
Toward Recovery-Oriented Computing

Armando Fox

Stanford University
Stanford, California, USA

fox@cs.stanford.edu

Abstract

Recovery Oriented Computing (ROC) is a joint
research effort between Stanford University and
the University of California, Berkeley. ROC
takes the perspective that hardware faults,
software bugs, and operator errors are facts to be
coped with, not problems to be solved. This
perspective is supported both by historical
evidence and by recent studies on the main
sources of outages in production systems. By
concentrating on reducing Mean Time to Repair
(MTTR) rather than increasing Mean Time to
Failure (MTTF), ROC reduces recovery time and
thus offers higher availability. We describe the
principles and philosophy behind the joint
Stanford/Berkeley ROC effort and outline some
of its research areas and current projects.

1 The Case for ROC and “Peres’s Law”
If a problem has no solution, it may not be a problem but
a fact, not to be solved but to be coped with over time.

 —Shimon Peres

Despite marketing campaigns promising 99.999%

availability, well-managed servers today achieve 99.9% to
99%, or 8 to 80 hours of downtime per year . Each hour
can be costly, from $200,000 per hour for an Internet
service like Amazon to $6,000,000 per hour for a stock
brokerage firm [Kembel00]. Total cost of ownership
ranges from 3 to 18 times the purchase cost of many
cluster-based systems, and a third to a half of that money
is spent recovering from or preparing for failures
[Gillen02]. Despite decades of research that have

achieved four orders of magnitude in performance, large
cluster-based systems and end-user terminals alike still
fail, and we have not made sufficient headway in curbing
failures to keep up with the increasing complexity of our
systems and our dependence on them. We conclude that
such failures are a fact of life: not a problem that will
someday be solved once and for all, but a reality that we
must live with.

We propose to cope with this reality through fast and
graceful recovery. The quantitative rationale for the ROC
approach may be summarized as follows. A widely
accepted equation for system availability is
A=MTTF/(MTTF+MTTR), where MTTF is the mean
time to system failure and MTTR the mean time to
recovery after a failure. The target is to approach A=1.0,
and much historical effort has focused on achieving this
by pushing MTTF towards infinity—making hardware
ever more reliable, investing more resources in software
design and testing, employing redundancy to allow
continuous operation in the presence of partial failures,
and so on. We argue that an alternate way to approach
A=1.0 is to focus on making MTTR<<MTTF. Of course,
to some extent this has been embraced in communities
such as hardware design and database design; in fact, it is
often the case that in those systems, rapid recovery is used
within a particular layer of functionality to prevent a
visible failure in a higher layer, perhaps by making it
visible as only a performance blip, so that effectively a
sufficiently reduced MTTR in one layer is manifest is
increased MTTF in higher layers1. What is new in ROC
is that we believe it is time to apply emphasis on reducing
MTTR at the highest layers—the application and its end
users—as a way of improving availability, and that
numerous if currently anecdotal successes from the
Internet systems community can help illuminate the way
to do this.

1.1 Why Focus On Recovery

There are several reasons we have chosen to focus
squarely on recovery:

1 Thanks to Lisa Spainhower for this elegant
generalization of the observation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Human error is inevitable. Over 50% of outage
incidents, and a comparable fraction of outage minutes,
are due to operator error. We conducted two surveys that
confirmed this data in both the public switched telephone
network [Enriquez02] and for a selection of representative
large-scale Internet cluster services [Oppenheimer02].

MTTR can be directly measured. Today’s disks
have quoted MTTF’s of 120 years. Verifying such claims
requires many system-years of operation, which is beyond
the reach of all but the largest customers. In contrast, the
longest MTTR’s for commercial database products are on
the order of days, and many are on the order of hours,
making MTTR claims verifiable.

Lowering application-level MTTR can directly
improve the user experience. In April 2002, Ebay had a
280-minute sustained outage affecting most of its
services. This and similar previous outages are highly
visible, newsworthy, and affect customer loyalty and
investor confidence [Dembeck99]. In contrast, had Ebay
suffered one 6-minute outage per week, they would have
achieved the same availability (according to the formula)
but the individual outages are probably not newsworthy
because they affect far fewer users. The difference, of
course, is that in the latter case the same availability is
achieved by having a much shorter MTTR.

Frequent “recovery” may lengthen effective
MTTF. Software rejuvenation [Garg97] and recursive
restartability [Candea01] both exploit the observation that
by returning a system periodically to its start state
(typically a well understood and heavily tested state), we
can reclaim stale resources, clean up corrupted state and
other side effects of software aging, and eliminate the
corresponding side effects (e.g. performance degradation
due to memory leaks), and that we can do these things by
relying on well-tested but limited-functionality hardware
support such as the virtual memory system.

1.2 The ROC Research Agenda

Anecdotally, we know that some systems support (or
at least tolerate) some of the above scenarios well; for
example, “rolling reboots” are standard procedure for
most cluster-based services [Brewer01]. The ROC
research questions may therefore be stated as follows:
?? For the recovery scenarios above, what does it mean

for the corresponding system or subsystem to be
designed for recovery?

?? How can we identify and classify faults so that we
can select the most effective strategy when recovery is
needed?

?? How will we measure our success?
We now describe a sampling of ROC work in progress

that addresses each of these questions.

2 Some Research Areas and Projects
Our initial targets are large Internet-scale and

corporate-scale applications: email, portals, wide area
storage, and so on. We chose these in part because they
have interesting state management requirements, but often
do not need transactional guarantees, allowing us to ask
whether recovery can be improved by trading some of
those guarantees away. Also, the very large scale of these
systems brings some tradeoffs into sharp relief: search
engines feature a single specialized application running on
thousands of nodes, and some guarantees such as
consistency must be relaxed in order to meet throughput
and latency requirements and provide for incremental
scaling [Brewer01]. Finally, these services are trying to
build mission-critical functionality from semi-reliable
COTS parts in the face of high feature churn; we believe
these constraints and the attendant market pressures are
indicative of many future mission-critical systems, so our
recovery strategies should address these cases.

Measurement and Benchmarking. We are building
on our and others’ earlier work on availability
benchmarking [Brown00,Lambright00] to come up with
metrics that capture more than just “up or down”
availability, such as graceful performance degradation
during recovery. Similarly, we are considering the end-
user-visible effects of different forms of unavailability
[Merzbacher02] and ways to incorporate human operator
behavior in dependability benchmarks [Brown02b].
Given our stated focus on recovery, we are gratified to see
initial industrial support for benchmarking recovery from
various kinds of failures as well [Zhu02].

Recursive Restartability. A recursively restartable
system [Cand01] gracefully tolerates successive partial
restarts at multiple levels, which can be used to recover
from transient failures more quickly than a full reboot
woudl require. To apply RR to a system, we construct a
restart tree that captures restart dependencies among
components: restart tree nodes are highly fault-isolated
and a restart at any node will restart the entire
corresponding subtree rooted at that node. To enforce the
containment boundaries and the subtree restart behavior,
we rely on hardware-level support such as virtual
memory, process groups, and physical node boundaries.
A policy oracle decides which subtree to restart in
response to a particular detected failure; a simple
arithmetic model quantifies the cost of the oracle making
a mistake. We have successfully applied RR to an
amateur satellite ground station controller [CCF+02] to
reduce its time to recovery by a factor of 3-4x, and are
currently investigating “design for restartability” for
stateful components that are required to provide bounded
or probabilistic data durability and integrity.

System-level Undo for Operators. We are
“wrapping” an off-the-shelf IMAP mail server with
system-level Undo functionality, to recover from (e.g.)
administrative errors that would otherwise cause data loss

or an unacceptable user-perceived data inconsistency
[Brown02]. A system with undo also provides a forgiving
environment that promotes ingenuity and exploration: the
system operator can try innovative solutions to problems
without the fear of permanent disasterous consequences,
and an operator-in-training can safely learn by making
mistakes and recovering from them. Psychology has
shown that this approach of learning by trial-and-error is
one of the most effective method of human learning
[Reason90], yet only with an undoable system is the cost
of mistakes low enough to make it feasible.

Fault injection. FIG (Fault Injection in glibc) is a
lightweight, low-overhead, extensible tool for triggering
and logging errors at the application/system boundary.
FIG uses the LD_PRELOAD environment variable to
interpose itself between the application and glibc, the
GNU C library, causes some libc calls to fail to simluate a
failure in the operating environment. Using FIG to trigger
such faults in a variety of applications from desktop
applications to transaction servers, we have been able to
start classifying the successful recovery techniques that
appear in the applications that fare best under fault
injection [BST02].

Failure detection and diagnosis. Pinpoint [CKF+02]
is a framework for root-cause analysis in large distributed
component applications such as e-commerce systems.
Pinpoint tags a subset of client requests as they travel
through the system, uses traffic sniffing and middleware
instrumentation to detect failed requests, and then applies
data mining techniques offline to correlate the failed and
successful requests to determine which component(s)
were likely to be at fault for the failures. Because it is
implemented on the Java 2 Enterprise Edition application
server itself, existing J2EE applications can use Pinpoint
unmodified; experiments show that it identifies faulty
components with high accuracy and a low false-positive
rate.

3 Inspiration From Prior Work
Outside of computer science and engineering, we are
scanning the literature in disaster handling in emergency
systems such as nuclear reactors [Perrow90], human error
and “automation irony” [Reason90], and civil engineering
failures [Petroski92]. Within computer science and
engineering, we look to three large research communities
for inspiration and ideas: hardware-level and mission-
critical-system fault tolerance, commercial transaction
systems, and the Internet systems community.

Hardware and system fault tolerance, whether at the
component level or instruction-set architecture level,
serves the important function of assuring that the
underlying system behaves according to a particular well-
defined specification; for example, instruction-level retry
in the IBM G5 and other mainframes assures that the
hardware behaves according to the ISA specification.
Purpose-designed safety-critical systems such as the

Space Shuttle software have an excellent reliability record
as a full system, but at great cost in both maintenance
effort and difficulty of making changes. Although we are
most interested in exploring recovery at higher layers and
with higher-churn components, we expect to be able to
apply some of the ideas from this community in
analogous ways.

The Internet and systems community have already
begun investigating ways to systematize tradeoffs such as
availability vs. consistency [Yu00] and how to substitute
soft state for hard state in many kinds of applications
[Raman99]. Both approaches have the potential to
simplify recovery, and although both require explicit
support at application design time, application-transparent
recovery has been shown to be inapplicable in a broad
range of common failure cases [Lowell00].

The database community has deeply explored failure
recovery techniques that provide the strongest guarantees
for data integrity; one may say without exaggeration that
the sophisticated engineering in such systems today sets
the standard for data integrity guarantees after recovery.
It has been observed that not all applications require the
guarantees such systems provide, and especially at
extreme scale, it may be beneficial or necessary to trade
some of those guarantees away for improved availability
[Fox99]; we ask whether they might instead be traded for
faster recovery.

In summary, we expect our work to be complementary
to the large body of existing work in fault tolerance, and
we hope to gain insights and ideas from real
collaborations with those communities.

4 ROC People
ROC includes faculty at Stanford and Berkeley,

graduate and undergraduate students at both institutions,
and an industrial “advisory panel” that includes
representation from Hewlett-Packard Laboratories, IBM
Research, Microsoft, Microsoft Research, Intel, VMware,
and Yahoo! Inc. Financial support is provided by an NSF
ITR grant, an NSF CAREER award, various student
fellowships and scholarships, and research grants from
Allocity, Hewlett-Packard, IBM, Microsoft, Usenix, and
NASA.

The success of ROC is critically dependent on
participation from industry: we must develop benchmarks
that are realistic and that we can all agree on, base our
work on real failure data in real-world environments and
at realistic scales, and work on problems that have not
already been “solved” by industrial R&D.

Similarly, we expect that great ideas will come from
cross-pollination. We hope to add to the excellent work
done in fault tolerance to date, and we ask the cooperation
of researchers from those areas to help us better inform
and guide our own contributions.

References
[Brewer01] Eric A. Brewer. Lessons from giant-scale

services. IEEE Internet Computing, vol.5, (no.4),
IEEE, July-Aug. 2001. p.46-55.

[Brown00] Aaron Brown and David A. Patterson.
Towards availability benchmarking: a case study of
software RAID systems. In Proc. USENIX Annual
Technical Conference, San Diego, CA, June 2000.

[Brown02] Aaron Brown and David A. Patterson.
Rewind, repair, replay: Three R’s to Dependability.
In proc. SIGOPS European Workshop, Sept. 2002.

[Brown02b] Aaron Brown and David A. Patterson.
Including the human factor in dependability
benchmarks. Proc. 2002 DSN Workshop on
Dependability Benchmarking, Bethesda, MD, June
2002.

[BST02] Pete Broadwell, Naveen Sastry Jonathan
Traupman. FIG: Fault Injection in glibc. In
Workshop on Self-Healing, Adaptive, and Self-
Managed Systems (SHAMAN), New York, June
2002.

[Candea01] George Candea and Armando Fox. Recursive
restartability: Turning the reboot sledgehammer
into a scalpel. Proc. Eighth Workshop on Hot
Topics in Operating Systems (HotOS-VIII), Elmau,
Germany, May 2001.

[CCF+02] George Candea, James Cutler, Armando Fox,
et al. Minimizing time to recover in a small
recursively restartable system. Proc. Intl. Symp. on
Dependable Sys. and Networks (DSN) 2002,
Bethesda, MD, June 2002.

[CKF+02] M. Chen, E. Kiciman, E. Fratkin, A. Fox, E.
Brewer. Pinpoint: Problem determination in large,
dynamic Internet services. . Proc. Intl. Symp. on
Dependable Sys. and Networks (DSN) 2002,
Bethesda, MD, June 2002.

[Dembeck99] Chet Dembeck. Yahoo cashes in on Ebay’s
outage. E-commerce Times, June 18, 1999.
http://www.ecommercetimes.com/perl/story/545.ht
ml

[Enriquez02] P. Enriquez, A. Brown, and D.A. Patterson.
Lessons from the PSTN for dependable computing.
In Workshop on Self-Healing, Adaptive, and Self-
Managed Systems (SHAMAN), New York, June
2002.

[Fox99] A. Fox and E.A. Brewer. Harvest, yield, and
scalable tolerant systems. In Proc. Seventh
Workshop on Hot Topics in Operating Systems
(HotOS-VII), Tucson, AZ, 1999.

[Garg97] S. Garg, A. Puliafito, M. Telek, K.S. Trivedi.
On the analysis of software rejuvenation policies.
Proc. of the 12th Annual Conf. on Computer
Assurance, June 1997, pp. 88–96.

 [Gillen02] Gillen, Al, Dan Kusnetzky, and Scott
McLaron "The Role of Linux in Reducing the Cost

of Enterprise Computing“, IDC white paper, Jan.
2002, available at.

[Kembel00] R. Kembel. Fibre Channel: A Comprehensive
Introduction, p.8, 2000.

[Lambright00] D. Lambright. Experiences in measuring
the reliability of a cache-based storage system.
Proc. First Workshop on Industrial Experiences
with System Software (WIESS 2000), San Diego,
CA, Oct. 2000.

[Lowell00] D. E. Lowell, S. Chandra, and P. Chen.
Exploring Failure Transparency and the Limits of
Generic Recovery. Proc. 4th Symp.on Operating
System Design and Implementation (OSDI 2000),
San Diego, CA, October 2000.

[Merzbacher02] Matthew Merzbacher and Dan Patterson.
Measuring end-user availability on the Web:
Practical experience. In Proc. Intl. Conf. on
Dependable Sys. and Networks (DSN) 2002,
Bethesda, MD, June 2002.

[Oppenheimer02] David Oppenheimer and David A.
Patterson. Studying and using failure data from
large-scale Internet services. In Proc. SIGOPS
European Workshop, Sept. 2002

[Perrow90] Perrow, Charles. Normal Accidents: Living
with High Risk Technologies, Perseus Books.

[Petroski92]. Petroski , H. To engineer is human : the role
of failure in successful design, Vintage Books,.
NewYork, 1992

[Raman99] Suchitra Raman and Steven McCanne. A
model, analysis, and protocol framework for soft
state based communication. Proc. ACM
SIGCOMM Conference, Cambridge, MA, Sep
1999.

[Reason90], Reason J. T. Human error. New York :
Cambridge University Press, 1990.

[ROC02] David Patterson et al. Recovery Oriented
Computing (ROC): Motivation, Definition,
Techniques, and Case Studies. UC Berkeley
Technical Report CSD-02-1175, March 2002

[Yu00] Haifeng Yu and Amin Vahdat. Design and
evaluation of a continuous consistency model for
replicated services. In Proc. Fourth Intl. Symp. on
Oper. Sys. Design and Implementation (OSDI
2000), San Diego, CA, Oct. 2000.

[Zhu02] Ji Zhu, James Mauro, Ira Pramanick. System
recovery benchmarking. Proc. DSN Workshop on
Dependability Benchmarking, Bethesda, MD, June
2002.

