
Experience Report

Exploiting Advanced Database Optimization Features
for Large-Scale SAP R/3 Installations∗

Bernhard Zeller Alfons Kemper

Universität Passau
94030 Passau, Germany

<lastname>@db.fmi.uni-passau.de

Abstract

The database volumes of enterprise resource
planning (ERP) systems like SAP R/3 are
growing at a tremendous rate and some of
them have already reached a size of several
Terabytes. OLTP (Online Transaction Pro-
cessing) databases of this size are hard to
maintain and tend to perform poorly. There-
fore most database vendors have implemented
new features like horizontal partitioning to op-
timize such mission critical applications. Hor-
izontal partitioning was already investigated
in detail in the context of shared nothing dis-
tributed database systems but today’s ERP
systems mostly use a centralized database
with a shared everything architecture. In this
work, we therefore investigate how an SAP
R/3 system performs when the data in the
underlying database is partitioned horizon-
tally. Our results show that especially joins,
in parallel executed statements, and adminis-
trative tasks benefit greatly from horizontal
partitioning while the resulting small increase
in the execution times of insertions, deletions
and updates is tolerable. These positive results
have initiated the SAP cooperation partners
to pursue a partitioned data layout in some of
their largest installed productive systems.

∗This work was supported by an SAP contract within the
so-called Terabyte-Project.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1 Introduction

During the last years the database volumes of ERP
systems like SAP R/3 have been growing at a tremen-
dous rate, making them them hard to maintain. Most
of the data is stored in only a few very large tables
complicating the work of database administrators even
further. Especially when a company operates globally
and the ERP system has to be accessible at any time,
the time slots for performance improvement tasks like
re-creation of statistics, indices or execution plans are
very small or even non-existent.

Traditionally, performance problems in ERP sys-
tems are solved in three steps: First, the ERP system
is tuned by creating additional data access paths at the
database level (i.e., indices) or by starting many paral-
lel jobs at the application level to minimize execution
time or by upgrading to the next software release. In
a next step the hardware is tuned by optimizing the
storage system or the CPU utilization. If all of these
measures fail new computer and storage systems are
installed.

However, all of these measures do not alter the
sizes of the database. One obvious solution to this
problem would be to exploit divide and conquer tech-
niques and to balance the data and the workload across
several database instances. But most ERP systems—
including SAP R/3—are unable to handle more than
one database instance.1

To overcome this obstacle, horizontal partitioning—
an optimization feature most commercial database sys-
tem provide today—could be used. Horizontal parti-
tioning was already investigated intensively in the con-
text of distributed databases and it’s benefits (e.g., use
of divide and conquer techniques) and trade offs (e.g.,
possibly higher update costs) are well known (see Sec-
tion 6).

1There is work in progress at SAP to alleviate this bottleneck;
but until now no such system is generally available.



However, distributed database system are mostly
implemented using a shared nothing architecture con-
sisting of many single nodes connected by a wide area
network (WAN) or a local area network (LAN). Each
single node maintains its own secondary storage me-
dia (disks), main memory and CPU, i.e., one CPU
has to handle only a few (or even just one) parti-
tions. In this context performance improvements can
be gained by exploiting the local computing power
of each node, using divide and conquer techniques,
and by saving communication costs. In contrast to
that the database management systems of today’s
ERP systems use centralized databases with a shared
everything architecture—meaning that there is a small
number of CPUs on a single machine with only one
main memory and only a few disks/disk controllers.
Here, savings in communication costs will have less or
even no impact on the performance. Moreover, due to
the limited resources hazards on the disk access level
or high CPU loads are likelier to happen than in the
distributed scenario (see Section 4.3). Until now no
detailed performance evaluations of horizontal parti-
tioning techniques in such centralized large-scale in-
stallations with a shared everything architecture were
available. Therefore, it is difficult for the users to de-
cide whether or not to use horizontal partitioning or
to further rely on traditional database layouts in the
presence of mission-critical tasks.

We, therefore, were contracted by SAP to investi-
gate the impact of a partitioned database schema on
the execution times of the most performance critical
statements in a centralized scenario. When analyzing
the performance of a database system it has to be
taken into account that end users typically don’t access
a stand-alone database system; rather they use a com-
prehensive application system in which the database
system constitutes an integrated component. In or-
der to derive performance evaluations of practical rel-
evance to the end users, the entire application sys-
tem, including the database system, has to be bench-
marked. In [13] this aspect was already taken into
account for decision support queries and a standard
database benchmark was used to analyze the perfor-
mance of database management systems as back-ends
of an SAP R/3 system. In addition, in [16] tuning tech-
niques for SAP R/3 systems are described rather than
just isolated database tuning techniques.

In this performance evaluation we advanced this
methodology and simulated a “real world” appli-
cation, instead of relying on a standard database
benchmark—thereby improving the practical rele-
vance even further. We used SAP R/3 standard com-
ponents and the database schema we used is part of the
comprehensive SAP R/3 company data model. The an-
alyzed statements were extracted from SAP R/3 daily
business applications and classified corresponding to
their special “SAP structure” (e.g., select single, for

all entries, or select up to n rows). A representative of
each class of statements was chosen as the basis for our
analysis. The data was extracted from an actual pro-
ductive SAP R/3 system rather than relying on artifi-
cially generated data, as, e.g., the TPC-C benchmark
does [25].

We analyzed a variety of partitioning schemes (data
with and without index partitioning) and compared
the performance with a conventional non-partitioned
database configuration. Our results show that also in
the context of centralized shared everything database
systems horizontal partitioning can improve the per-
formance of certain tasks significantly. Especially joins,
in parallel executed statements, and administrative
tasks benefit greatly from horizontal partitioning
while the resulting small increase in the execution
times of insertions, deletions and updates is tolerable.
These positive results have initiated the SAP cooper-
ation partners to pursue a partitioned data layout in
some of their largest installed productive systems.

For the sake of readability we use the term parti-
tioning as an abbreviation for horizontal partitioning
throughout the rest of the paper.

The remainder of this paper is organized as follows:
Section 2 describes briefly the architecture of an SAP
R/3 system. Section 3 gives an overview of some tradi-
tional approaches to meet certain performance prob-
lems. Section 4 gives a brief overview of the imple-
mented partitioning features. It shows how problems
can be solved using partitioning and describes possi-
ble drawbacks of horizontal partitioning. In Section 5
we describe our performance evaluation environment
and present our results. Related Work is addressed in
Section 6. Section 7 concludes the paper.

2 Overview of SAP R/3

SAP R/3 is the market leader for integrated business
administration systems. It integrates all business pro-
cesses of a company and provides modules for finance,
human resources, material management, etc. SAP R/3
is based on a (second party) relational database system
which serves as an integration platform for all compo-
nents of SAP R/3. The database system manages the
SAP database which stores all business data of a com-
pany (e.g., customer and supplier information, orders,
. . . ), all of SAP R/3-internal control data, an SAP R/3
data dictionary, and the code of all application pro-
grams. Virtually no data are stored outside this SAP
database, thereby avoiding the use of a file system.

SAP R/3 [26, 3, 23, 13] is based on a three-tier cli-
ent/server-architecture with the following layers (see
Figure 1):

1. The presentation layer. It provides a graphical
user interface (GUI) usually running on PCs that
are connected with the application servers via a
local (LAN) or a wide area network (WAN).



relational database system
(back-end server)

6
?

LAN6?

application server 1

6?

application server 2

6?6?
. . .

. . .

LAN or
WAN

6? 6? 6?

presentation 3presentation 2presentation 1

Figure 1: Three-Tier Client/Server-Architecture of
SAP R/3

2. The application layer. It comprises the business
administration “know-how” of the system. It pro-
cesses pre-defined and user-defined application
programs such as OLTP and the implementation
of decision support queries. Application servers
are usually connected via a local area network
(LAN) with the database server.

3. The database layer. It is implemented on top of a
(second party) commercial database product that
stores all data of the system, as described above.

In a small company that uses SAP R/3, the application
servers and the database system could be installed on
the same middle-range machine and users would enter
business transactions or issue decision support queries
using their PCs. Such a configuration, however, is not
practical for large companies with a very high volume
of data and transactions. In such companies, all ap-
plication servers and the database system would be
installed on separate dedicated machines. To this end,
SAP R/3 has been ported to a large variety of hard-
ware and operating system platforms, and it is also
operational on a number of commercial RDBMSs.

SAP R/3 is a comprehensive and highly generic
business application system that was designed for com-
panies of various organizational structures and dif-
ferent lines of business (e.g., production, retailing, fi-
nance, . . . ). This genericity and comprehensiveness re-
sulted in a very large company data model with over
13.000 database tables. To manage the meta data (e.g.,
types and interrelationships) of these tables, SAP R/3
maintains its own data dictionary which is (like all
other data) stored in SAP’s relational database and
which can be used by SAP application programs.

An example for a large-scale installation of SAP
R/3 is the SAP R/3 System of Deutsche Telekom AG
[21]. Deutsche Telekom is one of the key global players
in the telecommunication market. Deutsche Telekom
makes extensive use of the Financial Accounting com-
ponent (FI) of SAP R/3 to manage the accounts of
their customers. There are extremely high volumes of
data involved in booking the large number of invoices,

dealing with payment received, processing debits and
reminders: Each of their 15 SAP R/3 systems has to
handle 200,000 invoices, about 12,000 reminders, and
approx. 10,000 modifications to customers’ accounts
per day. To each of these systems up to 1000 users
are connected at a time. To handle this workload 51
Unix enterprise servers (RM600E) as database and ap-
plication servers, running under the SINIX operating
system from Siemens Nixdorf, PCs from a variety of
vendors as clients, and 34 storage subsystems from
EMC with a total capacity of 30 Terabytes are in-
stalled at the computing centers of Deutsche Telekom.
The backup is handled by 68 magnetic tape drives,
which back up the whole database within 2 hours.

3 Traditional Performance Tuning
Techniques

Performance problems mostly arise when the tables of
a database grow and the existing data access paths be-
come inefficient. Consider for example, an application
that searches German customers with a sales volume of
100 K e and above. To do so, the application accesses
an index on the Sales field of the table

Customer 〈Name, Address, Sales . . . 〉
and selects all Customers with a sales volume of
100 K e and above. To find the German customers
the application has to filter the selected tuples by ex-
amining the Address field. While the database is small
only a few entries meet the restriction on the sales
volume field and the response time is sufficient. When
the database grows also the number of customers with
a sales volume of 100 K e might grow and filtering
all matching entries becomes inefficient. To solve this
problem, traditionally, an index is created indexing the
fields Sales and Address. But additional indices slow
down updates and insertions and make the database
harder to maintain. Moreover, when the table is very
large, also the indices are very large and don’t fit
into main memory all together. When B-trees are used
for indexing the indices are often degenerated because
in most ERP systems ascending ordered numbers are
used as artificial keys [5].

Another problem of ERP systems results from jobs
that process a large volume of data, e.g., stock-taking
jobs. To ensure that mission-critical daily business (or-
der entry, order fullfillment, . . . ) is not affected by
these jobs they have to be processed within fixed time
slots. When the data volume grows more instances of
a job are started at the application level and the data
is processed in parallel to meet the time restrictions.
But at the application level exists no knowledge of the
database schema and therefore it is hard to spread
the processing units across the running jobs correctly.
A wrong distribution of the processing units leads to
an unbalanced workload and to bottlenecks and can
cause access conflicts at the disk page level. Consider



Index Sub-TreesB+-Tree Nodes

Index

Data

Figure 2: Non-Partitioned Index Layout

for example, an application that stores the data of sev-
eral stores and clusters the data according to product
groups to support searching. Due to the clustering data
of different stores is stored on the same disk page which
causes I/O conflicts when the data of several stores is
processed in parallel. Moreover, during the growth of
the tables an existing, well designed process unit dis-
tribution can become obsolete due to data skews.

Another area where large tables occur are data
warehouses. The data of these data warehouses is ex-
tracted from the ERP systems and stored in a sep-
arate database. Sliding window techniques are used
when storing the data, i.e., only a snapshot of a few
years of the data of an ERP system is stored in a data
warehouse, e.g., the data of the last 6 years. When
new data is loaded in the warehouse the oldest data
is deleted. This deletion process is very expensive in
a traditional, non partitioned, table layout. Although
there are possibilities to speed up this process [14] it
might still not be fast enough.

If all traditional improvements fail, new hardware is
used to solve the performance problems. Special disk
layouts are used in conjunction with special storage
systems (e.g., RAID systems) to speed up I/O.

4 Exploiting Partitioning for Tuning
Purposes

The benefits of partitioning were already investigated
in detail in the context of distributed database systems
(see Section 6 for details). However, our results show
that partitioning is also useful in centralized systems
to keep large volumes of data manageable.

Section 4.1 describes some of these advantages
gained by horizontal partitioning. Section 4.2 gives a
short overview over possible partitioning techniques.
In Section 4.3 some possible drawbacks of partitioning
are shown.

4.1 Possible Benefits of Partitioning

Partitioning can be used in centralized systems with a
shared everything architecture to keep large volumes
of data manageable (see Section 5). E.g., when statis-
tics have to be gathered and the time slots for ad-

Sub-Trees

Index

Mapping Structure (Hash Map)

Partitions

Index
PartitionField Value

Partitioning

Figure 3: Partitioned Index Layout

ministrative tasks are small, the workload can be di-
vided by gathering statistics partition-wise. Also, in-
dex re-creation and table re-organization can be done
partition-wise, thereby reducing the off-line times of
the database and minimizing the impact on running
applications. In the presence of (equi)joins partition-
ing can improve the overall performance when the par-
titioning fields are a subset of the join attributes and
both tables are partitioned accordingly. Here, the joins
can be done partition-wise and in parallel.

In the case that B+-trees are used for indexing the
main memory usage and the look up time can be im-
proved using index partitioning. When a B+-tree is
partitioned, a mapping structure is needed that indi-
cates which index partition indexes which part of the
table. This mapping structure corresponds to the root
node in a non partitioned B+-tree and the index parti-
tions correspond to the subtrees below the root node.

However, the mapping structure is generally a small
memory resident hash map that is not bounded by
the page size and therefore can manage an arbitrary
number of index partition references. The root of a
B+-tree can only store a limited number of references
depending on the size of a disk page and the size of a
stored reference [8]. When the limit is reached the node
is split and a new root is created. After this point in
time the mapping structure of the partitioned scenario
(i.e., the hash map) corresponds to a small tree in the
non-partitioned scenario (see Figures 2,3). This leads
to more main memory consumption when the index
nodes are not entirely filled and slower look up times,
because binary search is used within each index node
and not a single hash map lookup as in the partitioned
version.

In most commercial database systems a secondary
storage page (disk page) contains only data of one ta-
ble (i.e., partition) and not of different tables. There-
fore also parallel jobs can benefit from partitioning
and avoid conflicts on disk page level when they pro-
cess the data partition-wise because then the jobs work
on different physical working sets (i.e., disk pages).

When it comes to mass deletions within a database,
the database management systems can benefit from
partitioning, too. Mass deletions are a severe problem,



. . .

. . .
Data

Indices

Partitions

Figure 4: Equi-Partitioned Index

because they often cause access hazards on disk page
level (thrashing) [14]. When the data is partitioned
accordingly, such mass deletions can be handled by
dropping whole partitions. This outperforms the con-
ventional tuple-at-a-time approach used in database
management system without partitioning by an order
of magnitude. Instead of executing hundreds of sin-
gle deletions the data is deleted by just freeing some
pages on the secondary storage media. In SAP R/3 sys-
tems such mass deletions can occur during an archiving
process. Archiving is an SAP technique and is used
to shrink the size of production databases by mov-
ing seldom used data to slower tertiary storage sys-
tems (tapes). During this process, mass deletions occur
within the production databases.2

Furthermore, data warehouses can profit from par-
titioning by storing records corresponding to their cre-
ation date. Old data can then be deleted by just drop-
ping a partition and new data can be added by adding
a partition.

4.2 Partitioning Techniques

Most modern database systems provide several meth-
ods to partition a given non partitioned table and its
indices into several smaller tables and indices, the so
called partitions. The partitioning itself is transpar-
ent to the users, i.e., the users cannot access a par-
tition directly. Instead, they access the table and the
database system chooses the right partition. There ex-
ist many algorithms to spread the data over the parti-
tions, but all partitioning techniques have in common
that one or more fields of the table have to be chosen
as partitioning fields. The values of the partitioning
fields of a tuple determine in which partition the tu-
ple will be stored. The most important partitioning
techniques are range partitioning and hash partition-
ing. Also combinations of the two strategies are possi-
ble. When a table or index is range partitioned, then
a partition stores all tuples, whose partitioning field
value lies within a given range. The range for each
partition has to be specified at table creation time.

2In a more comprehensive context, archiving is studied as
part of the SAP Terabyte project in cooperation with the Uni-
versity of Passau.

. . .

. . .
Data

Indices

Partitions

Figure 5: Non-Equi-Partitioned Index

Range partitioning is useful when the range of values
of a field is known in advance and doesn’t change. An
advantage of range partitioning is, that the users can
predict in which partition a tuple will be stored by
looking at the partitioning field values. But range par-
titioning performance deteriorates when the domain of
the partitioning field is large because then it is hard
to distribute the data uniformly over the partitions.

When hash partitioning is used a hash function
is applied to the values of the partitioning fields of
a tuple. Depending on the hash value, the tuple is
stored in the corresponding partition. Partitioning by
hashing spreads the data more uniformly across the
partitions—provided that the hash function is chosen
adequately. On the other hand, users cannot predict in
which partition a tuple is stored by just looking at the
partitioning field values if the hash function is com-
plex. This leads to problems when processing units of
parallel jobs have to be defined.

There exist many partitioning algorithms which are
mixtures of range and hash partitioning. These algo-
rithms allow to re-partition single partitions to de-
rive finer partitions, the sub-partitions. One commonly
used approach is to partition a table by range and then
partition the table partitions again into sub-partitions
using hash partitioning. This gives the users on the
one hand knowledge about the over all partitioning
(range partitioning) and on the other hand keeps the
sub-partitions balanced (hash partition). This way, the
users can define the data they want to work on and
the database system can work in parallel on the sub-
partitions without being in danger of unbalanced work-
loads.

No matter whether the table is partitioned or not,
the indices can—but need not—be partitioned. When
both, the table and the indices, are partitioned, the
indices can be partitioned using the same partition-
ing fields and ranges as used for partitioning the table
(equi-partitioning) or by using different ones (non-equi-
partitioning). In an equi-partitioned scenario each in-
dex partition indexes exactly one table partition. This
makes it easy to drop and create data in units of parti-
tions (see Figure 4). In a non-equi-partitioned scenario
one index partition indexes data that belongs to dif-



partition

no partitioning

only table

choose one

choose

choose one

different # of

table and

only indices

choose one

partitions

partitioned

choose separate

partition

indices

partitions

partitioning
algorithms for
index and table

uniform
partitioning
algorithm

same # of

non-equi

partitioning
algorithm

partitioning
algorithms for

partitioning
algorithm

partition

partitioning

equi
partitioned

index and table

Figure 6: Possible Partitioning Scenarios

ferent table partitions (see Figure 5).
However, the partitioning strategy for indices can

easily be changed dynamically by dropping and re-
creating the indices. This enables the administrators to
adapt the database layout to changing needs. Also ad-
ditional indices for only a few partitions can be created
to minimize the lookup time for certain applications.
In contrast to that, the partitioning strategy for the
tables cannot be changed at run time in a large-scale
database, because this would involve the movement of
all table data. Therefore, the partitioning strategy for
the tables has to be chosen very well and not only
database concerns but also concerns of the application
using the database have to be taken into account. Fig-
ure 6 gives an overview of the possible approaches for
deriving a partitioning scheme.

4.3 Possible Drawbacks of Partitioning

Partitioning was investigated in detail in the context
of distributed database systems with a shared noth-
ing architecture. In this context partitioning improves
the performance of tasks like parallel jobs or joins.
In the context of centralized database systems with
a shared everything architecture also performance im-
provements are possible as discussed in the previous
section.

But partitioning can also slow down certain tasks,
e.g., when row movements occur during updates. Row
movement means that a tuple has to be moved from
one partition to another because the partitioning field
has been updated. E.g., when the plant number of a
record is changed from 1 to 14 and the table is range
partitioned according to the plant number (e.g., 20
plants; 4 partitions, 5 plants stored together in one
partition), then the record has to be deleted in the
partition storing all plants with a number less than 6
and has to be inserted in the partition storing all plants
with a number between 11 and 15. The row movement
doubles the costs corresponding to non partitioned ta-
bles. Especially OLTP systems like SAP R/3 have a

need for fast execution of update statements to accom-
plish their work.

Furthermore, insertions and deletions can be influ-
enced by partitioning because additional administra-
tive structures have to be accessed and maintained.
Such additional structures are, e.g., the meta-data
storing the number of partitions, the hash maps for
accessing the right partitions, and additional statistics
used by the optimizer of the database management
system. These additional accesses can slow down in-
sertions and deletions which are frequently occurring
operations in OLTP systems.

Also the parallelization of single jobs at the
database management system level can slow down an
ERP system significantly, because it conflicts with
the parallelization at the application level (multiple
instances of one job). Normally, the resources (e.g.,
CPUs, main memory, storage) of an ERP system are
managed at the application level. That means, that
special dispatcher applications schedule the jobs at ap-
plication level depending on a given time schedule or
the actual workload. This strategy allows the users to
adapt the ERP systems to their needs by, e.g., defining
time slots for administrative tasks.

However, the dispatcher applications have normally
no knowledge of the parallelization of jobs at the
database level. Therefore, they work inefficient when
the underlying database is partitioned. Consider, for
example, an ERP system that runs on a machine with
4 CPUs. Without parallelization at the database level,
a job occupies one CPU and the other 3 CPUs can be
used by other (perhaps mission-critical) jobs. There-
fore, from the dispatcher application’s point of view,
the workload is balanced well. But when paralleliza-
tion at the database level is used all 4 CPUs might
be used by one job because this maximizes the de-
gree of the parallelization and minimizes the execution
time. This strategy prevents other jobs from executing
which again increases their response time. This is un-
explainable from the dispatcher application’s point of
view. Here, the parallelization at the application level
(multiple instances of one job) conflicts with the par-
allelization at the database management system level
because they have no knowledge of each other.

Therefore, the possible benefits of a partitioned ta-
ble layout as described in the previous section are not
sufficient to motivate the users to switch their database
layout. Also the possible trade-offs and the impact on
every-day transactions have to be investigated before
world wide operating ERP system vendors like SAP
make use of a partitioned table layout.

5 Performance Analysis

We analyzed a variety of partitioning schemes (data
with and without index partitioning) and compared
the performance with a conventional non-partitioned
database configuration. We analyzed several state-



ments that were extracted from SAP every day busi-
ness applications and carried out the analysis in an
SAP 4.6C system using the SAP performance evalua-
tion tool SSQJ.

Section 5.1 gives a short overview of the SAP tool
SSQJ. Section 5.2 describes our performance evalua-
tion environment and in Section 5.3 we present our
results.

5.1 The Performance Analysis Tool SSQJ

The tool SSQJ is an SAP internal performance anal-
ysis and testing tool which is used for quality assur-
ance and validation of new techniques. To improve the
benefit of this tool also database vendors may use the
tool to test their new software releases. SSQJ mainly
covers the interaction between the application server
and the underlying database management system. To
do so, SSQJ provides 3400 test statements divided in
the three areas ABAP (1000 statements), SQL (1800
statements), and Large Table (600 SQL statements).
Like any other application of the SAP R/3 system
SSQJ is coded in the programming language ABAP/4
(Advanced Business Application Programming Lan-
guage) [18]. Except for a small kernel, actually the
entire R/3 system is coded in ABAP/4. ABAP/4 is
a so-called Fourth Generation Language (4GL) whose
origins can be found in report/application generator
languages. ABAP/4 provides commands that allow to
access the database via two different interfaces: Native
SQL and Open SQL. The Native SQL interface can
be used via so-called EXEC SQL commands. It allows
the user to access the SAP database directly without
using the SAP-internal data dictionary.

The SSQJ tool itself uses only the Open SQL inter-
face but it can be used to test both Native SQL and
Open SQL programs. To enable users to test their own
programs and statements SSQJ provides a framework
where ABAP or SQL code can be plugged in and the
execution time and the resource consumption can be
measured. This is done by monitoring the Open and
Native SQL interfaces of the SAP system, the database
and some of the internal SAP structures like caches
and main memory structures. The plugged in code is
stored within the tool for later use. Such an fragment
of code is called a case in SSQJ. During the years SSQJ
comes along with more and more cases making the tool
more and more powerful, e.g., SSQJ includes a version
of the TPC-D benchmark we integrated in SSQJ as
part of another project [13]. Also the new partition-
ing cases are now part of SSQJ and can be used for
testing.

The results of a measurement can be stored, evalu-
ated, and compared to previous measurements. Along
with the results also environment data like the SAP
R/3 and the database version are stored to improve
the comparability of the results. The stored results can
be evaluated using the tool itself or can be exported

to Microsoft Excel for further processing.

5.2 Evaluation Environment

The SAP system we used for our performance eval-
uation was an SAP R/3 4.6C system with one of
the major commercial database systems as underlying
database. The SAP system was installed on a SUN
Enterprise 450 with four 400 MHz processors and 4
GB main memory. As storage system we used a SUN
A1000 500 GB RAID system with RAID level 5. The
commercial database system used 512 MB main mem-
ory and the SAP system an additional 512 MB.

The data we used for our investigation was
anonymizated data from a productive SAP system. To
increase the data volume the original data was repli-
cated by changing the values of unique fields of the
tables. This is an SSQJ standard procedure and the
volume of created data can be controlled by an SSQJ
parameter.

We used copies of two SAP tables (MARC, MARD)
for our analysis. Both tables store material related
data, but MARC is a table with an average tuple
length of 496 Bytes whereas the tuples of the table
MARD have only an average length of 142 Byte. Also
the number of rows in each table differ to compensate
the differences in the length of the tuples (MARC: 5
million rows, MARD: 25 million rows). Each table has
one index, the primary index, which indexes the follow-
ing fields: MANDT (the SAP client number), MATNR
(the ID of the material to be stored), and WERKS (the
number of the plant, where the material is stored).
The index on table MARD additionally indexes the
field LGORT that is used to indicate where in the
specific plant the material is stored (e.g., the ID of
the factory floor). The field WERKS, which stores the
IDs of the different plants of a company, was used for
partitioning. Therefore the creation of the data was
modified to ensure that exactly 100 different WERKS
values were created simulating a company with 100
plants. For each plant the same data volume was cre-
ated. To be able to compare the results directly with
a non-partitioned layout 3 versions of each table were
created3:

• Flat: the SAP table layout, i.e., neither the tables
nor the indices are partitioned.

• Global index: Only the table is partitioned but the
corresponding index is not.

• Partitioned Index: The table and the indices are
partitioned.

This layout of the tested data should users enable to
decide if it is promising to use the new database feature

3We omitted the analysis of partitioned indices on top of a
non-partitioned table because this partitioning scenario is of no
practical relevance and we regard it as not promising.



MARC, without commits

0
200
400
600
800

1000
1200
1400
1600
1800

Insert
10

Delete
10

Insert
100

Delete
100

Insert
1000

Delete
1000

tim
e 

(m
s)

Flat Global Index Partitioned Index

Figure 7: Table MARC, Insertions and Deletions
Without Commits

MARC, with commits

0

20

40

60

80

100

120

140

Insert 10 Delete
10

Insert
100

Delete
100

Insert
1000

Delete
1000

tim
e 

(s
ec

)

Flat Global Index Partitioned Index

Figure 8: Table MARC, Insertions and Deletions With
Commits

and to switch to a partitioned layout or to stay with
the standard, non-partitioned layout.

In the partitioned cases the tables where range par-
titioned according to their WERKS value. It was en-
sured that the data of exactly one plant was stored
in one partition ending up with 100 partitions. In the
case the indices were also partitioned we used equi-
partitioning which produced another 100 index parti-
tions.

5.3 Analyzed Statements

To generate the statements used for our analysis we
examined several SAP mission-critical daily business
applications and extracted the included statements.
Afterwards we classified the extracted statements and
chose one representative of each class as basis for our
investigation. This classification is reflected in struc-
ture of the SSQJ partitioning cases and covers most of
the commonly used ABAP/4 Open SQL query types,
e.g., select single, for all entries, up to n rows, etc.

During the performance evaluation we analyzed dif-
ferent scenarios, i.e., we varied the number of pro-
cessed tuples, used set orientated and one-tuple-at-a-
time processing techniques, and varied the number of
commits. Altogether we analyzed more than 70 dif-
ferent versions of the analyzed statements. Presenting

MARD, without commits

0

200

400

600

800

1000

1200

Insert
10

Delete
10

Insert
100

Delete
100

Insert
1000

Delete
1000

tim
e 

(m
s)

Flat Global Index Partitioned Index

Figure 9: Table MARD, Insertions and Deletions
Without Commits

MARD, with commits

0
20
40
60
80

100
120
140

Insert 10 Delete
10

Insert
100

Delete
100

Insert
1000

Delete
1000

tim
e 

(s
ec

)

Flat Global Index Partitioned Index

Figure 10: Table MARD, Insertions and Deletions
With Commits

all the results is beyond the scope of this work. We
therefore focus on the important results. However, all
our results showed that partitioning is applicable at
negligible costs.

5.3.1 Single Insertions and Deletions

Insertions of a single or only a few tuples are a very
common operation in an ERP system like SAP R/3.
For completeness we also examined the deletion of sin-
gle tuples. During our tests we varied number of pro-
cessed tuples, the commit rate, and the way the data
is passed to the database system. Our results show
that there is no significant difference in the execution
times of the partitioned and the non partitioned ver-
sions when the work done is commited after processing
the data (see Figures 7,9). Moreover, the difference is
that small, that the overhead of commiting each pro-
cessed tuple separately dominates the execution times
hiding the partitioning overhead completely (see Fig-
ures 8,10).

We also tested set-oriented variants of the insert
and delete statements, i.e., a temporary table was filled
with the tuples that have to be processed and this table
was sent to the database for processing. Here the work
done is commited after the whole temporary table is
processed. Again, the execution times didn’t rise sig-



MARC

0
100
200
300
400
500
600
700

Insert 10 Delete
10

Insert
100

Delete
100

Insert
1000

Delete
1000

tim
e 

(m
s)

Flat Global Index Partitioned Index

Figure 11: Table MARC, Set Orientated Insertions and
Deletions

MARC

0
200
400
600
800

1000
1200
1400
1600
1800

update
with RM

10 

update
with RM

100

update
with RM

1000

update
without

RM 100 

update
without

RM 1000 

tim
e 

(m
s)

Flat Global Index Partitioned Index

Figure 12: Update Statements on Table MARC

nificantly using the partitioned database schema com-
pared to a non partitioned database schema (see Fig-
ures 11, 13).

5.3.2 Update Statements

When tables are partitioned updates can be a bot-
tleneck when it comes to row movements (RM). Row
movement means that a tuple has to be moved from
one partition to another because the partitioning field
has been updated. E.g., when the plant number of a
record is changed from 1 to 14 and the table is range
partitioned according to the plant number (e.g., 20
plants; 4 partitions, 5 plants stored together in one
partition), then the record has to be deleted in the
partition storing all plants with a number less than 6
and has to be inserted in the partition storing all plants
with a number between 11 and 15. The row movement
doubles the costs corresponding to non partitioned ta-
bles. However, there are two reasons why this is no
argument against partitioning: First, modern database
systems can handle updates that fast, that a slow down
of a factor 2 is tolerable for most applications. Second,
in a well designed database layout updates to parti-
tioning fields are not likely.

When other fields than the partitioning fields are
updated there is again no difference between parti-
tioned and non-partitioned tables as can be seen in

MARD

0

100

200

300

400

500

600

Insert 10 Delete
10

Insert
100

Delete
100

Insert
1000

Delete
1000

tim
e 

(m
s)

Flat Global Index Partitioned Index

Figure 13: Table MARD, Set Orientated Insertions and
Deletions

MARD

0

200

400

600

800

1000

1200

1400

update with
RM 10 

update with
RM 100

update with
RM 1000 

update
without RM

100

update
without RM

1000 

tim
e 

(m
s)

Flat Global Index Partitioned Index

Figure 14: Update Statements on Table MARD

Figure 12 and 14.

5.3.3 Select Statements

Another important kind of operation in ERP systems
are selections, especially selections with fully specified
key values. Also this kind of statements performed well
in a partitioned scenario. (see Figure 15).

However, also selections where not all indexed field
values but only a prefix of them is specified are im-
portant in the context of many mission-critical SAP
business applications. Here, a set of tuples is selected
from the table. In a partitioned database schema this
kind of selections are of special interest, when the se-
lected tuples are spread over several partitions. In our
tests we pushed it even further and selected 10 tuples
from every partition meaning that 100 index partitions
and 100 table partitions have to be visited to answer
the query. Despite this overhead the execution times
in the partitioned scenario differ only slightly from the
ones of the non partitioned scenario—as can be seen
in Figure 17.

5.3.4 Parallel Select Statements

We also tested parallel selects, i.e. 10 parallel running
jobs executed several select statements. Each of the
statements selects 10.000 tuples. In one variant of the



Select one tuple

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

Flat Global Index Partitioned
Index

tim
e 

 (
m

s)

MARC
MARD

Figure 15: Select one Single Record

Parallel selects, single plants

0
1
2
3
4
5
6
7
8
9

10

Flat Global Index Partitioned
Index

tim
e 

(s
ec

)

MARC
MARD

Figure 16: 10 Parallel Select Statements Selecting
100.000 Records (single plants)

tested cases called single plants each job only selects
tuples of exactly on plant. That means that the 10
jobs work on different working sets. In the all plants
variant the jobs select tuples randomly and were not
constraint to partitioning borders.

Again the results show, that partitioning doesn’t
slow down execution times despite of one result where
the execution time rises dramatically. This rise is
caused by an problem of the underlying database sys-
tem when handling global indices on partitioned tables
and will be fixed in the near future.

The results show no significant difference in the run-
ning times of the single plant variant and the all plants
variants. The reason for this is the small number of
parallel jobs. If the number of parallel jobs rise the
separation of the working sets pay off and the single
plants variant would outperform the all plants variant.
Our test system was too small to show this effect but
SAP made tests on their own on system with several
hundreds of GBs where they could verify this effect.
Figure 16 and 18 show our results.

5.3.5 Join Statements

In the presence of joins the partitioned versions out-
perform the non partitioned versions by an order of
magnitude because the used hash join algorithm can
make extensive use of the partitioning by joining the

Select across partition borders

0

10

20

30

40

50

60

Flat Global Index Partitioned
Index

tim
e 

(m
s)

MARC
MARD

Figure 17: Selections Across Partition Borders

Parallel Selects, all plants

0
1
2
3
4
5
6
7
8

Flat Global Index Partitioned
Index

tim
e 

(s
ec

)

MARC
MARD

Figure 18: 10 Parallel Select Statements Selecting
100.000 Records (all plants)

tables partition-wise and in parallel. During the anal-
ysis of the join statements we investigated following
two scenarios: First, one plant of the table MARC is
joined with one plant of the table MARD. Second, the
whole tables are joined. The results are depicted in
Figures 19 and 20, respectively.

5.3.6 Administrative Tasks

Administrative tasks can benefit from partitioning by
splitting up the work in several smaller parts. This is
necessary because even with a small database like our
test database administrative tasks like the creation of
table statistics can already take hours (see Table 1).
Therefore most databases vendors have adapted their
administrating tools to work on single partitions rather
than on whole tables. This cuts down the execution
times by a factor equal to the number of partitions. If,
e.g., a time slot is to small to process the whole table,
only some partitions are processed and the rest of the
work is done when the next time slot is available. It is
also possible to process several partitions in parallel.

6 Related Work

Partitioning was already investigated in detail in the
context of distributed shared nothing databases. The
main focus lied on minimizing the communication



0

100

200

300

400

500

600

700

Flat Global Indices Partitioned
Indices

tim
e 

(s
ec

)
Join where mard.matnr = marc.matnr and
mard.werks = marc.werks and mard.werks = '0001'

Figure 19: Joining Single Plants

MARD
whole table one partition

Flat 5 h 43 min not possible
Global Index 5 h 8 min 12 sec
Partitioned Index 5 h 2 min 14 sec

MARC
whole table one partition

Flat 1 h 43 min not possible
Global Index 2 h 1 min 10 sec
Partitioned Index 1 h 57 min 9 sec

Table 1: Analyze Table Statements

costs and to exploit the local computing resources.
A lot of work was done on placing data in the con-
text of distributed shared nothing systems. Blankin-
ship, Hevner, and Bing Yao [1] proposed a heuristic
which provides an integrated solution to the query op-
timization and data allocation problems in distributed
database systems. Copeland, Alexander, Bougther,
and Teller investigated the problem of data place-
ment in BUBBA, a highly-parallel system for data-
intensive applications [9, 2]. DeWitt et. al. [10, 11, 12]
described and evaluated the data placement strategies
in GAMMA, a relational database machine where all
data is partitioned horizontally. In [19] Mehta and De-
Witt presented a simulation study of data placement
issues in shared nothing systems. Another issue that is
important in the context of partitioning and already
well investigated is the placement of data on differ-
ent disks to achieve maximum I/O parallelism. Chen,
Rotem, and Seshadri investigated in [6] the problem of
adapting existing declustering methods to work in het-
erogeneous environments. In [7] Christodoulakis and
Zioga investigated design principle of placing striped
delay-sensitive data on a number of disks in a dis-
tributed environment. In [22] Scheuermann, Weikum
and Zabback studied striping and load balancing tech-
niques in parallel disk systems and showed their rela-
tionship to response time and throughput. Also the

0

20

40

60

80

100

120

140

Flat Global Indices Partitioned
Indices

tim
e 

(m
in

)

Join where mard.matnr = marc.matnr and mard.werks
= marc.werks

Figure 20: Joining the Whole Tables

treatment of indices in a partitioned scenario was
already investigated in the past. In [17] Liebeherr,
Omiecinski, and Akyildiz presented an approach to
process an index partition scheme where a global index
is partitioned across nodes. In [24] Seeger and Larson
investigated multi-disk B-trees. There was also work
done on declustering and partitioning in general. In
[4] Ceri, Negri, and Pelagatti investigated the prob-
lem of horizontally partitioning data on a set of re-
sources. Ghandeharizadeh and DeWitt presented in
[15] a new declustering strategy for multiprocessor
database machines. Nowitzky described in [20] the new
implemented partitioning techniques of most commer-
cial databases and gave examples of possible database
layouts.

7 Conclusion

In the past ERP systems like SAP R/3 were tuned
using traditional approaches like database reorganiza-
tions or hardware improvements. In the presence of
globally operating companies, 7 by 24 applications,
and large-scale databases these traditional techniques
are no longer sufficient. We therefore investigated in
this work how advanced database system features, in
particular horizontal partitioning, can be exploited to
optimize large-scale SAP R/3 installations.

To produce results of practical relevance and to re-
flect the actual use of a database management system
as an integrated component of a comprehensive appli-
cation system rather than a stand-alone database sys-
tem we carried out our performance evaluation within
an SAP R/3 system. We simulated a “real world” ap-
plication by extracting the analyzed statements from
SAP daily business applications and by using parts
of the comprehensive SAP database schema as basis
for our investigations. Moreover, the tested database
was generated from an actual productive SAP R/3
system rather than relying on artificially generated
data, as, e.g., the TPC-C benchmark does. We ana-
lyzed a variety of partitioning schemes (data with and
without index partitioning) and compared the perfor-



mance with a conventional non-partitioned database
configuration. Our results show that especially joins, in
parallel executed statements, and administrative tasks
benefit greatly from horizontal partitioning while the
resulting small increase in the execution times of in-
sertions, deletions and updates is tolerable. These pos-
itive results have initiated the SAP cooperation part-
ners to pursue a partitioned data layout in some of
their largest installed productive systems.

References

[1] R. Blankinship, A.R. Hevner, and S. Bing Yao. An
iterative method for distributed database design. In
Proc. of the Conf. on Very Large Data Bases (VLDB),
pages 389–400, Barcelona, Spain, September 1991.

[2] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Dan-
forth, M. Franklin, B. Hart, M. Smith, and P. Val-
duriez. Prototyping bubba, A highly parallel database
system. IEEE Transactions on Knowledge and Data
Engineering, 2(1):4–24, March 1990.

[3] R. Buck-Emden and J. Galimow. SAP R/3 System, A
Client/Server Technology. Addison-Wesley, Reading,
MA, USA, 1996.

[4] S. Ceri, M. Negri, and G. Pelagatti. Horizontal data
partitioning in database design. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 128–
136, Orlando, USA, 1982.

[5] F. Cesarini and G. Soda. An algorithm to construct a
compact B-Tree in case of ordered keys. Information
Processing Letters, 17(1):13–16, 1983.

[6] L. T. Chen, D. Rotem, and S. Seshadri. Declus-
tering databases on heterogeneous disk systems. In
VLDB’95, Proceedings of 21th International Confer-
ence on Very Large Data Bases, September 11-15,
1995, Zurich, Switzerland, pages 110–121, 1995.

[7] S. Christodoulakis and F. Zioga. Data base design
principles for striping and placement of delay-sensitive
data on disks. In Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, June 1-3, 1998, Seattle,
Washington, pages 69–78. ACM Press, 1998.

[8] D. Comer. The ubiquitous B-tree. ACM Computing
Surveys, 11(2):121–137, 1979.

[9] G. Copeland, W. Alexander, E. Boughter, and
T. Keller. Data placement in bubba. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages
99–108, Chicago, IL, USA, May 1988.

[10] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens,
K. B. Kumar, and M. Muralikrishna. Gamma - a high
performance dataflow database machine. In Proc. of
the Conf. on Very Large Data Bases (VLDB), pages
228–237, Kyoto, Japan, 1986.

[11] D. J. DeWitt, S. Ghandeharizadeh, and D. A. Schnei-
der. A performance analysis of the gamma database
machine. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 350–360, Chicago, IL,
USA, May 1988.

[12] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I Hsiao, and R. Rasmussen. The gamma
database machine project. IEEE Transactions on
Knowledge and Data Engineering, 2(1):44–62, March
1990.

[13] J. Doppelhammer, T. Höppler, A. Kemper, and
D. Kossmann. Database performance in the real
world: TPC-D and SAP R/3. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 123–
134, Tucson, AZ, USA, May 1997.

[14] A. Gärtner, A. Kemper, D. Kossmann, and B. Zeller.
Efficient bulk deletes in relational databases. In Proc.
IEEE Conf. on Data Engineering, pages 183–192, Hei-
delberg, Germany, 2001.

[15] S. Ghandeharizadeh and D.J. DeWitt. Hybrid-range
partitioning strategy: A new declustering strategy for
multiprocessor database machines. In Proc. of the
Conf. on Very Large Data Bases (VLDB), pages 481–
492, Brisbane, Australia, August 1990.

[16] A. Kemper, D. Kossmann, and B. Zeller. Performance
tuning for SAP R/3. IEEE Data Engineering Bulletin,
22(2):32–39, June 1999.

[17] J. Liebeherr, E. Omiecinski, and I. F. Akyildiz. The ef-
fect of index partitioning schemes on the performance
of distributed query processing. TKDE, 5(3):510–522,
1993.

[18] B. Matzke and A. Weinland. ABAP/4 - Programming
the SAP R/3 System. Addison-Wesley, Reading, MA,
USA, 1997.

[19] M. Mehta and D. J. DeWitt. Data placement in
shared-nothing parallel database systems. VLDB
Journal, 6(1):53–72, 1997.

[20] J. Nowitzky. Partitionierungstechniken in Daten-
banksystemen: Motivation und überblick. Informatik
Spektrum, 24(6):345–356, December 2001.

[21] SAP. Success Story: Deutsche Telekom AG.
http://www.sap.com/solutions/industry/
telecom/customersuccesses.asp, 1998. SAP,
Siemens Nixdorf, and Deutsche Telekom.

[22] P. Scheuermann, G. Weikum, and P. Zabback. Data
partitioning and load balancing in parallel disk sys-
tems. VLDB Journal, 7(1):48–66, 1998.

[23] Thomas Schneider. SAP R/3-
Performanceoptimierung. Addison-Wesley, Reading,
MA, USA, 1999.

[24] B. Seeger and P.-Å. Larson. Multi-disk B-trees. In
Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 436–446, Denver, CO, USA, May 1991.

[25] Transaction Processing Performance Council TPC.
TPC benchmark C. Standard Specification, Trans-
action Processing Performance Council (TPC), 1992.
http://www.tpc.org/.

[26] L. Will, C. Hienger, F. Strassenburg, and R. Himmer.
R/3-Administration. Addison-Wesley, Reading, MA,
USA, 1996.


