
EOS: Exactly-Once E-Service Middleware
German Shegalov * Gerhard Weikum * Roger Barga ** David Lomet **

* University of Saarland
D-66123 Saarbruecken

GERMANY
{shegalov, weikum}@cs.uni-sb.de

** Microsoft Research
Redmond, WA 98052

U.S.A.
{barga, lomet}@microsoft.com

1 Problem Statement
Today's web-based E-services do not handle system fail-
ures well. One of the most prominent examples is unin-
tentional purchase of multiple copies of the same item
(e.g., a DVD) in an online store. This may happen when
the user sees a browser timeout for the final “checkout”
(“place order”) request caused by a short outage or over-
load of the network or the backend servers (typically dur-
ing peak load). Whereas the request may have been suc-
cessfully albeit slowly processed, the user may attempt to
send the check-out request once again, e.g., by hitting the
browser “refresh” button, unintentionally buying another
copy of the same item.

Another example is a home-banking application de-
ployed by one of the biggest German banks. This applica-
tion uses a so-called PIN/TAN security procedure. Each
user is identified by a personal identification number
(PIN). The bank hands over a list of transaction numbers
(TANs) to each user. A TAN must be provided for each
home-banking transaction to be accepted. For security
reasons each TAN can be used only once. The following
problem may arise (and has indeed happened to custom-
ers). After the first attempt to issue a money transfer order
the user perceives a long delay resulting in an error mes-
sage stating “this page is currently not available”. The
user re-submits the request and the “resurrected” applica-
tion responds with: “A TAN was used twice. Your TAN
list has been frozen. Please contact your nearest branch
office if you would like to have your TANs reactivated
again”.

Such phenomena occur because the “stateless” interac-
tion paradigm of the web puts the burden of managing
sessions, and in particular handling failures, on applica-
tion programs. Unfortunately, failure handling logic can
be fairly complex, and application programs often make
errors when responding to errors. In particular, they may

simply forget actions already taken, not only after a suc-
cessful execution but also after a system failure, so that
they cannot guarantee exactly-once execution.

In contrast, our approach aims to place failure han-
dling logic into a generic Internet middleware framework
so that failures are masked from application programs
(and users). Application programs are thus relieved from
handling message timeouts and other exceptions caused
by system failures. Based on the conceptual work in [2],
we have developed a prototype system, coined EOS, that
uses Microsoft’s IE5 browser on the client side and the
popular Apache/PHP middleware as the middle tier of
three-tier Web applications. With our specific modifica-
tions to the IE5 environment and the PHP servlet engine,
the EOS prototype guarantees exactly-once execution for
all requests. Our modifications are transparent to the ap-
plication programs: no changes are required to servlet
programs (i.e., PHP scripts) and no failure handling code
is required by these programs other than application-level
exceptions such as “item out of stock” etc. and dealing
with back end transaction aborts. As a result, all business
requests, including those with non-idempotent effects, are
processed such that their effects occur exactly once. This
guarantee includes messages seen by applications and
users as well as data updates issued to backend servers.

In addition to [2], conceptual work on recovery guar-
antees for Internet applications includes [3,5,7]. However,
to our knowledge, our prototype is the first work that pro-
vides an implemented solution.

2 Framework
A framework for exactly-once guarantees in general
multi-tier systems by means of interaction contracts (IC)
between communicating components is described in [2].
There are three types of components considered in this
framework: eXternal components (XCom’s) modeling
human users and parts of the system outside of the
framework, Persistent (PCom’s) representing mid-tier
applications, and Transactional (TCom’s) modeling ACID
resource managers like database servers.

The framework requires a Committed Interaction
Contract (CIC) between two PCom’s (e.g., the client
program and the mid-tier application program). This re-
quires that the sender of a request or reply message prom-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

ise that it can always recreate the message and also its
own state as of the time of the message or more recent. In
this way a PCOM can resend the message if demanded by
the receiver; the receiver, on the other hand, must guaran-
tee that it can detect and eliminate duplicate messages.
The sender is released from its promise in a second step of
the CIC protocol once the receiver can itself recreate the
message if needed upon a failure.

Another type of contract is the External Interaction
Contract (XIC) between an XCom, typically a human
user, and a PCom, typically the client software of that
user. In this setting the XCom does not promise message
recreatability for user input, and it is not necessarily able
to eliminate duplicate output. Consequently, not all fail-
ures can be perfectly masked in this setting. However, a
PCom in an XIC, which includes recreatability of PCom-
sent messages and PCom state, still provides automatic
failure masking in most situations.

The central theorem in [2] proves that virtually all sys-
tem failures (with some inescapable exceptions should a
failure occur during an XIC, e.g. with a human user) can
be masked, and each request is processed exactly once.
Our prototype system aims at an efficient implementation
of the framework outlined above in the internet context.

3 System Overview
Figure 1 depicts a typical E-Service architecture we have
chosen for the prototype implementation. An E-Service in
this setting encompasses a PHP engine connected through
the ODBC driver manager to a data server.

An E-Service can be invoked either in a business-to-
customer manner by a human user via her web browser
(IE5 in our prototype) or in a business-to-business manner
by some other E-Service. According to [2] we establish an
eXternal IC between the end user and web browser, and a
Committed IC (CIC) between PHP and the web browser.
In addition, we plan to establish a CIC between PHP and
the ODBC driver manager, and finally a Transactional
Interaction Contract (TIC) is between the ODBC driver
manager and the data server, using techniques from [1].
Note that these techniques are complementary to the ones
in our prototype; the work in [1] exclusively focused on
ODBC sessions and did not address Internet middleware
issues and the handling of client failures.

Internet Explorer

X
IC

X
IC

CICCIC

C
IC

C
IC

Database
Server

Database
Server

E-Service 1

TI
C

TI
C

(I)CIC(I)CIC

C
IC

C
IC

Database
Server

Database
Server

E-Service 2

T
ICT
IC

Figure 1: Typical E-Service Architecture

Either a CIC or Immediately Committed IC (ICIC) is
used for interactions between a pair of E-Services. With

ICIC, both E-Services are able to recover autonomously
after a successful interaction, if needed (see [2]).

3.1 Browser Extensions

The recovery and logging routines for the web browser
are implemented in JavaScript with extensive DHTML
event processing, as supported by IE5. They are added to
the application’s HTML output by the web application
server in the original response to the client. No explicit
changes to the original HTML code are needed.

3.1.1 Client Logging

The main function of our event-handling code stubs is to
implement an XIC between user and browser. It does this
by logging the user updates to the browser state (e.g., the
user having clicked a button or filled in a form entry).
This logging is done by modifying a so-called XML store
which is an XML structure managed by IE on the client’s
disk in a way similar to a persistent cookie. This feature is
provided by IE with a default persistence behavior called
“userData Behavior”. HTML elements with attached
userData behavior provide the methods for accessing the
individual elements of the XML store. The XML object
associated with the XML store can also be accessed and
manipulated using the XML DOM parser which is
natively supported by IE [4].

For the IE browser side of the CIC with the web appli-
cation server, all relevant state information (i.e., each in-
put field, whose value is passed to the web server, so that
a completely identical http request can be generated or
“replayed” again) and rendering details (the window area
viewed or edited by the user) are logged to an XML store
associated with the current session step. This is imple-
mented by intercepting an “onPropertyChange” event. To
force our log entries in the XML store to stable storage,
we call the “save” method which triggers IE to write the
XML store to disk.

3.1.2 Client Recovery

Client state survives failures as follows. When the
browser fails and the user restarts it and revisits the same
e-service initialization page, the browser is automatically
redirected by the web server to the last visited (i.e., most
recent) page of the interrupted conversation and our
JavaScript code will be reloaded. The JavaScript code is
set up to first look for an XML store previously saved on
the client machine. If the XML store exists, its contents
are used to recover input field values and replay all rele-
vant events on windows, buttons, and forms, so that the
user would not see any difference to the state immediately
before the failure.

3.2 Application Server Modifications

To implement a CIC at the web application server, the
main issues to be addressed are the virtualization of mes-

sage ids and the logging of http requests and replies as
well as session state information at the server side. To
minimize our source code modifications to the regular
infrastructure on the server, we refrained from making
any changes to the web server or the Zend engine’s kernel
and only modified the PHP session management module.

For virtualization, we use our own message sequence
numbers (MSNs) that are unique and consecutive within
an application session. Such a session might consist of the
stepwise filling of a shopping cart or various forms for tax
declaration, steps that constitute a “logical (and stateful)
session”. (This notion of session is independent of the
underlying TCP sessions.) These MSNs are added to the
http request and reply messages in the form of an addi-
tional cookie. This is a natural and easy extension to the
Zend engine, as it already encodes a form of session id in
a cookie. Session ids in PHP applications are optional and
activated either explicitly by the session_start function or
implicitly by the first invocation of the session_register
function. The kinds of e-service applications that we are
interested in would typically use this feature. However,
we do not depend on the original PHP application already
using sessions; we always activate a session by setting
session.auto_start=1 in the PHP configuration file.

3.2.1 Application Server Logging

On the browser side, we rely on IE5 to make cookies per-
sistent; on the server side, the modified Zend engine in-
vokes code to force-log all http messages, including cook-
ies in message headers. When a client re-sends the same
http request, it includes the original cookie with the origi-
nal MSN, so that the application server (i.e., our code in
the modified Zend engine) can easily detect duplicates. As
the last used MSN is always carried by the cookie that is
sent back and forth between client and application server,
MSNs can be easily made consecutive even with “non-
sticky” connections to a web server cluster. When cookies
are disabled in the browser, we apply a similar technique
using hidden form fields or URL-encoded parameters,
which are the Zend engine’s alternative methods for ses-
sion ids. (Having cookies enabled has become a de-facto
standard requirement for most E-service applications.)

In addition to encoding the MSN into the session-id
cookie, the modified Zend engine adds JavaScript code to
the HTML page that is returned by the PHP application
program invoked via the http request. This serves to im-
plement the client side of the CIC and also the XIC be-
tween the client and the user (see Section 3.1 above).

The modified Zend engine force-logs all outgoing http
replies and tags each of them with the MSN included in
its header. This is done by writing this information, in the
form of additional session variables, to the PHP session
state file. Note that there is no need to force-log the in-
coming http request, as the client already promises the
persistence of this message by its part of the CIC. The
session state file is accessible to all clones of PHP server

processes that are controlled by the web server. If multi-
ple web servers are set up in a computer cluster for the
same IP address, the file must be shared among all nodes
in the cluster. This technique ensures that we do not de-
pend on “sticky” connections between http clients and
PHP server processes.

For a server to proactively recover PHP servlet results
after a server crash, as opposed to replaying servlets only
when prompted by re-sent client requests, we can option-
ally log incoming http requests along with the PHP vari-
ables filled by http get or post parameters and all session
variables that have been registered up to this point. The
log record for an http request already contains the name of
the invoked PHP program and its input parameters, which
are either form variables or encoded in the URL. This,
together with the persistently logged session variables,
captures the initial state of the servlet execution. Since the
servlet is piecewise deterministic (PWD), no other log-
ging is needed for correctness.

3.2.2 Application Server Recovery

We can now describe how the modified Zend engine han-
dles the various exceptions and recovery situations:

Upon receiving an http get or post request that carries
a cookie with an MSN, the log is checked to determine if
this is a duplicate request. If it is a resent request and the
corresponding servlet has already terminated and pro-
duced an http reply, the reply is retrieved from the log and
sent to the client. If the servlet has died and no reply is
available, the servlet is restarted. If we had logged the
state of session variables during the prior incarnation of
the servlet, its replay would start from the last completed
installation point.

When an http reply is sent to a seemingly dead client
(e.g., the client does not acknowledge the message at the
underlying TCP level), the server simply ignores this
“problem” but is prepared to receive a duplicate of the
client’s original http request at a later point. When this
client-initiated prompting happens, the server re-sends the
reply. As the reply itself is stably logged at the server, it is
guaranteed to persist across server failures. Once the cli-
ent acknowledges the receipt of the http reply by issuing
another http request within the same application session
or invokes a servlet with a session_destroy function call,
the server can garbage collect the previous step’s log en-
try. To alleviate the potential danger that the server cannot
safely discard log entries for clients with users who have
intentionally aborted sessions or simply walked away, we
can enhance the JavaScript code that we embed in the http
replies to react to “onAbort” browser events and to time-
outs: the code would simply send an explicit “abort ses-
sion” message as a final http request to the web applica-
tion server.

When a PHP process fails while executing a servlet on
behalf of a client’s http request, recovery is initiated when
the client repeats its request (as part of the CIC behavior)

or the user hits the “Refresh” button. This resent request
will be handled by the next available PHP process, and
that process will first perform a duplicate elimination test,
possibly replay the servlet execution, and finally (re-)send
the reply. When the web server or the entire computer
fails, the same thing happens after the system restart. So
recovery is automatic, but we rely on the client re-
initiating the request rather than on server initiative. This
behavior carries over to a web server farm on a computer
cluster; failover to another node in the cluster is automatic
as long as clients resend requests.

Logging incoming http requests is optional. When it is
used, however, it is equivalent to logging http replies.
Then reply logging would be optional. A request log re-
cord can thus be seen as a form of logical log entry that
enables recreation of its associated reply, with a reply log
record a form of physical log entry for the result of the
servlet execution. Having both options provides us with
optimization opportunities. Physical reply logging avoids
the re-execution of servlets and thus provides faster re-
covery. On the other hand, there are applications that may
create very large reply log entries, and it could be more
efficient to re-create these replies by replaying the re-
quest. This holds, for example, for applications with large
downloads such as image, video/audio, or software re-
positories.

3.3 Run-time Overhead

To evaluate the run-time overhead of our failure-masking
techniques and exactly-once guarantees, we performed
measurements with Apache/1.3.20 and the Zend engine
(PHP/4.0.6) running on a PC with a 1 GHz Intel Pentium
III and 256 MB memory under Windows2000. The load
on this web application server was generated by a syn-
thetic http request generator (Microsoft Web Application
Stress Tool). The generator simulated conversations of n
steps, each of which simply sent three string parameters
as form fields, and a simple PHP program incremented a

counter registered as a session variable and returned its
value to the client. There were no human user interactions
or simulated think times in this experiment. The left chart
in Figure 2 shows the total elapsed time, between the first
request and the last reply as seen by the client, and the
CPU time on the server side for n = 1, 5, 10 steps, com-
paring the original Zend engine to the modified Zend en-

gine with CIC behavior for exactly-once guarantee. The
chart shows that the overhead of our CIC implementation
is almost negligible, with respect to both user-perceived
latency and increased CPU time.

We also performed multi-user measurements where
the http request driver was replicated on 5 different client
machines, each of which generated requests to the same
web application server without simulating any think times
(i.e., using a closed system model). The right chart in Fig-
ure 2 shows the measured average response time and
throughput in terms of the simulated n-step user sessions.
The performance degradation is less than 10 percent and
thus well within the range of acceptable overhead.

4 Demo Description
For the demo, we use a simple PHP script, which opens a
session upon the first HTTP get request. The state of this
simple web application consists of a counter variable, the
value of which is incremented by 10 in each session step
(i.e., upon each subsequent script execution requested
from the browser). The demo does not include interac-
tions with data servers since this part is not yet included in
the current prototype.

We show that the original PHP engine is not able to
provide exactly-once execution. Note, that we do not
blame PHP specifically, since all present web application
technologies like ASP, JSP etc. are susceptible to the is-
sues discussed in Section 1. Then we contrast this dis-
couraging experience with the same experiment, which
we carry out with the IE5 browser and the PHP engine,
both enhanced in a way that they now transparently im-
plement the appropriate interaction contracts. As a result,
the same PHP script (without any changes in its source
code) is now executed properly even in the presence of
system failures on the server side and also when the web
browser crashes. In addition, the external interaction con-
tract for the web browser minimizes the user’s need for
having to retype input after a browser failure.

5 References
[1] Barga, R, D. Lomet, T. Baby, S. Agrawal: Persistent Client-Server

Database Sessions; Int. Conference on Extending Database Tech-
nology (EDBT), Konstanz, Germany, 2000

[2] Barga, R., D. Lomet and G. Weikum: Recovery Guarantees for
General Multi-Tier Applications, Int. Conference on Data Engi-
neering (ICDE), San Jose, CA, 2002

[3] Dutta, K., D. VanderMeer, A. Datta, K. Ramamritham: User Ac-
tion Recovery in Internet SAGAs, Int. Workshop on Technologies
for E-Services, Rome, Italy, 2001.

[4] MSDN Library: Web Development/ Behaviors/ Persistence/ ASP,
http://msdn.microsoft.com/

[5] Pedregal-Martin, C., K. Ramamritham: Guaranteeing Recoverabil-
ity in Electronic Commerce, Int. Workshop on Advanced Issues of
E-Commerce and Web-based Information Systems, 2001.

[6] PHP, Documentation and Downloads, http://php.net/
[7] Schuldt, H., A. Popovici, H.-J. Schek: Automatic Generation of

Reliable E-Commerce Payment Processes, Int. Conference on Web
Information Systems Engineering, Hong Kong, 2000.

[8] Zend: Documentation and Downloads, http://zend.com/

Figure 2: Overhead Measurements

1 client machine test

0

0.1

0.2

1 5 10
session steps

se
c

5 client machines test

0

0.2

0.4

0.6

0.8

1 5 10
session steps

se
c

original Zend
engine
modified Zend
engine with CIC

