
Issues and Evaluations of Caching Solutions for Web

Application Acceleration

Wen-Syan Li Wang-Pin Hsiung Dmitri V. Kalashnikov Radu Sion
Oliver Po Divyakant Agrawal K. Sel�cuk Candan

C&C Research Laboratories - Silicon Valley
NEC USA, Inc.

10080 North Wolfe Road, Suite SW3-350
Cupertino, California 95014, USA

Email:fwen,whsiung,dvk,sion,oliver,agrawal,candang@ccrl.sj.nec.com

Abstract

Response time is a key di�erentiation among
electronic commerce (e-commerce) applica-
tions. For many e-commerce applications,
Web pages are created dynamically based
on the current state of a business stored in
database systems. Recently, the topic of Web
acceleration for database-driven Web applica-
tions has drawn a lot of attention in both the
research community and commercial arena.
In this paper, we analyze the factors that have
impacts on the performance and scalability of
Web applications. We discuss system archi-
tecture issues and describe approaches to de-
ploying caching solutions for acceleratingWeb
applications. We give the performance matrix
measurement for network latency and various
system architectures. The paper is summa-
rized with a road map for creating high per-
formance Web applications.

1 Introduction

For most Web sites, their contents are fairly static and
can be generated in advance to serve a large number of
requests. However, due to the dynamic nature of elec-
tronic commerce (e-commerce), e-commerce Web sites
are usually database-driven and their contents change
more frequently to reect the current business state
in the database systems. Architectural designs for a

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,

Hong Kong, China, 2002

high performance e-commerce Web site is challenging
because it involves integration of content delivery net-
works, caching appliances, Web servers, application
servers, and databases.

Response time and reliability are two key points of
di�erentiation among e-commerce Web sites. In busi-
ness terms, the brand name of an e-commerce site is
correlated to the type of experience users receive. The
need to account for users' quality perception in de-
signing Web servers for e-commerce systems has been
highlighted in [1]. Snafus and slow-downs at major
Web sites during special events or peak times demon-
strate the diÆculty of scaling up e-commerce sites.
Slow response times and down times can be devas-
tating for e-commerce sites as reported in a study
by Zona Research[2] on the relationship between Web
page download time and user abandonment rate. The
study shows that only 2% of users will leave a Web
site (i.e. abandonment rate) if the download time is
less than 7 seconds. However, the abandonment rate
jumps to 30% if the download time is around 8 sec-
onds. The abandonment rate reaches 70% as down-
load times exceed 12 seconds. This study clearly es-
tablishes the importance of fast response times to an
e-commerce Web site to retain its customers.

In technical terms, ensuring the timely delivery of
fresh dynamic content to end-users and engineering
highly scalable e-commerce Web sites for special peak
access times put heavy demand on IT sta�. This
is compounded by the ever-changing complexity of
e-commerce applications. For many e-commerce ap-
plications, Web pages are created dynamically based
on the current state of a business, such as product
prices and inventory, stored in database systems. This
characteristic requires e-commerce Web sites to de-
ploy cache servers, Web servers, application servers,
and database systems at the backend.

Applying caching solutions for Web applications
and content distribution has received a lot of atten-
tions in the Web and database communities. In this
paper, we analyze the issues of caching dynamic con-

tents in a database-driven Web site. We give an
overview of several approaches to deploying caching
solutions for accelerating Web applications as well as
presenting NEC's CachePortal technology as a case
study for multi-tiered caching solutions. We have con-
ducted evaluation on caching solutions for Web appli-
cation acceleration. Based on the performance matrix
measured, we provide our views of a road map to a
high performance Web site.

2 Approaches to Architectural De-
signs for Database-driven Web Sites

Several di�erent approaches can be used to accelerate
content delivery for database-driven e-commerce sites.
A common thread among all these approaches is to
employ some form of data redundancy so that con-
tent can be delivered via multiple paths through the
network thus eliminating bottlenecks. One way data
redundancy can be realized is by caching dynamically
generated HTML pages in the network cache compo-
nents (e.g., front-end cache, proxy cache, and edge
cache). The other approach is to use database repli-
cation in conjunction with load balancing so that user
requests can be served from multiple databases. In the
following, we describe various alternatives and discuss
their characteristics.

2.1 Basic System Architecture

End Users

Application Server

Web Server

Cache Server

Request: URL+Parameters

Request: URL+Parameters

Invocation: Program parameters

DB Queries

DBMS

Cookies

Cookies

Page content (HTML)

Page content (HTML)

Page content (HTML)

DB Query Results

Figure 1: Typical Architecture of a Database-driven
E-commerce Web Site

A basic system architecture of database-drivenWeb
sites consists of the following components:

1. A Web server (WS) which receives user re-
quests and delivers the dynamically generated
Web pages.

2. An application server (AS) that incorporates all
the necessary rules and business logic to interpret
the data and information stored in the database.
AS receives user requests for HTML pages and de-
pending upon the nature of a request may need to
access the DBMS to generate the dynamic com-
ponents of the HTML page.

3. A database management system (DBMS) to
store, maintain, and retrieve all the necessary
data and information to model a business.

The architecture of such database-driven Web sites
is illustrated in Figure 1. When the Web server
receives a request for dynamic content, it forwards
the request to the application server along with its
request parameters (typically included in the URL
string). The Web server communicates with the appli-
cation server using URL strings and cookie informa-
tion, which is used for customization, and the appli-
cation server communicates with the database using
queries. When the application server receives such a
request from the Web server, it processes it and it
may access the underlying databases to extract the
relevant information needed to dynamically generate
the requested page. Note that the application server
may issue several database queries to process a sin-
gle URL request. There are two key obstacles for
enabling dynamic content caching: (1) how to au-
tomatically derive the relationships between cached
pages and database contents (i.e. URL and database
query mapping); and (2) how to intelligently moni-
tor database changes and how to eÆciently identify
impacted pages in the caches that need to be invali-
dated.

2.2 System Architecture with Dynamic Con-
tent Caching Enabled

Edge/Frontend Cache

End Users

Application Server

Web Server

URL/Query Mapping

Invalidator

Sniffer

DBMS
Content Change Monitoring

Utilizing

Constructing Invocation:
Program parameters

Captureing
Messages

Invalidation

Page content (HTML)

Page content (HTML)

Page content (HTML)

DB Query Results

Request: URL+Parameters Cookies

Cookies

Cookies
URL+Parameters

Request:

DB Queries

Figure 2: A Database-Driven E-Commerce Site with
Dynamic Content Caching Enabled

In Figure 2, we show the architecture and data ow
of a database-driven e-commerce Web site, which em-
ploys the CachePortal technology. Note that this
architecture is very similar to that of a typical e-
commerce web site, except for the two components
introduced by CachePortal: Sni�er and Invalidator
to enable dynamic content caching and to ensure the
freshness of dynamic content in cache servers. Our
proposed technology enables dynamic content caching
by deriving the URL=DB Query Mapping, the re-
lationships between cached pages and the database
contents that are used to generate these pages. The

mapping is constructed by the sni�er. The sni�er
also monitors database changes by scanning database
update log. The database change information is then
utilized by the invalidator to identify the cached pages
which are impacted by the database change. The data
ow is illustrated in Figure 2.

Note that knowledge about dynamic content is dis-
tributed across three di�erent servers: the Web server,
the application server, and the database management
server. Consequently, it is not straightforward to cre-
ate a mapping between the data and the correspond-
ing Web pages automatically in contrast to the other
approaches [3, 4, 5, 6], which assume that such map-
pings are provided by the system designers. The de-
tailed descriptions on automated construction of such
URL and database query mapping are given in [7] and
Section 3.

2.3 Redundant Web/Application Server Ap-
proach

WS

AS

WS

AS

WS

AS

WS

AS

DBMS

Traffic Director

Figure 3: System Architecture Featuring Multiple
Web/Application Servers

An alternative to caching is shown in Figure 3
where there are multiple Web/application server pairs
to handle user requests. The WS/AS pairs are load
balanced using a traÆc balancer, such as Cisco's Lo-
calDirector, which directs the user requests appropri-
ately to a WS/AS pair so as to keep the load on each
pair balanced. This con�guration enables a Web site
to partition its load between multiple Web servers and
application servers, and hence it can achieve higher
scalability without the use of caches. Note, however,
that since pages delivered by e-commerce sites are
database dependent, replicating only the Web servers
and application servers is not necessarily enough for
scaling-up the entire architecture. We need to make
sure that the underlying database does not become a
bottleneck.

2.4 Redundant Database Approach

In order to eliminate the database bottleneck, Figure 4
depicts a con�guration in which database servers are
also replicated along with the Web and Application
server pairs. In this setup Cisco's LocalDirector is
also used to direct user traÆc for balancing the load

WS

AS

WS

AS

WS

AS

WS

AS

DBMS DBMS DBMS DBMS

Traffic Director

Figure 4: Architecture Featuring Multiple Servers

among multiple components. In addition to the Web
servers, there are four database management systems,
each serving queries from a single Web and application
server suite. Note that this architecture has the ad-
vantage of being very simple. However, it has two ma-
jor shortcomings: (1) since it does not allow caching
of dynamically generated content, it still requires re-
dundant computation when users make duplicate re-
quests; and (2) it requires costly database synchro-
nization.

In order to estimate the cost of synchronization,
consider the following. Assume that all of the up-
dates are �rst received on a master database and then
broadcasted to all other (slave) databases. Since the
e-commerce site needs to maintain consistency across
all copies of databases, an update will commit only
when a transaction is committed across all databases.
To prevent accesses to stale data, between the time
at which the slave databases receive the update infor-
mation until they receive the �nal commit acknowl-
edgment, the updated data item (tuple, page, or ta-
ble, depending on database implementation) must be
locked. Therefore, queries that rely on this particu-
lar data item cannot be processed until all databases
incorporate the updates and inform the master and
master informs the slaves to remove locks on the data
item. Alternatively, if synchronization is not essential,
we can use asynchronous replication at the expense of
weaker consistency.

2.5 Redundant Application Server/Data
Cache Approach

Wide-area database replication allows database copies
to be distributed across the network. The goal of this
approach is to o�set the high cost of replica synchro-
nization by moving the data closer to the users (sim-
ilar to caching in which data is moved closer to the
users). However, as shown in Figure 5, this requires a
complete e-commerce web site suite (i.e. Web server,
application server, and DBMS) to be distributed along
with the database replicas. Figure 5 shows a con-
�guration in which the WS/AS/DBMS suite is in-
stalled in remote parts of the network to handle most
of the requests which require only accesses to the

DBMS

DB Cache

AS

WS

DB Cache

AS

WS

DB Cache

AS

WS

DB Cache

AS

WS

CDN Redirection

Update propagationUpdate requests

Read requests

Requests

User

Figure 5: Caching Database Content for E-Commerce
Site Acceleration

database replicas. The updates to the database are
still handled using a master/slave database con�gu-
ration and therefore all updates are handled via the
master DBMS at the origin site. The scheme for di-
recting user requests to the closest server is the same
as what typical CDNs are using.

In order to distinguish between the asymmetric
functionality of master and slave DBMSs, we refer the
remote DBMS copies as data cache or DBCache since
they are basically read-only copies and cannot be up-
dated directly. DBCache can be a lightweight DBMS
without full management functionality since no up-
date operation will be executed at these suites at the
remote locations; typically data centers. In [8] Qiong
et al. present an extension to the existing federated
features in IBM DB2 UDB, which enables a DB2 in-
stance to become a DBCache without any application
modi�cation.

Either a pull or a push method can be used to
keep DBCache synchronized with the master DBMS.
For example, Oracle 9i i-cache uses a pull method
in which the DBCache periodically synchronizes with
the master DBMS. Oracle 9i supports two synchro-
nization methods: incremental refresh or complete re-
fresh. Typical production environment will employ a
hybrid approach in which a complete refresh is done
at a coarser granularity (e.g., once in a day) and in-
cremental refresh is done at a �ner granularity (e.g.,
once every hour).

3 CachePortal: A Case Study of Multi-
tiered Caching Solution

In this section we describe an open architecture for ac-
celerating delivery of e-commerce content over wide-
area networks. The architecture and underlying tech-
nology, referred to as CachePortal, enables caching of
dynamic data over wide-area networks.

3.1 System Architecture

A generic system architecture deploying NEC's
CachePortal technology is illustrated in Figure 6. The

functionality of Web servers, application servers, and
DBMSs are the same as described in Figure 1 in Sec-
tion 1. In addition to the system described in [7], this
new system architecture features a newly developed
cache manager, an XJDBC cache server for JDBC
database access layer caching, and a modi�ed sni�er
module. We describe their functions and data/control
ows among these components next:

3.1.1 Cache servers

There are three types of cache servers: edge, frontend,
and XJDBC cache servers.

Edge cache servers: Edge cache servers are usu-
ally provided by CDN service providers, such as
Akamai[9], that have arrangements with ISPs to have
their cache server located within ISPs.

Frontend cache servers: Frontend cache servers are
usually provided by content providers and Web sites
instead of CDN providers. Frontend cache servers can
be either software-based or hardware-based.

XJDBC cache servers: The XJDBC cache server
is deployed between the AS and the DBMS to provide
JDBC layer data caching functionality. It provides not
only the necessary connectivity between the applica-
tion server and DBMS, but also provides caching, in-
validation, pre-fetching, refresh functions for database
accesses by the application server. Unlike the fron-
tend/edge cache servers which store Web pages, the
storage unit at the XJDBC cache servers are the
query results. In our current implementation, all three
kinds of cache servers are software-based. Edge cache
servers and front-end cache servers are implemented
on top of Apache Web Servers.

3.1.2 CachePortal software modules

Sni�er: Sni�er is a software module that behaves as
a wrapper to "sni�" the messages incoming and out-
going to and from the application servers. When a re-
quest arrives, Sni�er extracts the URL string, cookie
information, and IP address of the requesting cache
server. After this information is extracted, Sni�er as-
signs (i.e. tags) each request a unique identi�er and
forwards the request back to the appropriate applica-
tion server servlet. When a unique-identi�er-tagged
servlet issues database queries through JDBC, Sni�er
extracts the identi�er of the requesting servlet and the
query statements. Sni�er then uses the unique identi-
�er to associate each page and its corresponding query
statements issued to generate the page. The associa-
tion is then stored in the URL=DBQueryMapping.

Invalidator: Invalidator periodically polls the
database log to monitor database content changes.
The invalidator receives the log in the form of new
value and old value for those tuples which have been
inserted, deleted, and updated. Based on the tu-
ple values and URL=DBQueryMapping, Invalidator
is responsible for identifying the query results that

Cache
Manager

Cache log

Invalidation

Invalidation

Caching Policy

Caching Policy

Cache Log

URL/Query Mapping

ServerSniffer

Invalidator

Application

Frontend/Edge
Cache

DBMS

Result pageURL+parameters

Request:
cookie

Query Results/

Validation

Database change

Validation
Queries/

Query ResultsQueries

URL/Query
Mapping

URL/Query
Mapping

Cache log

Web Server

Innocation:
program parameters Cookie Result page

Request Result page

Invalidation Log
URLs

Invalidated

Caching Policy

Invalidated URLs

Caching Policy /

Invalidation History

self−tuning Rules

Cache Hit/Miss History

Messages

Messages

Cache
XJDBC

Figure 6: System architecture of a database-driven web site with CachePortal technology

should be invalidated. Once the query results are iden-
ti�ed, the query statements and associated cookie in-
formation are sent to Cache Manager to determine the
corresponding URLs and the IP addresses where the
pages are cached. Cache Manager then sends out in-
validation messages to the appropriate cache servers.
Invalidator is also responsible for maintaining the in-
validation log, which will be utilized by Cache Man-
ager to determine the caching priority of each page.
The detailed information of invalidation schemes is
described in [10].

Cache Manager: Cache Manager is responsible for
various tasks: (a) it maintains the IP addresses of the
cache servers where the pages are cached; (b) it tunes
replacement strategies and enforces the caching poli-
cies, which specify the rules regulating which URLs
must be cached and which others must not be cached;
(c) it pulls the cache logs from the frontend, edge,
and XJDBC cache servers and (d) sends out invali-
dation messages. In the current implementation, the
cache manager maintains persistent connections with
all cache servers and the XJDBC cache.

3.1.3 Operational �les

URL/DB Query Mapping: The URL/DB query
mapping is constructed by the sni�er. The URLs here

are extended to include the IP address of the cache
servers and cookie information. The URL/DB Query
Mapping is maintained as follows: (1) When a query
result is invalidated (i.e. identi�ed by the Invalidator),
the Invalidator will delete the URL/DB Query entries
that are associated with the query being invalidated;
(2) If a page is speci�ed as non-cacheable based on the
caching policy, the URL/DBQuery entries that are as-
sociated with the page are deleted from the mapping
so that the Invalidator does not need to check such
pages; and (3) If a query result set in the XJDBC
cache is deleted due to replacement operations initi-
ated by the tuning tasks of the Cache Manager or the
XJDBC cache itself, the URL/DB Query entries that
are associated with deleted pages or query result sets
are removed from the mapping so that the Invalidator
does not need to check.

Cache logs: The cache hit and miss history �les are
gathered by the cache manager from front-end cache
servers, edge cache servers, and the XJDBC cache
servers. The cache hit and miss history �les are used
by the Cache Manager to tune the cache policy and
the caching priority of objects (i.e. pages and query
result sets).

Cache policy: The cache policy consists of rules on
what to cache and what not to cache using regular ex-
pressions. It also speci�es the caching priority of cer-

Figure 7: Comparisons of hit rates and invalidation rates

tain objects that are currently in the caches or objects
with high hit rates. The cache policy also includes
self-tuning algorithm speci�cations that will be used
by the Cache Manager to tune the cache replacement
strategy.

Invalidation log: The invalidation log �le stores the
invalidation history and frequency of objects cached.
This information is used by the Cache Manager to
tune the cache replacement strategy and calculate ob-
ject caching priority.

3.2 Cache Management in Consideration of
Invalidation

The problem of cache replacement has been exten-
sively studied. Many algorithms have been proposed
for general purpose caching, such as LRU and LFU.
Some variations of these are designed speci�cally for
cache replacement of Web pages. However, in the
scope of dynamic caching for a Web site, cache in-
validation rates is an important factor since a high
invalidation rate will lead to a potentially high cache
miss rate in the future. As a result of the high miss
rate, the WAS and DBMS have to handle a higher load
to generate Web pages. Also, as a result of high in-
validation rate, the Invalidator component requires to
handle more invalidation checking, issue more polling
queries to the DBMS, and send out more invalidation
messages.

We have developed a self tuning cache replacement
algorithm (ST) that takes into consideration (1) user
access patterns, (2) page invalidation pattern, and (3)
temporal locality.

The caching priority of each page is re-calculated
periodically. In the current implementation, the pri-

ority is re-calculated every minute. Note that the fre-
quency of re-calculation does have an impact on the
cache hit rate. Potentially, the more often the caching
priorities are re-calculated, the higher are the cache
hit rates. The frequency of re-calculation should be
dynamically adjusted by considering the trade-o� be-
tween the bene�t of higher hit rates and the additional
cost incurred due to frequent re-calculations.

The access rate and the invalidation rate is the ac-
cess count and invalidation count within a time period.
The caching priority of a page during a time period t,
Caching priority(t), is calculated as

(1� �)�
access rate

invalidation rate+ 1
+ ��Caching priority(t� 1)

where � is the temporal decay factor whose value is
between 0 and 1. A value of 1 for � makes the system
treat all access patterns equally, while a value of 0
makes the system consider only the access patterns
during the current time period. Currently the value
of � is set to 0:8.

The intuition behind this formula is that it esti-
mates the average number of accesses for the page
between any two successive invalidations. The higher
this number the larger the bene�t to keep this page in
the cache. Note that in our current implementation,
when a page is initially accessed by users, the cache
manager does not try to keep it in the cache unless
it is speci�ed by the cache rule as "must be cached".
The cache manager will monitor the caching priority
of a page and will cache the page when its priority is
higher than a certain threshold value.

We have conducted experiments to evaluate our al-
gorithm (ST) and compare its performance with LRU
and LFU algorithms, two of the most frequently used

algorithms. We also measured the performance of
cache hits when no replacement strategy is deployed
(NR). Under the NR strategy, the cache server will
continue to �ll in the pages until it is full. When the
cache is full, a page will be cached only after some
pages are removed due to invalidation. In the latter
part of this section, we will provide our analysis on
the performance of the ST algorithm. In the analysis,
the hit rate of NR algorithm will be viewed as a lower
bound of the hit rate. The analysis will also show the
potential upper bound for the hit rates under various
experimental settings.

The general experimental settings are as follows:
The total number of the pages in the system is 5000,
whereas the cache size is 1000 pages. All pages are
of the same size. In the experiments, the cache starts
empty and each experiment is run for 200 minutes,
where 5 requests are generated per second. The
page access pattern shows an uneven distribution (W

X
,

where W percentage of the user requests access to X
percentage out of all 5000 pages). The invalidation
rate is also 5 requests among all 5000 pages per sec-
ond. The invalidation pattern also shows an uneven
distribution (Y

Z
, where Y percentage of invalidations

a�ect Z percent of the pages). When the access pat-
terns change, these parameters stay the same, whereas
the set of popular pages change. Note that the inval-
idation pattern is assumed to be independent of the
user access patterns. The cache hit rate is calculated
every 200 seconds.

In Figure 7, we summarize the average hit rates
(long bars) and the average cache invalidation rates
(short bars) for various experimental settings. The
hit rates and cache invalidation rates are calculated
after both rates become stable. As we can see in this
�gure, the hit rates achieved by the ST replacement
strategy are better than other algorithms in all set-
tings. In general it performs 5 to 10 percent better
than the most frequently used LRU and LFU algo-
rithms. This improvement is good, but it should not
be viewed as signi�cant by itself. More importantly,
the cache invalidation rates tuned by the ST replace-
ment strategy are 75% lower than the LRU and LFU
algorithms. This is because LRU and LFU only track
access patterns and do not account for update activ-
ities and invalidation patterns. On the other hand,
ST tracks both. The combination of higher hit rates
and lower invalidation rates give us the advantages of
faster delivery from the caches and faster generation
of the missed pages due to lower system load.

3.3 Handling Fragmented Pages and JSP-
based Dynamically Assembled Pages

Frames are frequently used in most commercial Web
sites for the exibility they provide in page format-
ting and layout as well as to simplify users' naviga-
tion. The Sni�er treats each request independently.
Consequently, using frames for page formatting and

layout is easily handled by the sni�er. As a matter of
fact, composing pages using frame makes a Web site
more cache friendly since it allows more caching op-
portunities by producing pages at a �ner granularity.

The concept of independently caching the frag-
ments of a web page and assembling them dynami-
cally has advantages of reducing load at the WAS. JSP
(Java Servlet Pages) pages are similar to HTML pages
in terms of syntax. In these pages, Java scripts are
embedded into the HTML code to enable web servers
to generate dynamic content. The rest of the page
appears as a static HTML page. The dynamic con-
tent is limited only to those fragment pages where the
Java script is embedded. ESI (Edge Side Includes) is
a markup language that developers can specify di�er-
ent caching properties for di�erent fragments within
the same page. These fragments can be cached as
independent entities at the edge side caches. These
fragments are assembled into a single HTML page at
the edge caches. With JSP and ESI, the caching is at
the granularity of a fragment rather than at the page
level. Web site designers who use ESI can bene�t from
the sni�er and invalidation functionality provided by
NEC's CachePortal technology at the fragment level.
Similarly, Datta et al.[11] also address the issue of
caching fragmented pages.

4 Evaluations of Approaches to Accel-
erating Web Applications

In this section, we evaluate the factors that impact
Web site performance, including network latency, re-
source utilization, cache hit rates, cache server loca-
tions, and invalidation methods. We start with a de-
scription of the experimental environment followed by
an analysis of the experimental results.

4.1 Experiment Setting

We have deployed a number of servers at NEC loca-
tions world wide acting as a small-scale content de-
livery network. All of the machines where the Web
servers and applications are located are installed on
Pentium III 700Mhz one CPU PCs running Redhat
Linux 7.1 with 1GB of memory.

For the experiments reported in this section, we
utilize those servers located in NEC facilities in San
Jose California (SJ), Princeton New Jersey (NJ), and
Tokyo Japan (JP). Each of these three facilities is lo-
cated close to a network backbone. Two networks
are available in San Jose facilities: one is used by the
C&C Research Laboratories (referred to as CCRL)
and the other one is used by cacheporal.com (referred
to as SJ). All Web servers, application servers, and
databases are located in SJ.

All user requests are from the CCRL and JP loca-
tions. The average numbers of hubs between CCRL
and SJ, and JP and SJ are 15 and 17 respectively. The
average throughput measured for JP and SJ, CCRL
and SJ, and SJ and SJ are 85.5 Kilobytes/second, 89.7

Kilobytes/second, and 589.5 Kilobytes/second respec-
tively. The average round trip time between JP and
SJ, CCRL and SJ, and SJ and SJ are 413 ms, 321 ms,
and 0.2 ms respectively. Note that the round trip time
is an integrated measurement that really has an im-
pact on the network latency. To summarize, the con-
nectivity between CCRL and SJ is better than that
between JP and SJ. And, the connectivity within the
same network is substantially better than that across
the Internet.

Each group of front-end caches, Web servers, appli-
cation servers, and databases are located in the same
network. Similarly, edge caches are placed in the same
network as the users they serve.

Oracle 8i is used as the DBMS, BEA WebLogic
6.0 is used for the Web and Application Server, and
Apache is used as for both the edge cache servers and
the front-end cache servers. The database contains 7
tables with 1 million records each.

Con�guration 1: the Web server, the application
server, and the database are located on the same ma-
chine and CachePortal technology is not deployed;
thus no cache is used.

Con�guration 2: the Web server and the application
server are located on the same machine and database
is located on a separate machine. CachePortal tech-
nology is not deployed; thus no cache is used.

Con�guration 3: the Web server, the application
server, and the database are located on the same
machine. CachePortal technology is deployed and a
front-end cache, a cache close to Web and application
servers, is used.

Con�guration 4: the Web server and the application
server are located on the same machine. and database
is located on a separate machine. CachePortal tech-
nology is deployed and an edge cache, a cache close to
the users, is used.

We next present the experimental results on impor-
tant factors that have impacts to the Web site perfor-
mance.

4.2 E�ects of Network Latency

Figure 8: Network Latency Factor

The literature contains many studies, including
[12], that evaluate the impact of the network latency
on the response time. However, large objects, such
as the image �les, are the subjects of most of these
studies. In general, the average size of a dynamic web
pages is small (i.e. 4K bytes per fragment page in
our study). Furthermore, the WAS is in general far
less scalable compared with Apache servers, poten-
tially rendering back-end delays to be more signi�-
cant than network delays. Therefore, it is essential to
conduct experiments to establish a qualitative corre-
lation between network latency and response time in
the context of dynamic web content delivery.

Figure 8 shows the response times observed by the
users for requests issued from JP, CCRL, and SJ to
SJ. The Web sites in SJ are based on Con�guration
2. All requests are served by the WAS and no cache
is used. Although the pages are relatively small (4K
byte each), the network latency has signi�cant impact
on the response times. Response times for requests in
the same ISP (i.e. SJ) is the lowest. On the other
hand, response times for requests across the Internet
are substantially higher due to the network latency.
We also �nd that the response time for the requests
from CCRL to SJ is lower than that from JP to SJ.
This experimental result is consistent with the round
trip times we measured from the networks.

4.3 E�ects of CPU Resources

We next evaluated the impact of CPU resources on
the response time. Experimental results in Figure 9
show that the response time for Con�guration 1 can
be reduced by almost 50% when a dedicated machine
is deployed for the DBMS. This is because in Con�g-
uration 1, the Web server, the application server, and
the database compete for system resources with each
other.

Figure 9: Hardware Resource Factor

4.4 E�ects of Cache Hit and Request Rates

The next experiment we conducted is to examine
the impact of cache hit and request arrival rates on

Figure 10: Edge Cache Hit Rate Factor

Figure 11: Percentage of Requests Served under 2 Sec-
onds at Various Edge Cache Hit Rates

the response time for Con�guration 4. The rate at
which requests were generated was varied from 20 re-
quests/second to 500 requests/second. Figure 10 de-
picts that the response time of the original Web site
increases linearly. On the other hand, the response
time for con�gurations with CachePortal deployed to
enable dynamic content caching remains low as the
request rate is increased. The advantage of caching
is quanti�ed by a notion referred to as the hit ratio.
For example a cache hit ratio of 80% means that 80%
of the requests are served from the cache. Clearly,
the hit ratio has an inverse relationship with the re-
sponse time. The �gure quanti�es the advantages of
increasing the hit ratio to improve response time.

Another meaningful measure is the percentage of
requests that are served under 7 seconds, where the
user abandonment rate is less than 2 percent as
claimed in the study by Zona Research[2]. However,
since a Web page usually consists of multiple frag-
ment pages, to ensure that the user requests are served
within 7 seconds, each page (either whole page or frag-
ment page) needs to be served in much less than 7 sec-
onds. As a result, we measure the percentage of the

requests that are served under 2 seconds instead of 7
seconds. In Figure 11, we see that the system architec-
tures (upper three lines) with CachePortal technology
provide good response time most of time whereas the
system architectures without CachePortal technology
(lowest line) have extremely poor performance. The
experimental results show that even when dealing with
a high volume of request at 500 requests per second
and a modest cache hit rate, an e-commerce site with
CachePortal technology can still ensure that 70 per-
cent of the requests are served in 2 seconds or less.

4.5 Edge Cache versus Frontend Cache

Figure 12: Front-End Cache Hit Rate Factor

Figure 13: User Response Time versus Front-end
Cache Hit Rates

In Figure 10, we see that the edge cache with a
high hit rate can improve the user response time sig-
ni�cantly. In the next experiment, we evaluated the
impact of cache hit rates on response time in con�g-
uration 3 where a frontend cache is used. The exper-
imental results are shown in Figure 12. As expected,
the response time of the original Web site increases lin-
early. On the other hand, the response time for con�g-
urations with CachePortal to enable dynamic content
caching remains low as the request rate is increased.

Surprisingly, we discovered that a higher the cache
hit ratio did not necessarily result in lowering the re-
sponse time. We then conducted more experiments by

varying the hit rate from 0% to 100% for request rates
of 100, 200, 300, 400, and 500 per second (Figure 13).
The experimental results indicate that the lowest re-
sponse time occurs when the front-end cache hit rates
are between 60% and 70%. This was rather surpris-
ing. After further investigation, we found out that
the system resource factor also has a signi�cant im-
pact on the response time in this con�guration. This
is because the WAS needs to maintain the session con-
nections for much longer time in con�guration 3 com-
pared with that in con�guration 4. As a result, when
the hit rates are around 65%, the load is better dis-
tributed between the cache server and the WAS.

From these experimental results, we conclude that
the bene�t of cache servers are clear but where the
cache servers are located is also very important. Edge
caches provide better and consistent response time im-
provement as the hit ratio is increased. This is not the
case with the front-end caches. However, the deploy-
ment of cache servers at the network edges is in gen-
eral more expensive and requires a larger investment.
Hence there is a trade-o� in using edge caches versus
front-end caches.

5 Road Map to High Performance
Web Sites

We use the empirical results obtained through our ex-
perimental set-up to identify the factors that most in-
uence the performance of Web sites. As discussed
earlier, there are four important factors that impact
the performance of the Web sites: network latency,
system resource, cache hit ratio, and cache server lo-
cations. We have extensively evaluated caching solu-
tions for a variety of system con�gurations. In Figure
14, we illustrate the performance matrix measured in
this paper (cache hit = 80%) and we summarize the
impacts of these factors as follows:

� Network latency: It is always better to bring the
applications, data, servers, and caches close to
the users.

� System resource: System contention among sev-
eral processes/applications can result in perfor-
mance bottleneck. For example, we found that
deploying a dedicated machine for DBMS im-
proves the performance by average of 2.3X.

� Cache hit ratio: Cache hit ratios are tuneable and
the higher the hit ratio, the better the response
time (in general). However, the location of cache
servers do have a signi�cant impact to the perfor-
mance gain. For example, in our experiments we
found that under certain con�gurations the front-
end cache can become a bottleneck if the hit ratio
exceeds beyond 70%. Thus the rule of thumb is
that higher hit ratios are better as long as the
server that holds the cache has excess capacity to
serve additional user requests.

� Cache server locations: edge cache servers pro-
vide higher performance gain. Deploying edge
caches yield 50% more response time improve-
ment over deploying front-end caches. However,
deploying edge caches is more expensive.

In addition to these factors, there are two key
obstacles in enabling dynamic content caching: (1)
how to automatically derive the relationships be-
tween cached pages and database contents (i.e.
URL/database query mapping); and (2) how to intelli-
gently monitor database changes and how to eÆciently
identify impacted pages in the caches that need to be
invalidated. Aiming at these two key obstacles, NEC's
CachePortal[7, 10] does provide a suite of solutions as
described in this paper.

In Figure 15, we show a road map to improve the
response time of a Web site. In the �gure, each box
represents a system con�guration plotted in Figure 14.
On the left of Figure 15, we show a Web site without
any caching solution and its performance is poor (with
response time higher than 17 seconds). However, the
Web site has multiple options to improve its response
time. At the bottom, the �gure shows the average
response time for such a system con�guration in re-
sponding to a traÆc of 500 requests per second. From
the base con�guration (con�guration 1), we have three
options: deploying dedicated machine for DBMS; de-
ploying CachePortal and front-end cache; or deploying
CachePortal and edge caches.

Based our experimental evaluation, we found that
option 1 results in 53% reduction in response time;
option 2 results in 72% reduction; and option 3 re-
sults in 81% reduction. However, the best case arises
when we use both dedicated machine for the DBMS
and deploy CachePortal with edge-caches. In this case
the overall response time is reduced by 89%. As we
can see and learn from the experiments, the best sys-
tem con�guration is to deploy dedicated machines for
DBMS and WAS. Furthermore, the Web site should
deploy CachePortal (or another invalidation system)
to enable dynamic content caching and CDN services
that can deliver database driven content through edge
caches.

6 Related Work

Applying caching solutions for Web applications and
content distribution has received a lot of attentions in
the Web and database communities[7, 13, 14, 15, 16].
Dynamai [3] from Persistence Software is one of the
�rst dynamic caching solution that is available as a
product. However, Dynamai relies on proprietary soft-
ware for both database and application server compo-
nents. Thus it cannot be easily incorporated in exist-
ing e-commerce framework. Challenger et al. [4, 5, 6]
at IBM Research have developed a scalable and highly
available system for serving dynamic data over the
Web. In fact, the IBM system was used at Olympics
2000 to post sport event results on the Web in timely

Figure 14: Performance matrix measurement for various caching solution deployments (cache hit = 80%)

Deploy CachePortal and front−end cache

Deploy CachePortal and edge cache

Deploy dedicated machine

for DBMS

to edge cache

Upgrade front−end cache

for DBMS

Deploy dedicated machine

Upgrade front−end cache

to edge cache

~17 seconds

~ 8 seconds

~ 4.8 seconds

~3.2 seconds
~ 1.8 seconds

for WAS/DBMS

Single Machine

Web Site with

CachePortaled

for WAS/DBMS

Single Machine

Web Site with

CachePortaled

for WAS & DBMS

Dedicated Machines

Web Site with

4

2 6

3

High PerformanceLow Performance

High Performance

Web Site

CachePortaled

& frontend cache

5

CachePortaled

Web Site with

Dedicated Machines

for WAS & DBMS
& frontend cache

Deploy dedicated

machine for DBMS

& edge cache

Average Response Time at Request Rate of 500 per Second (80% cache hit rate)

Deploy CachePortal and front−end cacheWeb Site with

Single Machine

for WAS/DBMS

1

Figure 15: Road map to high performance web sites and response time improvement

manner. This system utilizes database triggers for
generating update events as well as intimately relies
on the semantics of the application to map database
update events to appropriate Web pages. In [17] De-
olasee et al. proposed an approach of adaptive push-
pull to ensuring Web content freshness. In [18] Ninan
et al. introduce the notion of cooperative consistency
along with a mechanism, called clustered leases, to
achieve both scalability and exibility of consistency
maintenance. By using a single lease for multiple prox-
ies, clustered leases allows the notion of leases to be
applied in a exible and scalable manner to CDNs.

7 Conclusion

In this paper, we begin by addressing system archi-
tecture issues associated with caching and accelera-
tion for Web applications. We analyze the factors
that have impacts on the performance and scalabil-
ity of a database-driven Web site in the scope of
NEC's CachePortal technology. We have built an
e-commerce Web site using some of the most popu-
lar commercially available software as building blocks.
We identify the important factors that impact the per-
formance of the Web sites, including network latency,
system resource, cache hit ratio, and cache server lo-
cations. Through extensive experimental evaluations,
we observe that in general caching is a good solution
to Web application acceleration. We believe these ex-
perimental results provide valuable guideline and road
map to engineer a high performance Web site.

References

[1] N. Bhatti, A. Bouch, and A. Kuchinsky. In-
tegrating user-perceived quality into web server
design. In Proceedings of the 9th World-Wide
Web Conference, pages 1{16, Amsterdam, The
Netherlands, June 2000.

[2] Zona Research. http://www.zonaresearch.com/.
[3] Persistent Software Systems Inc.

http://www.dynamai.com/.
[4] Jim Challenger, Paul Dantzig, and Arun Iyengar.

A Scalable and Highly Available System for Serv-
ing Dynamic Data at Frequently Accessed Web
Sites. In Proceedings of ACM/IEEE Supercom-
puting'98, Orlando, Florida, November 1998.

[5] Jim Challenger, Arun Iyengar, and Paul Dantzig.
Scalable System for Consistently Caching Dy-
namic Web Data. In Proceedings of the IEEE IN-
FOCOM'99, New York, New York, March 1999.
IEEE.

[6] Eric Levy, Arun Iyengar, Junehwa Song, and
Daniel Dias. Design and Performance of a Web
Server Accelerator. In Proceedings of the IEEE
INFOCOM'99, New York, New York, March
1999. IEEE.

[7] K. Seluk Candan, Wen-Syan Li, Qiong Luo,
Wang-Pin Hsiung, and Divyakant Agrawal. En-
abling Dynamic Content Caching for Database-

Driven Web Sites. In Proceedings of the 2001
ACM SIGMOD Conference, Santa Barbara, CA,
USA, May 2001. ACM.

[8] Qiong Luo, Sailesh Krishnamurthy, C. Mohan,
Hamid Pirahesh, HongukWoo, Bruce G. Lindsay,
and Je�rey F. Naughton. Middle-tier Database
Caching for e-Business. In Proceedings of 2002
ACM SIGMOD Conference, Madison, Wisconsin,
USA, June 2002.

[9] Akamai Technology. Information available at
http://www.akamai.com/html/sv/code.html.

[10] K. Selcuk Candan, Divyakant Agrawal, Wen-
Syan Li, Oliver Po, and Wang-Pin Hsiung. View
Invalidation for Dynamic Content Caching in
Multitiered Architectures . In Proceedings of
the 28th Very Large Data Bases Conference,
Hongkong, China, August 2002.

[11] Anindya Datta, Kaushik Dutta, Helen M.
Thomas, Debra E. VanderMeer, Suresha, and
Krithi Ramamritham. Proxy-Based Acceleration
of Dynamically Generated Content on the World
Wide Web: An Approach and Implementation.
In Proceedings of 2002 ACM SIGMOD Confer-
ence, Madison, Wisconsin, USA, June 2002.

[12] R.L. Carter and M.E. Crovella. On the network
impact of dynamic server selection. Computer
Networks, 31(23-24):2529{2558, 1999.

[13] C. Mohan. Application Servers: Born-Again TP
Monitors for the Web? (Panel Abstract). In Pro-
ceedings of the 2001 ACM SIGMOD Conference,
Santa Barbara, CA, USA, August 2001.

[14] C. Mohan. Caching Technologies for Web Appli-
cations. In Proceedings of the 2001 VLDB Con-
ference, Roma, Italy, September 2001.

[15] Mitch Cherniack, Michael J. Franklin, and Stan-
ley B. Zdonik. Data Management for Pervasive
Computing. In Proceedings of the 2001 VLDB
Conference, Roma, Italy, September 2001.

[16] Qiong Luo and Je�rey F. Naughton. Form-Based
Proxy Caching for Database-Backed Web Sites.
In Proceedings of the 2001 VLDB Conference,
Roma, Italy, September 2001.

[17] P. Deolasee and A. Katkar and A. Panchbudhe
and K. Ramamritham and P. Shenoy. Adaptive
Push-Pull: Dissemination of Dynamic Web Data.
In the Proceedings of the 10th WWW Confernece,
Hong Kong, China, May 2001.

[18] Anoop Ninan and Purushottam Kulkarni and
Prashant Shenoy and Krithi Ramamritham and
Renu Tewari. Cooperative Leases: Scalable Con-
sistency Maintenance in Content Distribution
Networks. In the Proceedings of the 11th WWW
Confernece, Honolulu, Hawaii, USA, May 2003.

