extensions to SQL (e.g. user-defined table
functions).

Our performance experiments show that both strategies
uniformly outperform the horizontal representation for
sparse data [ASX01].

Demonstration We store our sample data in IBM DB2
7.1 using the vertical representation, and define the corre-
sponding horizontal view in the enablement layer. We also

Figure 3: Architecture of query enablement layer

store a copy of the data using the horizontal representa-
tion. The demonstration includes a comprehensive set of
SQL queries, ranging from basic selection, projection and
join operations to complex combinations thereof. We sub-
mit each query to the enablement layer to query against the
horizontal view. We show the transformed query and the
results of the query. We also show that these results are
identical to those obtained from directly querying against
the horizontal representation.

4 Integrating New Content
Electronic commerce applications such as portals, market-
places, and online stores (Amazon.com, eBay.com), are of-
ten faced with the problem of quickly integrating new cat-
alogs from different sources into their existing catalog (the
“master” catalog). This problem can also be found where
companies want to integrate internal and external informa-
tion.

A straightforward approach to attack this problem
would be to formulate it as a classification problem. Let
M be a master catalog andN be a new catalog. Each cate-
gory inM is treated as a class, and the products belonging
to each category are used as training examples. For this
well-posed classification problem we can build a predictive
model for classifying products inN intoM ’s categories.

Notice, however, in this straightforward approach, we
completely ignoredN ’s categorization. On the other hand,
N ’s categorization contains valuable implicit information
about product similarity. Intuitively, two products belong-
ing to the same category inN will tend to belong to the
same category inM . Suppose the classifier’s prediction
is such that 98% of the products belonging to some cate-
gory inN fall in one category inM and 2% in a different
category. Those 2% predictions are quite possibly errors.

In practice, the categories inM andN are likely to be
less synchronized. For example, letM be OpenDirectory
andN the Yahoo directory. For a category under Movies in
OpenDirectory, 64% of documents belong to a single cate-
gory in Yahoo, 20% to a second category, and the distribu-
tion tails off: 8%, 4%, 2%, 1%, 0.6% and 0.2%. However,



Figure 4: Building prediction model

we can still apply the above intuition by biasing the classi-
fier towards the more frequent categories.

Our key contribution is how to incorporate the implicit
information contained in the new catalog into the classifi-
cation process [AS01]. We extend a Naive Bayes classifier
as follows. We first classify all the documents in a category
N in N using the standard Naive Bayes classifier. This
gives us an estimate of which categories inM documents
from N belong to. We then bias the classifier towards the
categories that are more frequent among the documents in
N , and away from the categories that are less frequent. The
amount of bias is determined (over the entire set of docu-
ments inN ) using a small tune set of 5 to 10 documents.
Notice that this bias will only affect the classification of
documents near the border of two categories, and will not
affect documents that the classifier was confident about.

The gain in accuracy depends on the match between the
two sets of categorizations. Our experiments indicate that
we get 26% to 30% fewer errors when going from OpenDi-
rectory to Yahoo (or vice versa).

Demonstration The system is built as an IBM Web-
Sphere Commerce 5.1 module. In the demonstration we
use a sample from the Pangea data, stored in WebSphere
Commerce’s database format. The master catalog contains
1043 categories and 19,637 products. The catalog integra-
tion system first loads the master catalog from the database
and builds a prediction model (see Figure 4) in around 30
seconds. Next the system loads a new catalog specified
in Websphere Commerce’s XML format. The system then
works in a semi-automatic mode to complete the catalog
integration: for each new product in the new catalog, it pre-
dicts upto 5 top categories and the user can easily choose
from these recommendations (see Figure 5). Finally, the
system saves the categorization results.

Figure 5: Categorizing a new product

References
[AS01] Rakesh Agrawal and Ramakrishnan Srikant. On

catalog integration. InProc. of the Tenth Int’l
World Wide Web Conference (WWW10), Hong
Kong, May 2001.

[AS02] Rakesh Agrawal and Ramakrishnan Srikant.
Searching with numbers. InProc. of the Eleventh
Int’l World Wide Web Conference (WWW), Hon-
olulu, Hawaii, May 2002.

[ASX01] Rakesh Agrawal, Amit Somani, and Yirong Xu.
Storage and querying of e-commerce data. In
Proc. of the 27th Int’l Conference on Very Large
Databases (VLDB), pages 149–158, Rome, Italy,
September 2001.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor.
Optimal aggregation algorithms for middleware.
In Symposium on Principles of Database Sys-
tems, 2001.


