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Abstract

This paper describes GnatDb, which is an em-
bedded database system that provides pro-
tection against both accidental and malicious
corruption of data. GnatDb is designed to
run on a wide range of appliances, some of
which have very limited resources. Therefore,
its design is heavily driven by the need to
reduce resource consumption. GnatDb em-
ploys atomic and durable updates to protect
the data against accidental corruption. It
prevents malicious corruption of the data us-
ing standard cryptographic techniques that
leverage the underlying log-structured storage
model. We show that the total memory con-
sumption of GnatDb, which includes the code
footprint, the stack and the heap, does not ex-
ceed 11 KB, while its performance on a typical
appliance platform remains at an acceptable
level.

1 Introduction

Many consumer appliances, such as mobile phones,
cameras, portable music players, set-top boxes, per-
sonal digital assistants (PDA’s) and smartcards, are
equipped with an embedded microprocessor to allow
fast upgrades and to reduce the appliance size [24].
The appliances frequently store and maintain valuable
data such as passwords, private keys, health records
or money. Therefore, it is important to protect the
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integrity of the data against accidental corruption re-
sulting from a system crash caused by, for example,
a power loss or a software bug. Most database sys-
tems protect data against accidental corruption by
implementing transactional updates and performing
frequent backups. Although most appliances support
backups by synchronizing their local storage with a
PC or a remote server, none of the appliances known
to the author support transactions.

Many appliances need to protect data integrity not
only against accidental corruption, but also against
malicious corruption (tamper-detection) and unau-
thorized reading (secrecy). For example, a phone-
smartcard user may obtain free phone calls by tamper-
ing with the data stored on the smartcard. Similarly,
set-top box user may view TV channels for free by
reading secret keys from the set-top box’s storage. The
research prototypes that provide secrecy and tamper-
detection typically use a combination of symmetric
key encryption and one-way hash trees (Merkle trees)
[12, 9, 20]. (Nodes of a Merkle tree contain one-way
hashes [14]. The internal nodes validate their children
and leaf nodes validate data records. Data records
are updated and validated by traversing a path in the
tree.)

We use Digital Rights Management (DRM) systems
as a motivating example of a system that requires se-
cure and reliable storage of data with monetary value.
DRM systems enable secure binding of digital content
(such as software, music, video, e-books or email) to a
contract. The contract is a program, which is executed
each time the content is released to the user. Exam-
ples of contracts include “release the content after an
up-front payment”, “release the content for free up to
n times” or “charge a fee for every release of the con-
tent or release the content for free if the user provides
personal data”. Execution of contracts frequently re-
quires read and write access to persistent data, such
as account balances, usage counters or digital certifi-
cates. The data needs to be protected against both
accidental and malicious corruption. DRM systems
typically need to store relatively modest volumes of



data ranging from tens of kilobytes up to a megabyte.

In this paper we describe GnatDb, which is an em-
bedded database system that provides both secrecy
and tamper-detection. GnatDb is designed to run on a
wide range of appliances, some of which have very lim-
ited resources. Therefore, its design is heavily driven
by the need to reduce resource consumption. RAM is
frequently the most critical resource either because the
of a limited die space on single-chip devices, such as
smartcards, or because large volumes of RAM are used
for other purposes (such as stream buffering). Many
appliances are built only with tens to hundreds of kilo-
bytes of RAM available [23, 7, 22, 18]. Consequently,
the design of GnatDb aims to reduce the code foot-
print as well as stack and heap memory consumption.

Instead of supporting full transactional semantics
of updates, GnatDb supports only atomic and durable
updates. It does not implement concurrency control,
because most appliances either do not support mul-
titasking or do not require concurrent access to the
database. GnatDb implements update atomicity by
leveraging the log-structured storage model [16], which
we show is amenable to a simple, light-weight imple-
mentation and well-suited for the flash-memory-based
storage found in many appliances. GnatDb integrates
log-structured storage with its security primitives in a
novel way that avoids construction of the Merkle tree
and yet allows data validation in a constant time. We
show that the total memory consumption of GnatDb,
which includes the code footprint, the stack and the
heap, does not exceed 11 KB, while its performance on
a typical appliance platform running a DRM bench-
mark remains at an acceptable level.

2 Related Work

The design of GnatDDb is strongly influenced by its pre-
decessor, TDB [12]. Similar to GnatDb, TDB provides
secrecy and tamper-detection. TDB also leverages log-
structured storage organization and integrates it with
data integrity protection. The major difference in the
design of GnatDb and TDB stems from their target
environments: while TDB is appropriate for PCs or
similar devices (such as high end set-top boxes or game
consoles), GnatDb is designed for appliances including
single-chip systems with very limited memory. The
lowest layer of TDB has a code footprint of 142 KB
and the additional three layers add another 108 KB.
Although the total code footprint is comparable to
other embedded database systems, it by far exceeds
the memory available in many appliances. Therefore,
one of the major goals in the design of GnatDb is to
provide the same level of protection as TDB and yet
reduce the code footprint to less than 10 KB. Unlike
TDB, GnatDb does not implement an object-oriented
interface or collections. Its storage model does not
scale to large numbers of records and its design is not
optimized for performance. TDB implements the pro-

tection against malicious data corruption by integrat-
ing a Merkle tree with the location map that is used in
log-structured storage systems. GnatDb, on the other
hand, uses much simpler (and not scalable) location
map organization and completely avoids building the
Merkle tree.

A number of file systems protect secrecy of files
by encrypting them with a secret key [1, 25, 4, 10].
Provos designed a similar protection for virtual mem-
ory pages [15]. Unlike GnatDb, such file systems pro-
vide only secrecy, but not tamper-detection. Sev-
eral file systems provide also tamper-detection: Fu,
Kaashoek and Mazieres designed Read-only File Sys-
tem, SFSRO, which embeds a Merkle tree in the inode
hierarchy [9]. The root hash, which certifies the in-
tegrity of the file system, is signed by the file system’s
owner. Stein, Howard and Seltzer designed Protected
File System, PFS, which is layered on top of a write-
ahead file system [20]. PFS validates blocks against a
volatile array of one-way hash values. Cattaneo et. al.
implemented Transparent Cryptographic File System,
TCFS, which validates file blocks using Hash-based
Message Authentication Codes (HMACs) [14] that are
embedded in the blocks [4]. However, both PFS and
TCFS do not detect replays of old blocks. Mazieres
and Shasha described a design of Secure Untrusted
Data Repository, SUNDR, which has a storage orga-
nization similar to SFSRO, but stores the root hash
in a secure location (presumably a client) [13]. Unlike
GnatDDb, the main focus of the design of the above
file systems is the ease of integration of secrecy and
tamper-detection to a file system. Consequently, their
design is not optimized for low memory consumption
and they do not support atomic and durable updates.

Blum et. al. considered the problem of protecting
integrity of various data structures stored in an inse-
cure memory using a Merkle tree with a root in secure
memory [2]. This work provides a theoretical foun-
dation for design of most of the systems that employ
Merkle trees (unlike GnatDb). Schneier and Kelley
described a mechanism for protecting logs against ma-
licious corruption by computing a chain of one-way
hashes and storing the tail of the chain in a secure, re-
mote repository [17]. Verifying the log entries requires
however recomputation of the entire chain and thus
is unsuitable for database systems (such as GnatDb)
that require an efficient random access to the data.
Devanbu et. al. used a Merkle tree built on top of
a relational database to validate result sets received
from untrusted servers [8]. Similarly to SFSRO, but
unlike GnatDb, the system is designed for read-only
or read-mostly workloads.

PicoDBMS [3] is a database system designed to
execute on resource-constrained smartcards. Unlike
GnatDb, PicoDBMS does not provide secrecy and
tamper-detection. On the other hand, it implements
query processing. PicoDBMS aims to reduce the to-



tal database size by vertically decomposing relations
into one column partitions to limit the repetition of
column values. Although such storage model is appro-
priate for EEPROM memories that can be written one
word at a time, it is less appropriate for stable storage
that can be written only in large blocks (such as flash
memories or hard disks), since update of a single tuple
may result in writes to multiple blocks.

3 Architecture

To protect against malicious data corruption, GnatDb
relies on the integrity of its security perimeter, which
includes a processor, volatile memory, read-only mem-
ory and a one-way counter as shown in Figure 1. In
particular, we assume that an attacker cannot mod-
ify the GnatDb executable in the read-only memory,
cannot read or write the state written by GnatDb to
the volatile memory and cannot read a secret value
stored in the read-only memory. (The secret value is
used to derive symmetric keys used by GnatDb to pro-
tect data written to the stable storage and its length
should be sufficient to make it hard for an attacker to
successfully guess its value.) We also assume that the
one-way counter cannot be decremented, although an
attacker might read its value or increment it (see [21]
for an example of a hardware implementation of such
a device). The volatile memory would be typically im-
plemented using SRAM or DRAM and the read only
memory using ROM or EEPROM (although GnatDb
does not require write access to the read-only mem-
ory, it may be still desirable to be able to update the
secret).

The physical security of the processor, volatile
memory and read-only memory is often achieved by
placing them on the same die [23], using tamper-
resistant packaging and/or erasing the volatile memory
after tamper detection [19]. Furthermore, the platform
must either be able to protect the state of GnatDB in
volatile memory and read-only memory (e.g., by using
virtual memory) or it must load only trusted code [19].

On the other hand, we assume that the content of
the stable storage can be read and arbitrarily modified
by the attacker. It is difficult to ensure the physical
security of large volumes of stable storage because it
requires more time to erase than typical volatile mem-
ory, it can be analyzed offline or when the processor is
powered off and its storage capacity is limited by the
die size, if integrated to a single-chip system.

The architecture of GnatDb consists of three layers:
Device, Secure Device and Store. Device, the bottom
layer, implements a thin, common interface on top of
the raw hardware. Secure Device implements the same
interface as Device, but it also guarantees that all op-
erations are secret and tamper-detecting. Store imple-
ments an interface that supports atomic and durable
updates of sets of records, which are untyped, variable-
sized sequences of bytes.

security perimeter

volatile memory
$

processor
)

read-only memory

stable storage

one-way counter

Figure 1: Secure system model.

3.1 Device

The Device interface consists of read, write, erase and
flush operations. Device provides read and write ac-
cess to fixed length pages. A page can be written
atomically. One or more pages form a block, which
is the unit of the erase operation. A write to a page
that was not previously erased may raise an excep-
tion. Some storage devices may not require that pages
are erased before being written (e.g., hard disks), in
which case the erase operation is a no-op. The flush
operation ensures that all written pages have reached
a stable storage on devices that support volatile write
caches (e.g., hard disks). Two examples of Device im-
plemented on top of different types of flash memory
are described in Section 6.1.

3.2 Secure Device

The Secure Device implements the same interface as
Device, but it enforces the following security property:

Secrecy: Pages written by Secure Device can be read
only by calling the read operation of Secure De-
vice.

Tamper-detection: The read operation of Secure
Device raises an exception if the value of the page
being read is different from the value most re-
cently written by the write or erase operations of
Secure Device.

The Secure Device implements the security of
GnatDb. Isolating all security functions to a single
layer has several benefits: 1) the layer above (Store)
can be implemented without considering security, 2)
it is easier to verify the security of GnatDb when it is
isolated in a single layer, 3) in appliances that do not
require secrecy and tamper-detection, Secure Device
can be transparently removed from GnatDb.



3.3 Store

The Store implements atomic and durable updates
of sets of records. Each record must fit into a
page. Records are persistently identified by record id’s.
Records can be allocated, read, written and deallo-
cated. The commit operation atomically and durably
writes a sequence of records.

The Store interface consists of the following oper-

ations:
RecordId allocate()

Allocates a new record id. The record id is
reserved until the next commit.

Buffer read( RecordId )
Returns the content of a record.

void commit( <RecordId,Buffer>[] )
Atomically and durably writes a sequence of

record ids and buffers. Records are deallocated

by committing their record ids with an empty
buffer.

4 Store Implementation

We first describe the implementation of Store in ab-
sence of the security considerations (by assuming the
existence of a Secure Device implementation).

4.1 Storage Organization

GnatDb statically divides the space in the stable stor-
age into two contiguous segments: the indexr segment
and the data segment. The index segment contains
metadata that maps record ids into pages in the data
segment that contain the records. Both segments are
log-structured [16], i.e., the updates are implemented
by appending new versions at the tail of the log.
GnatDb benefits from log-structured storage organi-
zation in several ways:

e Since records are not overwritten, implementing
atomic updates is straightforward.

e All writes are compacted to a minimal number of
blocks at the tail of the log. This is important
on flash-memory-based Device implementations,
where the cost of the erase operation dominates
all I/0 costs.

e If the log is written round-robin, it is possible to
verify the integrity of the data in the log in a
constant time without building a Merkle tree, as
shown in Section 5.

e The erase operations are distributed uniformly
across all blocks, which is important for flash-
memories where each block can be erased only a
limited number of times.

e Since records are not updated in place, traffic
analysis of the accesses to the stable storage is
harder. (It is difficult to link multiple updates to
the same record.)

e Since records are never overwritten, it is straight-
forward to support variable-sized records.

e Compared to database systems using a log sep-
arate from the database, storage management in
GnatDb is simpler in that it does not have to in-
terpret two representations of a record (one in the
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Figure 2: Storage organization.

The index segment contains multiple index copies.
GnatDb writes a new copy of the index into the index
segment each time it is updated in the store. We refer
to the most recently written index copy (at the tail of
the index segment log) as the current index copy. The
frequency of these updates is discussed below. The in-
dex copy is a direct-mapped array, the location page
id of the record with id rid is stored in the rid-th
slot of the array. Since GnatDb is optimized for small
databases, the index array can be compacted by allo-
cating only a small number of bits for each slot. For
example, the current implementation uses only eight
bits to represent a page id in the index array, which
limits the total database size to 255 pages. The in-
dex copy contains also contains metadata that is used
during recovery, which includes the page id of the log
tail, the length of the index, the number of deallocated
record ids and the version number of the index copy.

The data segment consists of a sequence of data
pages. Each data page contains a page index and a se-
quence of record versions. The page index maps record
id’s into locations within the page. The page index
grows forward from the start of the page; record ver-
sions grow backward from the end of the page.

4.2 Record Id Allocation

Store allocates a new record id by either extending
the index array (if there are no deallocated records)
or by scanning the index array for the first deallo-
cated record id. The allocated record ids do not persist
across commits to reduce heap usage and to prevent



memory leakage for buggy applications that do not
commit allocated record ids.

The operation requires in the worst case
|currentIndezCopy|, Secure Device reads, where
| - |p denotes a size of an object in pages. It allocates
at most one page buffer. (The buffer is allocated on
the stack and does not persist across the Store calls
because on many appliance platforms it is important
that GnatDb occupies only a small amount of global
memory. Consequently, allocating a larger number
of buffers in main memory would not improve the
performance of GnatDb.)

The index array scan could be sped up by linking all
slots of deallocated record ids. This would, however,
reduce the number of bits that encode valid page ids
leading to a less compact index table.

4.3 Record Read

Store reads a record by first determining the id of
the page containing the record, which is obtained by
reading an appropriate slot of the index array. Sub-
sequently, Store locates the record version using the
page index.

The operation requires in the worst case two Secure
Device reads and allocates one page buffer to read first
an index copy page and then a data page.

4.4 Commit

During commit, Store accumulates the written records
in a write page buffer. Once the buffer fills up, it is
written to the data segment log tail. Subsequently,
Store advances the log tail to the next page. After
all records have been written to the data segment log,
Store writes a new index copy at the tail of the index
segment log. The new copy reflects the new locations
of the records written during the commit. Completion
of the index version write constitutes the commit point
of the atomic update, i.e., any updates prior to this
point are rolled back during recovery.

The number of writes could be optimized by orga-
nizing the index array into a hierarchy and writing
only dirty pages. However, such design would lead to
more complex index management (e.g., it would be
harder to locate an index copy page given a record id
or it would be harder to reclaim unused index segment
pages). Since GnatDb is optimized only for databases
with small numbers of records, such design would re-
sult in an unwarranted increase of code footprint due
to the increased complexity of index array manage-
ment.

Ignoring the cleaning overhead (which depends
on the database utilization and is quantified in
Section 6), the commit operation requires in the
worst case |(|records|B + Nrecords - recordOverhead)|, +
|currentIndexCopy|, Secure Device writes and
|currentIndexCopy|, Secure Device reads, where
|records|p is the cumulative size of all committed

records, Nrecords 1S the number of committed records
and recordOverhead is a per record-version storage
overhead, which is the slot size in the page index
(four bytes in the current implementation). This
operation also requires three page buffers: one to read
and write index copy pages, one to read data segment
pages and one to accumulate the log tail writes. All
three buffers are used simultaneously during cleaning.
(Consequently, their number cannot be reduced.)

4.4.1 Cleaning

Before advancing the data segment log tail to a new
block, Store must enforce the following invariant:

Clean Ahead: All live record versions in a block
must be written to the stable storage before the
block is erased.

A record version is live if the current index copy maps
the record id to the page where the version is stored®.
Clean Ahead implies that there must be at least one
free block before erasing block b. In the design of
GnatDDb we chose to write the data segment log round-
robin, i.e., the live record versions from block b are
copied to block b — 1 before any of the committed
record versions can be written to block b — 1. Writing
the data segment log round-robin has several ramifi-
cations:

e Secure Device can easily verify the validity of each
page if the pages are written sequentially to the
data segment (see Section 5).

e Implementing cleaning is simple. There is also no
need to thread non-contiguous blocks together to
form the log. There is no need to maintain statis-
tics about block utilization to select the best block
for cleaning as is typically done in log-structured
storage systems.

e Store may clean more blocks than necessary.

To avoid allocating read page buffers for the en-
tire block (which would be prohibitive), each block is
cleaned one page at a time by reading a page of block
b and copying its live record versions to pages in block
b — 1. A new index copy is written once the buffers
holding record ids and their new locations exceeds a
preconfigured limit (128 bytes in the current imple-
mentation). This is important to keep the size of stack
allocated data constant.

During a commit, Store may clean more than one
block if the database utilization is high. Store prevents
indefinite cleaning cycle by rasing an exception when
it attempts to clean the same block twice.

1The definition is sound since a page can contain at most
one version of the same record: Each page is written by at most
one commit because pages must be erased between subsequent
writes. If a commit attempts to write the same record more
than once, the last write wins.



4.4.2 Recovery

During recovery, Store scans the index segment and
finds the index copy with the highest version number
(version numbers in headers of index copies form an
increasing sequence). The index header also contains
the page id of data segment log tail so that Store can
resume writing the data segment log round-robin.

The storage organization could be simplified by
eliminating the index segment and rebuilding the in-
dex copy in volatile memory at recovery by scan-
ning the entire data segment. This, however, would
lead to prohibitive memory storage and performance
costs. Namely, the entire index copy would have to be
buffered in main memory. In addition, recovery would
be too slow on many appliances. (For example, read-
ing a page from Secure Device takes approximately 3
ms on the platform described in Section 6.) Our de-
sign allows recovery to be performed quite frequently
on appliances that are often powered off to improve
battery life.

5 Secure Device Implementation

There are several possible attacks that can compromise
either secrecy or tamper-detection:

e Snooping. An attacker reads the contents of a
page directly from the raw hardware (secrecy vi-
olation).

e Spoofing. An attacker replaces a page with gener-
ated data (tamper-detection violation).

e Splicing. An attacker replaces a page with a du-
plicate of another valid page (tamper-detection vi-
olation).

e Replay. An attacker replaces a page with an older
version of the same page (tamper-detection viola-
tion).

Secure Device prevents the first three types of at-
tack using fairly common cryptographic techniques.
Namely, it prevents the snooping attack by encrypt-
ing all pages with a symmetric secret key. It prevents
the spoofing attack by including in each page a Mes-
sage Authentication Code (MAC) [14] of its content
computed with a secret key. It is computationally dif-
ficult for the attacker to produce a valid MAC without
knowledge of the secret key. Finally, Secure Device
prevents the splicing attack by computing the MAC
over the id of the page in addition to the page content.
The secret keys used for encryption and computing the
MAC are derived from the secret value stored in the
read-only memory (by e.g., by computing a one-way
hash of the secret value and a deterministic salt).

To prevent the replay attack, Secure Device includes
in each page a version number, which is protected by
the MAC against forgery. Since both index and data

segments are written round-robin, the expected ver-
sion number of any page can be easily computed know-
ing the version number of the log tail. The one-way
counter is incremented so that it holds the same value
as the current log tail.

The data pages are assigned version numbers se-
quentially as they are written to the log. Similarly,
all pages storing the current index copy are assigned
the same version number, which is equal to the ver-
sion number of the current data segment log. Finally,
the one-way counter is incremented so that its value
is the same as the version number of both log tails.
The assignment of version numbers to pages is shown
in Figure 2 in Section 42.

Recency of the index pages is established by match-
ing their version numbers against the one-way counter
value. (Store should never read older index copies,
except in recovery. However, it is also possible to tol-
erate a limited discrepancy. For example, most hard
drives enable write cache and therefore the OS cannot
guarantee that the committed records have reached
the stable storage. Consequently, the one-way counter
may be ahead of the recovered current index copy ver-
sion number.)

Recency of data pages is established by explicitly re-
lying on the round-robin log write discipline. A data
page written k steps before the log tail must have ver-
sion number ¢ — k, where c is the current value of the
one-way counter (and also the version number of the
log tail). More specifically, when reading data page
Pidyeqq from the data segment, Secure Device can ver-
ify that it is the most recently written version by com-
puting an expected version number of the page as

¢ — [(pidyqi1 — Pidye, ) mod |dataSegment|y]
and matching it against the version number found in

the page. Secure Device raises an exception if a mis-
match has been found.

Processor EP7209 (ARMY7) 74 MHz

DRAM NEC 04265165G5 16 MB

NAND flash || Samsung SMFV008 8 MB
SmartMedia card

NOR flash Intel TE28F320B3BA110 16 MB

Figure 3: Hardware configuration.

6 Experimental Evaluation

We ported GnatDb to a common embedded platform
and used a benchmark that models a DRM workload

2To reduce the number of times the one-way counter is in-
cremented, GnatDb allows the version numbers in the data and
index segment log tails to diverge. The current index copy con-
tains the version number of the data segment log tail.



| [ARM7 | x86 |
GnatDb basic (Bytes) 5624 | 6408
GnatDb + Secure Device (Bytes) 6872 | T171
GnatDb + Secure Device + Rijndael (Bytes) | 17740 | 34468

Figure 4: Code footprint.

to experimentally study GnatDb. We focused on quan-
tifying the memory consumption as the primary objec-
tive and quantifying the performance as the secondary
objective.

6.1 Setup

We ran all experiments on the Cirrus Logic evaluation
board EP7209 [5]. The board hardware configuration
(see Figure 3) is representative of higher end appli-
ances. It includes a 32 bit RISC processor EP7209,
which includes an ARMY7 microprocessor, an MMU
unit and 8 KB of on-chip cache. The board includes
16 MB of DRAM, which is common in most PDA’s,
but significantly more than in most single-chip systems
such as smart-cards or secure processors.

The board includes several peripherials, including
a SmartMedia NAND flash memory card, which is
becoming a standard persistent bulk storage for ap-
pliances and a NOR flash memory. The SmartMedia
card is read and written as 512 byte pages and erased
in 8 KB blocks. The NOR flash memory is erased in 16
KB blocks and written and read four bytes at a time.
To reduce the per-page overhead, the NOR-flash-based
implementation of Device emulates 512 byte pages on
top of the raw hardware.

We implemented the one-way counter using a re-
served block of the NOR flash memory. To reduce
the number of times the block needs to be erased, we
represent the value of the counter k in the block as a
sequence of 217 — k ones and k zeros (an erased block
consists of all ones). The counter has a wraparound
of 217 and needs to be erased once per a wraparound.
Secure Device was configured to use Rijndael in CBC
mode as a symmetric cipher and a Rijndael CBC-MAC
[14].

Since most TPC benchmarks are too heavy-weight
to model applications running in appliances, we de-
signed a simple benchmark that models a typical DRM
application. The database consists of n counters, with
n being the scaling parameter of the benchmark. Each
counter consists of a 20 byte static descriptor and a
4 byte value that is updated. The benchmark pro-
file consists of a serial execution of 1000 transactions.
Each transaction selects a random number of coun-
ters between one and five and sequentially reads the
value of each counter, increments it by one and finally
commits all new counter values.

6.2 Memory Consumption

We consider separately the static memory consump-
tion, which includes primarily the code footprint of
GnatDDb library and the dynamic memory consump-
tion, which includes stack and heap allocation. Firstly,
the former is independent of the workload, but the
later depends on the workload. Secondly, many appli-
ances (such as smartcards or secure tokens) keep the
executable code in ROM or EEPROM and use SRAM
for the stack and the heap.

2500
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Figure 5: Dynamic memory consumption.

The static memory consumption depends primarily
on the processor instruction set, the executable for-
mat and the compiler (we used Norcroft ARM C 4.9).
For comparison, we also include the static memory
consumption for x86 processor and Microsoft Visual
C++ 6.0 compiler. The summary can be found in
Figure 4. We show both the total basic code foot-
print that excludes Secure Device, which may not be
needed in configurations that do not require protection
against malicious database corruption, code footprint
including Secure Device, but excluding the Rijndael
implementation, which may be available on many se-
cure processors in hardware or firmware, and finally
the total code footprint. The Rijndael implementa-
tion® has a relatively large code footprint because it
is optimized for speed (it generates a large number of
tables). Smaller, size-optimized implementations that
fit into 1.3 KB of memory are available [6].

The dynamic memory consumption is workload spe-
cific. We therefore use the DRM benchmark to study
the consumption of stack and heap memory. The dy-
namic memory consumption includes an overhead that

3A free implementation available from Brian Gladman.



| operation | avg time (us) | min time (ps) | max time (us) |
read 303 293 996
NAND flash write 636 566 1461
erase 2112 2104 2627
read 33 29 717
NOR flash write 3670 566 4572
erase 339306 127998 373500
one-way counter increment 32 27 35
encrypt 1144 1111 2758
Rijndael decrypt 1241 1210 2332
MAC 1267 1232 1371
NAND flash Secure Device | read 3063 2973 4621
write 3133 2996 4549
NOR flash Secure Device read 2743 2640 4303
write 6122 6033 7676
NAND flash Store read 6277 6182 7600
NOR flash Store read 5642 5551 6992

Figure 6: Microbenchmark results.

depends on the amount of cleaning. We therefore var-
ied the database utilization by increasing n, the num-
ber of counters in the database, from 100 (2% database
utilization) to 3000 (80% database utilization). The
maximal stack and heap sizes for different database
sizes can be found in Figure 5. The stack memory
consumption levels out at approximately 2200 bytes,
which is approximately 560 bytes over the size of the
three page buffers that must be allocated for the com-
mit operation. The heap consumption flattens at 1300
bytes. (The experiment also demonstrated the impor-
tance of limiting the size of relocation information that
can be generated during cleaning, since without the
check the heap size grew up to 5 KB.) Therefore, the
total memory consumption of GnatDb, excluding the
Rijndael implementation, does not exceed 11 KB.

6.3 Microbenchmarks

We ran a series of microbenchmarks to calibrate the
performance of the stable storage devices, the ba-
sic cryptographic operations and the Store operations
that have a fixed overhead. The results are summa-
rized in Figure 6. All operations (except the one-way-
counter increment) operate on 512 byte pages. The
I/O times also include the time of transfer between
the device and DRAM. The reported values are com-
puted from a sample of 50,000 operations.

The one-way counter reset is identical to NOR flash
erase and thus not reported in Figure 6. The Secure
Device read and write times include the time to de-
crypt (encrypt) a page and to compute a MAC over a
page, which accounts for approximately 40% to 95%
of the total time. Since the Secure Device operations
are crypto-bound, the performance of GnatDb could
be improved by doing both encryption and MAC cal-
culation in a single CBC pass [11]. The Secure Device

erase is identical to the erase operation on the under-
lying Device and thus not reported in Figure 6. The
Store read time includes the time of two reads from
Secure Device. The Store commit time depends on
the amount of cleaning and is the dominant cost of
the transaction response time reported in 6.4.

6.4 Macrobenchmark

We used the DRM macrobenchmark described in Sec-
tion 6.1 to evaluate overall performance of GnatDb.
The transaction response time, which is dominated by
the Store commit time, depends on the database size
because the cleaning overhead grows with the database
utilization as shown in Figure 8. The average response
time of a transaction grows from 59 ms on a NAND
flash memory (89 ms on a NOR flash memory) at 1%
database utilization to 3 s on NAND flash memory (6
s on NOR flash memory) at 75 - 90% database uti-
lization. The transaction response time remains at an
acceptable level (less than 0.6 s) for utilization below
50%.
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Figure 7: Transaction response time.
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Figure 8: Cleaning overhead.

7 Lessons Learned

GnatDb has been designed by revising the design of
TDB, which is a secure database system optimized for
performance, to arrive with a secure database system
that has a low memory consumption. In particular,
we started with a database system with 250 KB code
footprint with a goal to design a secure database sys-
tems with code footprint of less than 10 KB. Since re-
search prototypes are not typically optimized for mem-
ory consumption, we believe that some of the lessons
we have learned may be relevant, when generalized, to
other research work.

The architecture of TDB consists of three lay-
ers. The bottom layer implements atomic updates of
record sets, the next layer implements creation of in-
cremental and full backups, the next layer implements
object-oriented interface and the top layer implements
iterator-based access to collections of objects. Our first
(and the most obvious) cut was to concentrate only on
the bottom layer, which had a 142 KB code footprint.
For scalability, TDB implements location map orga-
nized as a hierarchy (which also embeds the Merkle
tree). For good performance, the updates to the lo-
cation map are performed lazily at checkpoints and
the location map is reconstructed at recovery from the
record updates found in the log. However, the imple-
mentation of the location map requires 39 KB of code.
In GnatDb, on the other hand, we implemented lo-
cation map as an array, which is sequentially written
at each commit. Although clearly not scalable, the
implementation fits into 1.8 KB.

TDB’s cleaner maintains statistics about fixed size
fragments of the log and selects for cleaning the frag-
ments with the least utilization. The statistics are
persistent and have to be checkpointed. This leads
to considerable implementation complexity, since the
checkpoints themselves could modify the statistics that
are checkpointed. The cleaner of TDB is implemented
in 46 KB of code. GnatDb, on the other hand, cleans
both segments round-robin, which leads to a worse per-
formance, but also to a simpler implementation with

code footprint of less than 700 Bytes and also simpli-
fies the replay attack protection to the degree that it
is unnecessary to build a Merkle tree.

In our experience, it is hard to optimize code foot-
print as an afterthought. Code footprint optimiza-
tion must be done throughout the design phase, when
the benefits of a complex design must be carefully
weighted against the corresponding code footprint in-
crease. It is also important to avoid building generic
modules with rich functionality that is not used by
other modules. We found it useful to implement only
the features that were clearly needed and add more
features later if necessary (even at the cost of reim-
plementing the module). For example, the containers
used in GnatDb do not support deletes, because the
containers are always deallocated wholesale. Finally,
although it is hard to quantify, the choice of an imple-
mentation language plays also an important role. For
example, TDB is implemented in C++, while GnatDb
in C (because there are no C++ compilers for many
embedded platforms). The correlation between the
sizes of source and assembly codes is weaker in C++
because the C++ compiler generates more assembly
code automatically and in places that may not be ob-
vious (e.g., copy constructors on arguments of func-
tion calls, destructors in scope exits). Consequently, a
seemingly simple source code may frequently get com-
piled into a large assembly code.
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