
����� ���	�
���
�����
�������������
�������������! "��#� "$&%'�)("*�+�,	*�("*.-	��/
0� "�1("0��"�

I.Alexandrov1, A.Amorim2, E.Badescu3, M.Barczyk4, D.Burckhart-Chromek4, M.Caprini3,
M.Dobson4, J.Flammer4, R.Hart5, R.Jones4, A.Kazarov4,8, S.Kolos4,8, V.Kotov1, D.Liko4,

L.Lucio2,4,7, L.Mapelli4, M.Mineev1, L.Moneta6, I.Papadopoulos4, M.Nassiakou4,9, N.Parrington7,
L.Pedro2, A.Ribeiro2, Yu.Ryabov8, D.Schweiger4, I.Soloviev4,8, H.Wolters2

1) Joint Institute for Nuclear Research, Dubna, Russia
2) FCUL (Science University of Lisbon), Lisbon, Portugal
3) Institute of Atomic Physics, Bucharest, Romania
4) European Organization for Nuclear Research (CERN), Geneva, Switzerland
5) National Institute for Nuclear Physics and High Energy Physics (NIKHEF), Amsterdam, Netherlands
6) Physics Section, University of Geneva, Geneva, Switzerland
7) Sunderland University, Sunderland, England
8) Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg, Russia
9) NTUA, National Technical University of Athens, Athens Greece

2436587:9<;>=<7
ATLAS will be one of the four detectors for the
LHC (Large Hadron Collider) particle
accelerator currently being built at CERN,
Geneva. The project is expected to start
production in 2006 and during its lifetime (15-20
years) to generate roughly one petabyte per year
of particle physics’ data. This vast amount of
information will require several meta-data
repositories which will ease the manipulation and
understanding of physics’ data by the final users
(physicists doing analysis). Metadata repositories
and tools at ATLAS may address such problems
as the logical organization of the physics data
according to data taking sessions, errors and
faults during data gathering, data quality or
terciary storage meta-information.
The OBK (Online Book-Keeper) is a component
of ATLAS' Online Software - the system which
provides configuration, control and monitoring
services to the DAQ (Data AQquisition system).
In this paper we will explain the role of the OBK
as one of the main collectors and managers of
meta-data produced online, how that data is
stored and the interfaces that are provided to
access it - merging the physics data with the

collected metadata will play an essential role for
future analysis and interpretion of the physics
events observed at ATLAS. We also provide an
historical background to the OBK by analysing
the several prototypes implemented in the
context of our software development process and
the results and experience obtained with the
various DBMS technologies used.

?�@�A8B6C:D<E>F6G6H<C:IJE>B
HEP (High Energy Physics) has traditionally been a
heavy user of database techniques and products, usually at
significantly higher levels than the typical market
demand. This is due to the enormous amount of data
samples physicists need to collect and store in order to be
able to produce statistics which are accurate enough to
validate their theories.

ATLAS is one of the four detectors being built for the
LHC particle accelerator at CERN to be completed in
2006. After being accelerated, particles will collide inside
the detector. From observing the results of those collisions
physicists expect to be able to expand our knowledge on
the basic contituents of matter.

Physics data ready for analysis is composed of what
physicists call events – each event describes the
interaction of particles and their final state products. The
process of producing and storing interesting events is
however a very complex problem: in the detector the real
events occur at rates that require extremely sophisticated
hardware and software to filter out only a fraction
(1/107), which at the ATLAS may still mean 100
interesting events of 1 megabyte each, per second. Given
that ATLAS is expected to run for 15-20 years, the

K�LNMPORQ SPSJQ TVUXW T)YNT Z\[X]^Q W _`Tba`WVcVLdLfe\g ghTbMhZie:MJWhT cjW _kQ SlO^e`W LNMJQ e`gmQ Son`MPe:U`W LdpZ�MJTVq:Q p1LdprW _:e`WsW _1LtYNT ZuQ LdS4e:MPL�U`T1WvOme:p1LwTbMxp\Q SJW MJQ yba`W LNp�cbTbM4pkQ MPLVYNWYVTbO^O^LNMPYbQ e\g�e:p1qde:U\W e:n1LNz<W _1Lv{V|~}^��YNT Z\[\MJQ n1_`W�U\T:W Q YdL�e:U1p�W _1LfW Q W g LfT c"W _1LZ�a1y1g Q YJe\W Q TbUfe:U:p�Q W S�p:e\W LlePZ:Z�Lde1MPz�e:U:pfU\T:W Q YdL6Q S�n~Q qNLdUjW _:e\W�YNT Z\[8Q UbnXQ SoyP[Z�LNMPORQ SPSdQ TbU�T cwW _:L
{bLNM [�|8e1M�n`L�}�e`W ew��e1S�L���U:p`Tb]uO^LdU\W ���`T�YVT Z`[T1W _1LNM�]^Q S�LNz\TbMuW T>MPL Z�a`y:g Q S�_1z1MPLd�1a\Q MPLNS�e8cNLNLme:U1pN� TbM<S Z�LVYVQ e\gPZiLNMPORQ SPSdQ TVU8cVMJTbOW _:Lh�iU1p`TV]uO^LdU\W�h�:�k�:�:�1�i� �i�~�^�k�\�:�i�<�h�k ¡8¢�£�¤¦¥�§¦¨k©iª�«:¬1«:©�­:«:®¯�¨~©i°f±)¨k©i°~®~§¦²i³ ©i´k®Nµh¶~¶Nµ

generated databases may go up to tens of petabytes
[SHI98].

However, the data produced is not limited to events.
Such large machines (the LHC and ATLAS) are
composed of many sub-systems which have their role in
data-taking. Since all these sub-systems are highly
configurable and/or may change over time, all the
parameters and running conditions will also have to be
stored for later contextualization of the collected events.
These additional databases may include for example
software and hardware configurations of the computing
infrastructure, alignment of the parts of the detector or
environmental conditions like pressure, temperature and
other information that need to be taken into consideration
to achieve precise physics measurements.

In order to make the massive amounts of data
contained in the above mentioned databases accessible
and understandable by the physicists doing analysis,
metadata (data about data) is useful and necessary.
Although it is difficult to define the boundary between
what is data and what is metadata, in this paper we take
on the following definition: metadata is “ ·�¸�¹ ¸»º�¼�½ ¾k¼¿ ¸�ÀkÁkÂ�·�¸�¹ ¸ ¿jÃ�Ä Á�¸�¾k¾kÁkÂbÂb½ Å�Æ Á�¹ Ã ¹ ¼�Á�Ç�ÂbÁ Ä ” [BAR97]. In this
sense several systems within ATLAS may be considered
as metadata repositories. The OBK in particular deals
with online cataloging of physics’ information.

How these metadata databases are organized and
accessed, how they will interact with the main databases
or what technologies will they employ is still unclear,
given that the subsystems are still being built and will
only be ready for production in 2006. This paper tries to
address some of these questions from the viewpoint of
the OBK. References to other metadata repositories in
HEP are also provided in order to better put the problem
into perspective.
È�É ÈËÊjÌ�ÍJÌ�ÎhÌ�ÏbÐ"ÍJÐkÑkÒhÓhÔ�Õ Ô�Ö�×vÎhÌ�ÑkØuÖ�ÙkÔ�ÚhÓhÛ
As mentioned before, database technology has always
been a hot topic in the HEP experiment domain. Until
recently however, either because of market solutions’
limits of performance and scalability or because of
physicists’ preference for custom solutions, the HEP
world and the database community often did not
collaborate in finding solutions to their common
problems.

Commercial databases made their appearance in HEP
experiments during the 1980s for the handling of book-
keeping data (metadata). The management of physics’
data itself was left to specialized solutions. In the 1990s
however, given the appearance of more flexible data
models (Object Oriented) and the increasing performance
and scalability of commercial DBMSs, the HEP
community showed interest in the available technology.

In the context of the future LHC experiments –
including ATLAS – the RD45 project at CERN set out to
test commercial DBMSs for HEP requirements [MAL97].

The Object Oriented design model was of particular
interest, given that it is a closer match for particle physics’
needs in term of data model than previous relational
approaches. As a result of the RD45 project, the
Objectivity/DB DBMS was chosen as a vehicle for study
of LHC long term data. As will be explained in this paper,
the OBK also followed this trend in a first prototype
iteration. Note that specific solutions are still very present
in the current ATLAS database panorama, along with
market solutions other than Objectivity/DB.

Currently, investigations by CERN/IT group
[NOW01] point to Object/Relational DBMSs as the future
of databases in HEP. Oracle 9i attracted a lot of attention
for its rich data model as an implementation of SQL:1999
and also for its VLDB oriented features.

Ü>Ý�Þ�ß6à�á�â6ãJäåâ6àwæ^ç>è1ébê�ë>ì<à�è1ì<ç>íîé:ß6à�á�ïñðóò�ô
õ äJà<ê�ö6ç>äåâ6é

To understand what kind of metadata the OBK stores and
the technology context the system fits in, this section of
the paper provides an overview of the Online Software,
focusing on the components the OBK interacts with most.

÷�ø ùvújûkükýhþ ÿ��kükÿ��hû������^ÿJý���	�
�� þ
���
����Jÿ ����û��
The OBK is a software component of the Online

Software, which in turn is a sub-system of the TDAQ
(Trigger-DAQ) – the set of software and hardware
systems responsible for acquiring, filtering and moving
event data from the detector to mass storage, in order to
make it available for subsequent analysis.

The role of the Online Software is to provide to other
TDAQ systems configuration, control and monitoring
services. It excludes however the processing and
transportation of physics’ data [ATL00]. More
specifically, the Online Software provides such services
as uniformly assigning commands to other systems so that
they can change state coherently, interfaces to databases
which hold parameters for the configuration of the whole
TDAQ, inter process communication facilities,
monitoring (including sampling and data quality checks)
and book-keeping services. A range of ancilliary services
such as graphical user interfaces are also included.

As can be understood from the above explanation, the
Online Software is a generic framework designed to be
able to supervise many distinct data taking configurations.
Since the ATLAS will be a very large machine whose
components must work concurrently, the Online Software
is also reponsible for managing that concurrency in terms
of software. A subset of the detector and TDAQ
hardware/software able to acquire data independently is
called a ������� � � � ��� .

The architectural configuration of the Online software
can be observed in figure 1. The various components are
bunched in groups called ���������! �"�#$��"�%���%�& � , which
include ')(�*,+.-�*�/ 0�-�1 , 2�3�4�4�5�6�7 8�6 , 9�:�;�< = :�>�< ;�? , @BA�C�D E E D F�GIH

and JLK�M K�N�K�O�P�O . In order to interact with the TDAQ
systems the Online Software supervises, a custumizable
programatical interface called QSR�T�U�VXW.R�Y�Z [�R�V V \�[is
provided to each of those systems.

]�^]`_.a�a�bdc�bde�egf�h i�j`k�l�m�l`n�a�o�p�q�e�n
The OBK is considered to be part of the Databases

super-component together with the Configuration
Databases – although the roles of the two components are
quite distinct. A high level description of the purpose of
the OBK inside the Online Software is provided in
[ATL00] and goes as follows: the OBK “ r�s�t�u�v w�x�y
v z|{~}�s��Lr�� v }�z`r���}������ u�x���r�� r`s�x�t�}�s���x���� }.��x�s��Lr�z�x�z���y�� }�s�r���x
����� u�x��$�B��yI�dy�� x��L�g����s�x�t�}�s���y�� u�x`v z|{~}�s��Lr�� v }�z�� }���x`� r�� x�s
��y�x��`����s�v z�����r�� r�r�z�r�� �dy�v y�}�z`r.��x�s���s���z���r�y�v ySr�z�����s�}�w�v ��x�y
r�z����L��x�s�}|{�v z�� x�s {~r�t�x�y.{~}�s�s�x�� s�v x�w�v z���r�z���������r�� v z���� u�x
v z|{~}�s��Lr�� v }�z ” . In particle physicists’ jargon, a ����
corresponds to a data-taking period with a certain
parameterization of the systems involved. The OBK can
be defined as a run cataloger.

A significative part of the non-physics information
circulates inside the TDAQ by means of the Online
Software’s Messaging super-component, which includes
the IS (Information System) and the MRS (Message
Reporting System). Both the IS and the MRS use as
backbone the IPC (Inter Process Communication)
package, a CORBA implementation [AMO97]. The MRS
is aimed at providing a facility which allows all software
components in the ATLAS DAQ system and related
processes to report error messages to other components of
the distributed TDAQ systesm. On the other hand, the IS
provides a mean of inter-application information
exchange in the distributed environment. The structure of
the IS and MRS messages is highly flexible and
parameterizable.

Other non-physics data sources which are interesting
from the OBK’s point of view are the Configuration

Databases. Since this component manages configuration
data for all of the TDAQ, some of that data will be
relevant for correctly cataloging runs. The configuration
databases component relies on OKS (Object Kernel
Support) [JON97] for database schema definition an data
persistency. OKS is an Online Software homegrown
solution and acts as an object oriented in-memory
persistent object manager.

IS, MRS and Configuration Databases make data
available through C++ APIs which the OBK needs to use.
Figure 2 depicts the interaction of the OBK with these
Online Software components.

¡�¢¤£¦¥�§�¨�©�ª�«¬©�§�­¦®�®�¯�°±¯�§�§�²�§�³

´�µ ¶¸·L¹�º�¹�» ¼�½¿¾¦¹gÀ�Á�Â�½�½�Ã�¼�Â�Ä�Å
Work on the OBK component started in 1996, within the
context of the DAQ/EF-1 [MOR97] project which aimed
at building a prototype for a full vertical slice of the DAQ
system. The implementation of this prototype had also as
objectives the study of technological and architectural
options, along with software development methodologies
and environments.

The Online Software adopted a software development
process with the following phases: problem statement;
analysis; design; implementation; testing; maintenance.
Work on the OBK followed this process loosely, applying
the described phases to each of the three implemented
prototypes.

Generically, the process used to develop the OBK can
be described as prototypical spiral, in which each
implementation follows the cascade approach while
building on reviewed requirements and previous
experience. This sort of approach seems appropriate to a
long term project in which the requirements for the
component evolve as the full system grows. To be noted
that maintenance plays as very important role in everyday
life at the Online Software, as the software is frequently

LVL1

Detector

DataFlow

SCADA

LVL2

EF

Online Sw.

Run
Control

Messaging

Monitoring

Databases

Ancilliary

Æ�Ç ÈÊÉ�ËÍÌÏÎ
– Simplified UML package diagram of the Online Software

IS

MRS

Conf. DB

OBK

Ð�Ñ ÒÊÓ�ÔÍÕ�Ö
– Simplified UML package diagram of the OBK

required to supervise simulated and real data acquisition
tests.

Another output of the development process other than
the code is the documentation. For the OBK, documents
such as the Implementation Notes, the User Manual and
Test Reports (according to a predefined Test Plan) are
produced at each prototype iteration. Some of them will
be refered to in this paper as they include interesting
results.

The Online Software makes use of a number of tools
to support the development. For example, CVS
(www.cvshome.org) is used as the code repository, SRT
(http://atddoc.cern.ch/Atlas/DaqSoft/sde) and CMT
(http://www.lal.in2p3.fr/SI/CMT/CMT.htm) – both
CERN homegrown solutions – for platform dependency
and release management, Rational Rose and Together for
high level design, Perl and Unix shells for scripting,
Framemaker for documentation generation, etc. This,
added to a multiple-language programming environment,
makes the software developing environment for the OBK
quite heterogeneous and advanced.

×�Ø Ù¸Ú�Û Ü�Ý¦Þ ß�à�ß�Þ�á�ß�â�ã�Û á�ßgä�ß�å�æ�ç�è�å¿é¦Ü�ß�å�ß�á�Û ê�è�á�ê�Ý�Û æ�ß�ê�æ�ã�á�ß
In section 2.2 a very high level description of the
requirements for the OBK has already been provided.
This paragraph extracted from the technical proposal
(latest publication in [ATL00]) was the departure point
for the work on the OBK.

The starting round of formal requirements collection
was performed in 1997 [AMO97]. The resulting
document provided a first refinement of what the OBK
should do. A brief summary of that document is as
follows:

• The OBK shall record information on a per-run basis.
This information should include: run configuration;
trigger state and configuration details; recording
device details; run dates (start/stop date and time);
accelerator beam information; data quality; error
statistics; structured user comments;

• The OBK shall provide access to the archived
information for DAQ and detector groups via a
number of interfaces which may include a general
user interface and APIs;

• The OBK shall allow the data taking period
coordinator to modify the information stored for a
particular run;

• The OBK will require the retrieval of information
from the following DAQ components: MRS,
Configuration Databases and Accelerator;

• The OBK shall be accessible during and outside
DAQ data taking sessions.

From 1997 to today, the Online Software (at the time
DAQ/EF-1 Backend) evolved in terms of design,
technology, performance and scalability. Being an Online
Software component, the initial requirements posed on the
OBK also evolved. A formal review on the OBK
requirements is in progress at the time that this paper is
being written – this review will make it possible to
incorporate requirements that came up during the three
prototype iterations and also include new desired features.

Although the requirements revision is still taking
place, it is already possible to say that the new set of
requirements is mainly a constrained version of the first
document. The main additions can be resumed in the
following points:

• Some of the data required to be stored in the first
document is now removed. However, the definition
of data quality is enhanced and the OBK is also
required to store data samples (histograms) for offline
data quality checks;

• The fashion in which the OBK acquires data is better
specified: the tool should be able to gather data either
by collecting TDAQ circulating messages which are
interesting or by requesting their production
explicitly;

• External frameworks and tools for which the data
stored by the OBK is interesting are named. This
means that interfaces with those frameworks or tools
should be investigated;

• The need for the implementation of a web-based
interface to the stored data is explicitly mentioned.

From these requirements a simple generic architecture for
the OBK can be devised. A graphical representation of
this architecture can be found in figure 3.

DBMS

OBK acquisition
software

C++ API
Web Browser
Other interfaces…

ë�ì)í î ì)ï�ð.ñ)ò�ó ôöõ�÷�ï

ø�ù úÊû�üÍý�þ
– Generic OBK architecture

The architecture of the OBK consists then of an
application which subscribes to various data sources and
stores into a DBMS online relevant data for run
cataloging. It also makes available several interfaces to
retreive that data offline.

ÿ�� ÿ������	�
���

�	��

���	�
�����������	

�
During the 4 years of existence of the OBK project three
distinct prototypes were implemented. All of them are
coded using C++ but different DBMS technologies:
Objectivity/DB (www.objectivity.com) , OKS and
MySQL (www.mysql.com). The advantages behind this
multi-technology approach are to to gain technological
expertise about different DBMS technologies and in
general to be able to make a solid recommendation for a
technological and design solution for a production book-
keeper tool.

All the OBK prototypes are available in the Online
Software’s current release (0.0.16) – the user can choose
which one to use by setting an environment variable.
��� ��� � �������
�
 ! "
! #$��%�&'�
(
As was mentioned in 1.1, Objectivity/DB was selected by
the LHC experiments study the management of long-term
data. Naturally, the first OBK prototype to be
implemented was based on this DBMS.

Being a pure Object Oriented DBMS, Objectivity/DB
provided the possibility to explore the persistent Object-
Oriented (OO) data model. Despite its power and
flexibility, this data model has less acceptance than the
Relational model, mainly because of the state of maturity
and ease of use of the latter. The reason why particle
physicists invested strongly in OO persistency in the
1990s resides in the fact that this data model is very
flexible and can describe complex particle physics
information better than the relational one. An example of
strong usage of Objectivity in HEP is the BABAR
experiment [GAP01] taking data in the United States.

This first OBK prototype was designed to take full
advantage of the data model proposed by Objectivity/DB,
which is organized into federations, databases, containers
and objects. The mapping of the collected data was quite
natural and intuitive.

Some highlights on the experience with Objectivity
are the following:

• Objectivity/DB’s schema definition mechanism
(ODMG compliant) is very powerful and reduces the
difference between transient and persistent objects.
This enables the programmer to set a mindframe on a
high-level language paradigm – OO – throughout all
the development process;

• Objectivity/DB databases at CERN are concentrated
in a small number of machines with mass storage

connections (CASTOR) and running AMS
(Advanced Multithreaded Server) for remote
requests. The Objectivity OBK prototype made use of
these services during it’s deployment;

• Being a commercial tool, Objectivity/DB provides a
large amount of features, including graphical
browsing utilities, transaction and recovery
management, etc. It has however the disadvantages of
not running on all the platforms supported by the
Online Software and also requiring a commercial
licence, which raised problems within an Open
Source developing environment such as the Online
Software.

The Objectivity based OBK prototype was succesfully
used for the 2000 test-beam, a full scale test for the
TDAQ involving a functional subdetector of the ATLAS.
A web-based browser has also been developed as part of
the prototype.
)�*)�* + ,�-/.10�2�3'4
5
The second OBK prototype used the OKS DBMS for
persistency. OKS is an in-memory persistent object
manager implemented to satisfy the specific needs of the
ATLAS TDAQ in terms of configuration databases. The
strength of the OKS lies in being lightweight and oriented
to clients which pose strong efficiency and real-time
requirements. The data model adopted by the OKS is also
Object Oriented, although not as sophisticated as
Objectivity/DB’s. At the moment, the OKS is the adopted
solution to manage ATLAS TDAQ configuration
databases. Data files (containing objects) are stored as
XML files in the filesystem (local, AFS or NFS). Access
to the data is done by explicitly reading the data files, not
through a centralized server.

The motivation to use OKS for OBK persistency came
from the fact that the commercial licence required by
Objectivity/DB posed problems when it was necessary to
run the OBK outside CERN (where the licenses are not
valid). Another reason for choosing OKS is that
Objectivity/DB ships by default with too many features
that the OBK does not use. All this extra functionality
creates an overhead for the OBK and for the Online
Software in general. Since the OKS package is already a
part of the Online Software, compilation, linking and
shipping of the code becomes straightforward.

Concerning the technical aspects of the
implementation, the mapping of the database schema
previously defined for Objectivity/DB into OKS was
relatively simple, given that both DBMSs use the OO data
model. The mapping of the Objectivity/DB concepts of
Federation, Database and Container on which the first
prototype relied posed however some challenges, given
that the OKS only has two levels in its data model

hierarchy: data file and object. Also, since concurrency
control is not implemented for OKS, that responsibility
was passed onto the OBK’s code.

This second implementation includes some
significative improvements on the first one: a more
functional web browser, a C++ API, dealing with data
quality and more object-oriented design.

When used in the 2001 test-beam the component
behaved well, acquiring several megabytes of data which
were stored on the machine’s local filesystem and later on
AFS. The scattering of data across filesystems was
however a problem that soon arose.
6�7 6�7 6 8:9<;�=?>A@�B�C'D
E
Finally, the most recent OBK prototype uses the MySQL
DBMS for data storage. MySQL is an Open Source
product known worldwide for its speed and ease of use.
Inside HEP it is also extensively used for metadata
management solutions, as will be pointed out in section 5
of this paper. MySQL implements the Relational data
model and access to its data is via a centralized server
which processes SQL queries.

The decision to implement a MySQL based prototype
was triggered not only by power of the underlying SQL
engine, but also by the desire to try a relational approach
while dealing with the OBK data.

Technically, the mapping of the predefined OO OBK
database schema into the relational model required
substantial redesigning, as the two models are essentially
different. From our point of view the relational
implementation of the schema is less elegant than the
previous approaches.

The code itself is however less voluminous and
complicated than previous approaches, given that the
C/C++ API provided by MySQL enables the execution of
high-level SQL queries instead of forcing the direct
manipulation of persistent/transient objects.

The MySQL OBK prototype is work in progress. It is
supposed to encompass all the functionality of the
previous prototypes and also to address the newly
collected requirements (see section 3.2). At the moment
that this paper is being written the acquisition and web
browsing facilities are already available and integrated
with the rest of the Online Software.

In principle the MySQL OBK prototype will be used
for this year’s (2002) test-beam.
F�G F�G HJILK
K
M
N'NPO Q1O R�MSN'O Q�T'M
U1U�V�O V
The OBK makes available several data retrieving utilities
and interfaces: command line utilities, a C++ API and a
web browser.

The command line utilility is an executable binary which
the user can pass several parameters in order to choose
what OBK data to retrieve (dump to the screen). Although
not very sophisticated, this utility can be used for example
in debug situations or when not many resources are
available.
The C++ API consists of a shared library the user can link
with his/her C++ applications to have access to the OBK
data as C++ objects. The library makes heavy use of STL
to compose the query return structures.
The web-based OBK browser makes available a graphical
version of the data through a regular HTTP client
(Netscape, Iexplorer, etc.). The mechanism relies on PHP
scripts to access the database along with the Apache
HTTP server to make the information available in the
web. We currently have a machine deployed to provide
this service. In figure 4 a snapshot of the browser can be
observed.

W�X Y�Z�[
\'] ^�_�`�_	a�]cb�dfe [gb�[g_	h�`�h�] i�_�] \'\'j	[g\
In this section we comment on some of the design and
implementation issues we found to be more relevant while
developing the three prototypes. Although some of the
remarks in the following list may seem to ovelap with
section 3.3, we try to pose them in a more generic fashion:

• k�l�m�l�n	l�o'p�o'q
r	pgs�l�t as mentioned before, the OO data
model was found to be quite flexible for mapping the
OBK data. The resulting database shemas (for
Objectivity/DB and OKS) are very natural since each
type of data to be stored is modelled into a class. That
relates to other classes in the schema through
inheritance or composition. The Relational data
model proved to be less easy to use: data types such
as collections had in fact to be treated as XML
strings, given that the data model does not support the

uwv xzy|{~}<�
– Snapshot of the OBK (OKS implementation) web browser

concept. The relational OBK database schema is less
natural than the OO one, given that classes had to be
fitted into tables and also that optimizations were
performed in order to facilitate access to the data;

• �����	�
� we found a very noticeable tradeof between
the elegance of code achieved with the OO data
model and the reduced amount/complexity of the
code in the relational prototype;

• �/����� �	��� �������P���	�1�	�
�'� ���	� while within the context of
an online system, a strong requirement for the OBK
is light weight in terms of processing and primary
memory usage. To fulfill this purpose we tried to
evolute the design in terms of minimizing accesses to
the database while keeping in primary memory the
least possible amount of data. In terms of data
retrieval we found that using caches for frequently
accessed run parameters reduced drastically read
times;

• ���'�����������/ in the MySQL prototype, XML was
used to cope with the difficulty of storing collection
types, not available in the Relational data model
implemented by that DBMS. Despite not being too
elegant, this technique seems to simplify storage of
data during acquisition and could even be used in
conjunction with the previous OO prototypes to avoid
the creation of too many simple data objects.

¡�¢ £�¤¦¥
§
¨�©�§gª�«�¬	­
¥S«�¬	®�¯'­
«�° «�±	² ° ² ³�´1² ¯�¯'µ	¥g¯
The Objectivity/DB and OKS OBK prototypes were used
in test-beams and Online Software scalability tests, as part
of the Online Software. Although some bugs were found,
no major performance or scalability problems were
identified. However, these tests envolved only a small
fraction of the final system the production OBK will have
to handle. To be able to quantify the capabilities of the
OBK we also performed tests in a controlled environment.
Some of the results are described in the following lines.

Figure 4 shows the storage time of an important MRS
message for the three prototypes. The message in question
indicates the start of a new run and triggers heavy
processing within the OBK. As can be seen, the
Objectivity/DB prototype is the slowest while the MySQL
one is the fastest. For the Objectivity/DB and OKS
prototypes a non-desirable growth in storage time can also
be observed. We attribute these differences mainly to the
evolution of the design from prototype to prototype. We
think that better tuning of the OO OBK solutions would
place them closer to the MySQL one in terms of
performance. More about these tests can be found in
[ALE01].

Scalability problems can exist in two different forms for
the OBK: in terms of data storage or in terms of data

sources. In what concerns data storage we are confident
that no major problems will arise, given that metadata
repositories are by definition orders of magnitures under
main databases in terms of occupied space. In any case, if
secondary storage is not enough, CERN makes available a
terciary storage service (CASTOR).
In terms of data sources, the OBK (OKS implementation)
was tested to understand what happens if interesting data
is produced at a rate that the OBK cannot cope with. The
tests are described in [LUC02] and involved starting a
large number of data sources simultaneously and making
the OBK subscribe to them. When overflowed, it was
observed that the OBK may cause delays to other Online
Software components. Although the simulated situation
was much above what may be required by a production
system, the results are indicative that the storage time for
the OBK should be kept as low as possible.

All the above mentioned tests were performed using
Pentium III client and server machines running Linux.

¶¸·º¹�»¸¼¾½À¿�Á¾Â�Ã�»¸¼¾Â�Ä¸¼/Å�ÆÇÁ¾È�Á¾ÉÀÊÌËÍ»¸ÉÀÎ

The OBK is work in progress. From the start of the
project in 1996 until now effort has been put into
understanding the problem of book-keeping for ATLAS
Online Software. Given the long duration of the project,
the used software developing process emphasized the
study of alternative designs and technologies by
implementing three prototypes based on different DBMS
technologies: Objectivity/DB, OKS and MySQL. These
alternative implementations also enabled us to easily
incorporate new requirements for the component as they
appeared in the context of the evolution of the TDAQ.

At the time that this paper is being written we think
we are already in a good position to recommend the
technology and the design for a production book-keeper.
However, we must also take into consideration that until
2006 ATLAS’ Online Software may still change and that
technological advances in computing happen at an
extremely fast pace. An implementation of the OBK using
Oracle 9i is not excluded.

Ï	Ð ÑgÒwÓ�Ô?Õ
 – Comparative performance of the three prototypes

Ö	×�Ø�ÙÛÚ�Ü¸Ö<ÚLÝJÖ<Ù1ÝPÞ|ßzßgà|áâÞ

0

0,05

0,1

0,15

0,2

0,25

0 50 100 150 200 250ã�äÇåçæ�è'é|êÇë
ì�äÇí

îï ðñ
ò óô Object.

OKS
MySQL

õ
ö ÷'ø'ù'÷ûúýü þ ÿzøú'ÿ����çþ ü ü ���¦þ ø úû÷ýù��ÿ��
	���
 �'ú~ü þ �'þ ü �

Also to be mentioned that the most important relevant
quality of metadata is that it should make data more
accessible to the user. Given that the ATLAS TDAQ
systems are now starting to move torwards integration, in
the close future we will have to concentrate on how the
OBK data will integrate with the main data repositories,
i.e., how to make the OBK data useful.

������������������� ��!�"
In this section, some examples of what is being currently
done in the area of metadata repositories in HEP are
provided. The set of mentioned systems is interesting
from the point of view of the OBK and does not by any
means try to represent the general state of affairs in the
area.

Inside ATLAS two systems which are very close to
the OBK are the #%$ &('($)+*-,�.(/(02143(565(798�79:9:<;�:9= [ALB01] and
the >@? A B9C9D(A�E@F(G(G(H9I�H9J9J<K�J9L [SOL01]. Both of them store run
catalog data and use as underlying technologies PHP and
MySQL.

Another interesting metadata repository being used in
ATLAS, this time for cataloging and replication of
distributed data, is the MON(P(Q(N project [WEN02]. Magda is
currently being used by the offline ATLAS Data
Challenges for keeping track of event data generated in a
simulation context. Technologies used include MySQL,
Perl, Java and C++.

Finally, although the RTS�U V WXU Y�Z project of the DataGrid
Data Management Work Package [HOS01] is not a
metadata repository on its own, it aims at providing
middleware for the integration of heterogenous SQL
based metadata repositories. Spitfire’s purpose is to act as
an intermediary between clients of metadata databases in
very large distributed systems. Underlying technologies
include (among others) Java, XML and MySQL as the
default database backend.

[�\�]T\�^�\�_a`�\�b
[ALB01] Solveig Albrand and Jerome Fulachier,
“Bookkeeping Database Search Interfaces” , URL:
http://larbookkeeping.in2p3.fr/

[ALE01] Igor Alexandrov et al., “Experience using
different DBMSs in prototyping a Book-keeper for
ATLAS’ DAQ software” , ced�f(g9h9h9i(j k(l(mnfporqtsvuecxw(y6y(z ,
Beijing, China, 2001, pp 248-251.

[AMO97] Antonio Amorim and Helmut Wolters,
“Requirements for the Run Book-keeper system for the
ATLAS DAQ prototype –1” , URL:

1 A subdetector of the ATLAS, specialized in observing
certain characteristics of the physics events.

http://atddoc.cern.ch/Atlas/DaqSoft/document/URD_27.ht
ml

[ATL00] The Atlas Collaboration, “High-Level Triggers,
DAQ and DCS – Technical Proposal” , {@|9}9~(�(� }9�(��e���T���(� �(� , CERN, Geneva, 2000, pp 165-168.

[BAR97] Antek Baranski, “Metadata” , URL:
http://wwwinfo.cern.ch/asd/cernlib/rd45/SlidesWorkshopJ
uly97/Metadata/index.htm

[GAP01] Igor Gaponenko et al., “The BABAR Database:
Challenges, Trends and Projections” , �e���(�9�9�9�(� �(�(���p��t�v� ���(�(�(� , Beijing, China, 2001, pp 9-14.

[HOS01] Wolfgang Hoschek and Gavin McCance, “Grid
Enabled Relational Database Middleware” , presented at
the �v� �(�(�(���v�� ¡£¢e�(��¤(¥ , Frascati, Italy, 2001.

[JON97] Robert Jones at al., “The OKS in-memory
persistent object manager” , ¦
§e§e§©¨@ª�«(¬(­�«(®9¯ ° ±(¬(­²±(¬³£´ ®9µ ¶9«(ª¸·(®9° ¶9¬(®9¶9¹�º»±(µ ¼ ½6¾(¹¿¬6±(¼ ½(¹tÀ ´(Á6´ ­�¯nÂ(Ã(Ã(Ä , pp 1958-
1964

[LUC02] Levi Lucio et al., “Test Report of the Online
Book-keeper for the Atlas DAQ Online Software” ,Å-ÆÈÇ@Å-É£ÊËÅ-Ì Í
Î(Ï Ð9Ñ�Î(Ò(Ó
Ô£Õ(Ï Ð×Ö�Ø(Ø

, CERN, Geneva, 2002.

[MAL97] David Malon and Eduard May, “Critical
Database Technologies for High Energy Physics” ,ÙeÚ�Û(Ü9Ý9Ý9Þ(ß à(á(âãÛpä�å æ(Ýèç(é4ê ëíì�î%ïvðòñtó(ôpõXö9÷�ö9ô(ø9ö

, Athens,
Greece, 1997, pp 580-584.

[MOR97] G. Mornacchi et al, "The ATLAS DAQ and
event filter prototype "-1" project", 10th IEEE Real Time
Conference, Beaune, France, 1997

[NOW01] Marcin Nowak et al, “Object Persistency for
HEP Data using an Object-Relational Database” ,ùeú�û(ü9ý9ý9þ(ÿ ����� û����	��
eù
�������

, Beijing, China, 2001, pp
272-275.

[OMG02] Object Management Group, “The OMG’s
CORBA website” , URL: http://www.corba.org

[SHI98] Jamie Shiers, “Building a Multi-Petabyte
Database: The RD45 Project at CERN”, �������������� � � � ��� � ��� � �"!#� ��� � ��� , Prentice Hall, 1998, pp 164-176.

 [SOL01] Igor Solovianov, “ATLAS Tile Calorimeter
Run Information Database” , URL:
http://tileinfo.web.cern.ch/tileinfo/runinfo.php

[WEN02] Torre Wenaus, “Magda – Manager for Grid-
based data” , URL: http://atlassw1.phy.bnl.gov/magda/info

