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1 Problem Statement 
Today's web-based E-services do not handle system fail-
ures well. One of the most prominent examples is unin-
tentional purchase of multiple copies of the same item 
(e.g., a DVD) in an online store. This may happen when 
the user sees a browser timeout for the final “checkout” 
(“place order”) request caused by a short outage or over-
load of the network or the backend servers (typically dur-
ing peak load). Whereas the request may have been suc-
cessfully albeit slowly processed, the user may attempt to 
send the check-out request once again, e.g., by hitting the 
browser “refresh” button, unintentionally buying another 
copy of the same item. 

Another example is a home-banking application de-
ployed by one of the biggest German banks. This applica-
tion uses a so-called PIN/TAN security procedure. Each 
user is identified by a personal identification number 
(PIN). The bank hands over a list of transaction numbers 
(TANs) to each user. A TAN must be provided for each 
home-banking transaction to be accepted. For security 
reasons each TAN can be used only once. The following 
problem may arise (and has indeed happened to custom-
ers). After the first attempt to issue a money transfer order 
the user perceives a long delay resulting in an error mes-
sage stating “this page is currently not available”. The 
user re-submits the request and the “resurrected” applica-
tion responds with: “A TAN was used twice. Your TAN 
list has been frozen. Please contact your nearest branch 
office if you would like to have your TANs reactivated 
again”. 

Such phenomena occur because the “stateless” interac-
tion paradigm of the web puts the burden of managing 
sessions, and in particular handling failures, on applica-
tion programs. Unfortunately, failure handling logic can 
be fairly complex, and application programs often make 
errors when responding to errors. In particular, they may 

simply forget actions already taken, not only after a suc-
cessful execution but also after a system failure, so that 
they cannot guarantee exactly-once execution. 

In contrast, our approach aims to place failure han-
dling logic into a generic Internet middleware framework 
so that failures are masked from application programs 
(and users). Application programs are thus relieved from 
handling message timeouts and other exceptions caused 
by system failures. Based on the conceptual work in [2], 
we have developed a prototype system, coined EOS, that 
uses Microsoft’s IE5 browser on the client side and the 
popular Apache/PHP middleware as the middle tier of 
three-tier Web applications. With our specific modifica-
tions to the IE5 environment and the PHP servlet engine, 
the EOS prototype guarantees exactly-once execution for 
all requests. Our modifications are transparent to the ap-
plication programs: no changes are required to servlet 
programs (i.e., PHP scripts) and no failure handling code 
is required by these programs other than application-level 
exceptions such as “item out of stock” etc. and dealing 
with back end transaction aborts. As a result, all business 
requests, including those with non-idempotent effects, are 
processed such that their effects occur exactly once. This 
guarantee includes messages seen by applications and 
users as well as data updates issued to backend servers.  

In addition to [2], conceptual work on recovery guar-
antees for Internet applications includes [3,5,7]. However, 
to our knowledge, our prototype is the first work that pro-
vides an implemented solution. 

2 Framework 
A framework for exactly-once guarantees in general 
multi-tier systems by means of interaction contracts (IC) 
between communicating components is described in [2]. 
There are three types of components considered in this 
framework: eXternal components (XCom’s) modeling 
human users and parts of the system outside of the 
framework, Persistent (PCom’s) representing mid-tier 
applications, and Transactional (TCom’s) modeling ACID 
resource managers like database servers.  

The framework requires a Committed Interaction 
Contract (CIC) between two PCom’s (e.g., the client 
program and the mid-tier application program). This re-
quires that the sender of a request or reply message prom-
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ise that it can always recreate the message and also its 
own state as of the time of the message or more recent. In 
this way a PCOM can resend the message if demanded by 
the receiver; the receiver, on the other hand, must guaran-
tee that it can detect and eliminate duplicate messages. 
The sender is released from its promise in a second step of 
the CIC protocol once the receiver can itself recreate the 
message if needed upon a failure.  

Another type of contract is the External Interaction 
Contract (XIC) between an XCom, typically a human 
user, and a PCom, typically the client software of that 
user. In this setting the XCom does not promise message 
recreatability for user input, and it is not necessarily able 
to eliminate duplicate output. Consequently, not all fail-
ures can be perfectly masked in this setting. However, a 
PCom in an XIC, which includes recreatability of PCom-
sent messages and PCom state, still provides automatic 
failure masking in most situations. 

The central theorem in [2] proves that virtually all sys-
tem failures (with some inescapable exceptions should a 
failure occur during an XIC, e.g. with a human user) can 
be masked, and each request is processed exactly once. 
Our prototype system aims at an efficient implementation 
of the framework outlined above in the internet context. 

3 System Overview 
Figure 1 depicts a typical E-Service architecture we have 
chosen for the prototype implementation. An E-Service in 
this setting encompasses a PHP engine connected through 
the ODBC driver manager to a data server. 

An E-Service can be invoked either in a business-to-
customer manner by a human user via her web browser 
(IE5 in our prototype) or in a business-to-business manner 
by some other E-Service. According to [2] we establish an 
eXternal IC between the end user and web browser, and a 
Committed IC (CIC) between PHP and the web browser. 
In addition, we plan to establish a CIC between PHP and 
the ODBC driver manager, and finally a Transactional 
Interaction Contract (TIC) is between the ODBC driver 
manager and the data server, using techniques from [1]. 
Note that these techniques are complementary to the ones 
in our prototype; the work in [1] exclusively focused on 
ODBC sessions and did not address Internet middleware 
issues and the handling of client failures. 
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Figure 1: Typical E-Service Architecture 

Either a CIC or Immediately Committed IC (ICIC) is 
used for interactions between a pair of E-Services. With 

ICIC, both E-Services are able to recover autonomously 
after a successful interaction, if needed (see [2]). 

3.1 Browser Extensions 

The recovery and logging routines for the web browser 
are implemented in JavaScript with extensive DHTML 
event processing, as supported by IE5. They are added to 
the application’s HTML output by the web application 
server in the original response to the client. No explicit 
changes to the original HTML code are needed.  

3.1.1 Client Logging 

The main function of our event-handling code stubs is to 
implement an XIC between user and browser. It does this 
by logging the user updates to the browser state (e.g., the 
user having clicked a button or filled in a form entry). 
This logging is done by modifying a so-called XML store 
which is an XML structure managed by IE on the client’s 
disk in a way similar to a persistent cookie. This feature is 
provided by IE with a default persistence behavior called 
“userData Behavior”. HTML elements with attached 
userData behavior provide the methods for accessing the 
individual elements of the XML store. The XML object 
associated with the XML store can also be accessed and 
manipulated using the XML DOM parser which is 
natively supported by IE [4].  

For the IE browser side of the CIC with the web appli-
cation server, all relevant state information (i.e., each in-
put field, whose value is passed to the web server, so that 
a completely identical http request can be generated or 
“replayed” again) and rendering details (the window area 
viewed or edited by the user) are logged to an XML store 
associated with the current session step. This is imple-
mented by intercepting an “onPropertyChange” event. To 
force our log entries in the XML store to stable storage, 
we call the “save” method which triggers IE to write the 
XML store to disk. 

3.1.2 Client Recovery 

Client state survives failures as follows. When the 
browser fails and the user restarts it and revisits the same 
e-service initialization page, the browser is automatically 
redirected by the web server to the last visited (i.e., most 
recent) page of the interrupted conversation and our 
JavaScript code will be reloaded. The JavaScript code is 
set up to first look for an XML store previously saved on 
the client machine. If the XML store exists, its contents 
are used to recover input field values and replay all rele-
vant events on windows, buttons, and forms, so that the 
user would not see any difference to the state immediately 
before the failure.  

3.2 Application Server Modifications 

To implement a CIC at the web application server, the 
main issues to be addressed are the virtualization of mes-



sage ids and the logging of http requests and replies as 
well as session state information at the server side. To 
minimize our source code modifications to the regular 
infrastructure on the server, we refrained from making 
any changes to the web server or the Zend engine’s kernel 
and only modified the PHP session management module.  

For virtualization, we use our own message sequence 
numbers (MSNs) that are unique and consecutive within 
an application session. Such a session might consist of the 
stepwise filling of a shopping cart or various forms for tax 
declaration, steps that constitute a “logical (and stateful) 
session”. (This notion of session is independent of the 
underlying TCP sessions.) These MSNs are added to the 
http request and reply messages in the form of an addi-
tional cookie. This is a natural and easy extension to the 
Zend engine, as it already encodes a form of session id in 
a cookie. Session ids in PHP applications are optional and 
activated either explicitly by the session_start function or 
implicitly by the first invocation of the session_register 
function. The kinds of e-service applications that we are 
interested in would typically use this feature. However, 
we do not depend on the original PHP application already 
using sessions; we always activate a session by setting 
session.auto_start=1 in the PHP configuration file. 

3.2.1 Application Server Logging 

On the browser side, we rely on IE5 to make cookies per-
sistent; on the server side, the modified Zend engine in-
vokes code to force-log all http messages, including cook-
ies in message headers. When a client re-sends the same 
http request, it includes the original cookie with the origi-
nal MSN, so that the application server (i.e., our code in 
the modified Zend engine) can easily detect duplicates. As 
the last used MSN is always carried by the cookie that is 
sent back and forth between client and application server, 
MSNs can be easily made consecutive even with “non-
sticky” connections to a web server cluster. When cookies 
are disabled in the browser, we apply a similar technique 
using hidden form fields or URL-encoded parameters, 
which are the Zend engine’s alternative methods for ses-
sion ids. (Having cookies enabled has become a de-facto 
standard requirement for most E-service applications.) 

In addition to encoding the MSN into the session-id 
cookie, the modified Zend engine adds JavaScript code to 
the HTML page that is returned by the PHP application 
program invoked via the http request. This serves to im-
plement the client side of the CIC and also the XIC be-
tween the client and the user (see Section 3.1 above). 

The modified Zend engine force-logs all outgoing http 
replies and tags each of them with the MSN included in 
its header. This is done by writing this information, in the 
form of additional session variables, to the PHP session 
state file. Note that there is no need to force-log the in-
coming http request, as the client already promises the 
persistence of this message by its part of the CIC. The 
session state file is accessible to all clones of PHP server 

processes that are controlled by the web server. If multi-
ple web servers are set up in a computer cluster for the 
same IP address, the file must be shared among all nodes 
in the cluster. This technique ensures that we do not de-
pend on “sticky” connections between http clients and 
PHP server processes. 

For a server to proactively recover PHP servlet results 
after a server crash, as opposed to replaying servlets only 
when prompted by re-sent client requests, we can option-
ally log incoming http requests along with the PHP vari-
ables filled by http get or post parameters and all session 
variables that have been registered up to this point. The 
log record for an http request already contains the name of 
the invoked PHP program and its input parameters, which 
are either form variables or encoded in the URL. This, 
together with the persistently logged session variables, 
captures the initial state of the servlet execution. Since the 
servlet is piecewise deterministic (PWD), no other log-
ging is needed for correctness. 

3.2.2 Application Server Recovery 

We can now describe how the modified Zend engine han-
dles the various exceptions and recovery situations: 

Upon receiving an http get or post request that carries 
a cookie with an MSN, the log is checked to determine if 
this is a duplicate request. If it is a resent request and the 
corresponding servlet has already terminated and pro-
duced an http reply, the reply is retrieved from the log and 
sent to the client. If the servlet has died and no reply is 
available, the servlet is restarted. If we had logged the 
state of session variables during the prior incarnation of 
the servlet, its replay would start from the last completed 
installation point. 

When an http reply is sent to a seemingly dead client 
(e.g., the client does not acknowledge the message at the 
underlying TCP level), the server simply ignores this 
“problem” but is prepared to receive a duplicate of the 
client’s original http request at a later point. When this 
client-initiated prompting happens, the server re-sends the 
reply. As the reply itself is stably logged at the server, it is 
guaranteed to persist across server failures. Once the cli-
ent acknowledges the receipt of the http reply by issuing 
another http request within the same application session 
or invokes a servlet with a session_destroy function call, 
the server can garbage collect the previous step’s log en-
try. To alleviate the potential danger that the server cannot 
safely discard log entries for clients with users who have 
intentionally aborted sessions or simply walked away, we 
can enhance the JavaScript code that we embed in the http 
replies to react to “onAbort” browser events and to time-
outs: the code would simply send an explicit “abort ses-
sion” message as a final http request to the web applica-
tion server. 

When a PHP process fails while executing a servlet on 
behalf of a client’s http request, recovery is initiated when 
the client repeats its request (as part of the CIC behavior) 



or the user hits the “Refresh” button. This resent request 
will be handled by the next available PHP process, and 
that process will first perform a duplicate elimination test, 
possibly replay the servlet execution, and finally (re-)send 
the reply. When the web server or the entire computer 
fails, the same thing happens after the system restart. So 
recovery is automatic, but we rely on the client re-
initiating the request rather than on server initiative. This 
behavior carries over to a web server farm on a computer 
cluster; failover to another node in the cluster is automatic 
as long as clients resend requests. 

Logging incoming http requests is optional. When it is 
used, however, it is equivalent to logging http replies. 
Then reply logging would be optional. A request log re-
cord can thus be seen as a form of logical log entry that 
enables recreation of its associated reply, with a reply log 
record a form of physical log entry for the result of the 
servlet execution. Having both options provides us with 
optimization opportunities. Physical reply logging avoids 
the re-execution of servlets and thus provides faster re-
covery. On the other hand, there are applications that may 
create very large reply log entries, and it could be more 
efficient to re-create these replies by replaying the re-
quest. This holds, for example, for applications with large 
downloads such as image, video/audio, or software re-
positories.  

3.3 Run-time Overhead 

To evaluate the run-time overhead of our failure-masking 
techniques and exactly-once guarantees, we performed 
measurements with Apache/1.3.20 and the Zend engine 
(PHP/4.0.6) running on a PC with a 1 GHz Intel Pentium 
III and 256 MB memory under Windows2000. The load 
on this web application server was generated by a syn-
thetic http request generator (Microsoft Web Application 
Stress Tool). The generator simulated conversations of n 
steps, each of which simply sent three string parameters 
as form fields, and a simple PHP program incremented a 

counter registered as a session variable and returned its 
value to the client. There were no human user interactions 
or simulated think times in this experiment. The left chart 
in Figure 2 shows the total elapsed time, between the first 
request and the last reply as seen by the client, and the 
CPU time on the server side for n = 1, 5, 10 steps, com-
paring the original Zend engine to the modified Zend en-

gine with CIC behavior for exactly-once guarantee. The 
chart shows that the overhead of our CIC implementation 
is almost negligible, with respect to both user-perceived 
latency and increased CPU time.  

We also performed multi-user measurements where 
the http request driver was replicated on 5 different client 
machines, each of which generated requests to the same 
web application server without simulating any think times 
(i.e., using a closed system model). The right chart in Fig-
ure 2 shows the measured average response time and 
throughput in terms of the simulated n-step user sessions. 
The performance degradation is less than 10 percent and 
thus well within the range of acceptable overhead. 

4 Demo Description 
For the demo, we use a simple PHP script, which opens a 
session upon the first HTTP get request. The state of this 
simple web application consists of a counter variable, the 
value of which is incremented by 10 in each session step 
(i.e., upon each subsequent script execution requested 
from the browser). The demo does not include interac-
tions with data servers since this part is not yet included in 
the current prototype. 

We show that the original PHP engine is not able to 
provide exactly-once execution. Note, that we do not 
blame PHP specifically, since all present web application 
technologies like ASP, JSP etc. are susceptible to the is-
sues discussed in Section 1. Then we contrast this dis-
couraging experience with the same experiment, which 
we carry out with the IE5 browser and the PHP engine, 
both enhanced in a way that they now transparently im-
plement the appropriate interaction contracts. As a result, 
the same PHP script (without any changes in its source 
code) is now executed properly even in the presence of 
system failures on the server side and also when the web 
browser crashes. In addition, the external interaction con-
tract for the web browser minimizes the user’s need for 
having to retype input after a browser failure. 
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Figure 2: Overhead Measurements 
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