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Abstract 

Recovery Oriented Computing (ROC) is a joint 
research effort between Stanford University and 
the University of California, Berkeley.  ROC 
takes the perspective that hardware faults, 
software bugs, and operator errors are facts to be 
coped with, not problems to be solved.  This 
perspective is supported both by historical 
evidence and by recent studies on the main 
sources of outages in production systems.  By 
concentrating on reducing Mean Time to Repair 
(MTTR) rather than increasing Mean Time to 
Failure (MTTF), ROC reduces recovery time and 
thus offers higher availability.  We describe the 
principles and philosophy behind the joint 
Stanford/Berkeley ROC effort and outline some 
of its research areas and current projects. 

1 The Case for ROC and “Peres’s Law” 
If a problem has no solution, it may not be a problem but 
a fact, not to be solved but to be coped with over time. 

 —Shimon Peres 
 
Despite marketing campaigns promising 99.999% 

availability, well-managed servers today achieve 99.9% to 
99%, or 8 to 80 hours of downtime per year . Each hour 
can be costly, from $200,000 per hour for an Internet 
service like Amazon to $6,000,000 per hour for a stock 
brokerage firm [Kembel00].  Total cost of ownership 
ranges from 3 to 18 times the purchase cost  of many 
cluster-based systems, and a third to a half of that money 
is spent recovering from or preparing for failures 
[Gillen02].  Despite decades of research that have 

achieved four orders of magnitude in performance, large 
cluster-based systems and end-user terminals alike still 
fail, and we have not made sufficient headway  in curbing 
failures to keep up with the increasing complexity of our 
systems and our dependence on them.  We conclude that 
such failures are a fact of life: not a problem that will 
someday be solved once and for all, but a reality that we 
must live with. 

We propose to cope with this reality through fast and 
graceful recovery.  The quantitative rationale for the ROC 
approach may be summarized as follows.  A widely 
accepted equation for system availability is 
A=MTTF/(MTTF+MTTR), where MTTF is the mean 
time to system failure and MTTR the mean time to 
recovery after a failure.  The target is to approach A=1.0, 
and much historical effort has focused on achieving this 
by pushing MTTF towards infinity—making hardware 
ever more reliable, investing more resources in software 
design and testing, employing redundancy to allow 
continuous operation in the presence of partial failures, 
and so on.  We argue that an alternate way to approach 
A=1.0 is to focus on making MTTR<<MTTF.  Of course, 
to some extent this has been embraced in communities 
such as hardware design and database design; in fact, it is 
often the case that in those systems, rapid recovery is used 
within a particular layer of functionality to prevent a 
visible failure in a higher layer, perhaps by making it 
visible as only a performance blip, so that effectively a 
sufficiently reduced MTTR in one layer is manifest is 
increased MTTF in higher layers1.  What is new in ROC 
is that we believe it is time to apply emphasis on reducing 
MTTR at the highest layers—the application and its end 
users—as a way of improving availability, and that 
numerous if currently anecdotal successes from the 
Internet systems community can help illuminate the way 
to do this. 

1.1 Why Focus On Recovery 

There are several reasons we have chosen to focus 
squarely on recovery: 
                                                           
1 Thanks to Lisa Spainhower for this elegant 
generalization of the observation. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the VLDB copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Very Large Data Base Endowment.  To copy 
otherwise, or to republish, requires a fee and/or special permission from 
the Endowment 
Proceedings of the 28th VLDB Conference, 
Hong Kong, China, 2002 



Human error is inevitable.  Over 50% of outage 
incidents, and a comparable fraction of outage minutes, 
are due to operator error.  We conducted two surveys that 
confirmed this data in both the public switched telephone 
network [Enriquez02] and for a selection of representative 
large-scale Internet cluster services [Oppenheimer02].  

MTTR can be directly measured.  Today’s disks 
have quoted MTTF’s of 120 years.  Verifying such claims 
requires many system-years of operation, which is beyond 
the reach of all but the largest customers.  In contrast, the 
longest MTTR’s for commercial database products are on 
the order of days, and many are on the order of hours, 
making MTTR claims verifiable. 

Lowering application-level MTTR can directly 
improve the user experience.   In April 2002, Ebay had a 
280-minute sustained outage affecting most of its 
services.  This  and similar previous outages are highly 
visible, newsworthy, and affect customer loyalty and 
investor confidence [Dembeck99].  In contrast, had Ebay 
suffered one 6-minute outage per week, they would have 
achieved the same availability (according to the formula) 
but the individual outages are probably not newsworthy 
because they affect far fewer users.  The difference, of 
course, is that in the latter case the same availability is 
achieved by having a much shorter MTTR. 

Frequent “recovery” may lengthen effective 
MTTF.  Software rejuvenation [Garg97] and recursive 
restartability [Candea01] both exploit the observation that 
by returning a system periodically to its start state 
(typically a well understood and heavily tested state), we 
can reclaim stale resources, clean up corrupted state and 
other side effects of software aging, and eliminate the 
corresponding side effects (e.g. performance degradation 
due to memory leaks), and that we can do these things by 
relying on well-tested but limited-functionality hardware 
support such as the virtual memory system. 

1.2 The ROC Research Agenda 

Anecdotally, we know that some systems support (or 
at least tolerate) some of the above scenarios well; for 
example, “rolling reboots” are standard procedure for 
most cluster-based services [Brewer01].  The ROC 
research questions may therefore be stated as follows:  
?? For the recovery scenarios above, what does it mean 

for the corresponding system or subsystem to be 
designed for recovery? 

?? How can we identify and classify faults so that we 
can select the most effective strategy when recovery is 
needed?  

?? How will we measure our success? 
We now describe a sampling of ROC work in progress 

that addresses each of these questions. 

2 Some Research Areas and Projects 
Our initial targets are large Internet-scale and 

corporate-scale applications: email, portals, wide area 
storage, and so on.  We chose these in part because they 
have interesting state management requirements, but often 
do not need transactional guarantees, allowing us to ask 
whether recovery can be improved by trading some of 
those guarantees away.  Also, the very large scale of these 
systems brings some tradeoffs into sharp relief: search 
engines feature a single specialized application running on 
thousands of nodes, and some guarantees such as 
consistency must be relaxed in order to meet throughput 
and latency requirements and provide for incremental 
scaling [Brewer01].  Finally, these services are trying to 
build mission-critical functionality from semi-reliable 
COTS parts in the face of high feature churn; we believe 
these constraints and the attendant market pressures are 
indicative of many future mission-critical systems, so our 
recovery strategies should address these cases. 

Measurement and Benchmarking.  We are building 
on our and others’ earlier work on availability 
benchmarking [Brown00,Lambright00] to come up with 
metrics that capture more than just “up or down” 
availability, such as graceful performance degradation 
during recovery.  Similarly, we are considering the end-
user-visible effects of different forms of unavailability 
[Merzbacher02] and ways to incorporate human operator 
behavior in dependability  benchmarks [Brown02b].  
Given our stated focus on recovery, we are gratified to see 
initial industrial support for benchmarking recovery from 
various kinds of failures as well [Zhu02]. 

Recursive Restartability.  A recursively restartable 
system [Cand01] gracefully tolerates successive partial 
restarts at multiple levels, which can be used to recover 
from transient failures more quickly than a full reboot 
woudl require.  To apply RR to a system, we construct a 
restart tree that captures restart dependencies among 
components: restart tree nodes are highly fault-isolated 
and a restart at any node will restart the entire 
corresponding subtree rooted at that node. To enforce the 
containment boundaries and the subtree restart behavior, 
we rely on hardware-level support such as virtual 
memory, process groups, and physical node boundaries.  
A policy oracle decides which subtree to restart in 
response to a particular detected failure; a simple 
arithmetic model quantifies the cost of the oracle making 
a mistake.  We have successfully applied RR to an 
amateur satellite ground station controller [CCF+02] to 
reduce its time to recovery by a factor of 3-4x, and are 
currently investigating “design for restartability” for 
stateful components that are required to provide bounded 
or probabilistic data durability and integrity. 

System-level Undo for Operators.  We are 
“wrapping” an off-the-shelf IMAP mail server with 
system-level Undo functionality, to recover from (e.g.) 
administrative errors that would otherwise cause data loss 



or an unacceptable user-perceived data inconsistency 
[Brown02].  A system with undo also provides a forgiving 
environment that promotes ingenuity and exploration: the 
system operator can try innovative solutions to problems 
without the fear of permanent disasterous consequences, 
and an operator-in-training can safely learn by making 
mistakes and recovering from them. Psychology has 
shown that this approach of learning by trial-and-error is 
one of the most effective method of human learning 
[Reason90], yet only with an undoable system is the cost 
of mistakes low enough to make it feasible. 

Fault injection.  FIG (Fault Injection in glibc) is a 
lightweight, low-overhead, extensible tool for triggering 
and logging errors at the application/system boundary. 
FIG uses the LD_PRELOAD environment variable to 
interpose itself between the application and glibc, the 
GNU C library, causes some libc calls to fail to simluate a 
failure in the operating environment.  Using FIG to trigger 
such faults in a variety of applications from desktop 
applications to transaction servers, we have been able to 
start classifying the successful recovery techniques that 
appear in the applications that fare best under fault 
injection [BST02]. 

Failure detection and diagnosis.  Pinpoint [CKF+02] 
is a framework for root-cause analysis in large distributed 
component applications such as e-commerce systems.  
Pinpoint tags a subset of client requests as they travel 
through the system, uses traffic sniffing and middleware 
instrumentation to detect failed requests, and then applies 
data mining techniques offline to correlate the failed and 
successful requests to determine which component(s) 
were likely to be at fault for the failures.  Because it is 
implemented on the Java 2 Enterprise Edition application 
server itself, existing J2EE applications can use Pinpoint 
unmodified; experiments show that it identifies faulty 
components with high accuracy and a low false-positive 
rate. 

3 Inspiration From Prior Work 
Outside of computer science and engineering, we are 
scanning the literature in disaster handling in emergency 
systems such as nuclear reactors [Perrow90], human error 
and “automation irony” [Reason90], and civil engineering 
failures [Petroski92].  Within computer science and 
engineering, we look to three large research communities 
for inspiration and ideas: hardware-level and mission-
critical-system fault tolerance, commercial transaction 
systems, and the Internet systems community. 

Hardware and system fault tolerance, whether at the 
component level or instruction-set architecture level, 
serves the important function of assuring that the 
underlying system behaves according to a particular well-
defined specification; for example, instruction-level retry 
in the IBM G5 and other mainframes assures that the 
hardware behaves according to the ISA specification.  
Purpose-designed safety-critical systems such as the 

Space Shuttle software have an excellent reliability record 
as a full system, but at great cost in both maintenance 
effort and difficulty of making changes.  Although we are 
most interested in exploring recovery at higher layers and 
with higher-churn components, we expect to be able to 
apply some of the ideas from this community in 
analogous ways. 

The Internet and systems community have already 
begun investigating ways to systematize tradeoffs such as 
availability vs. consistency [Yu00] and how to substitute 
soft state for hard state in many kinds of applications 
[Raman99].  Both approaches have the potential to 
simplify recovery, and although both require explicit 
support at application design time, application-transparent 
recovery has been shown to be inapplicable in a broad 
range of common failure cases [Lowell00]. 

The database community has deeply explored failure 
recovery techniques that provide the strongest guarantees 
for data integrity; one may say without exaggeration that 
the sophisticated engineering in such systems today sets 
the standard for data integrity guarantees after recovery.  
It has been observed that not all applications require the 
guarantees such systems provide, and especially at 
extreme scale, it may be beneficial or necessary to trade 
some of those guarantees away for improved availability 
[Fox99]; we ask whether they might instead be traded for 
faster recovery.   

In summary, we expect our work to be complementary 
to the large body of existing work in fault tolerance, and 
we hope to gain insights and ideas from real 
collaborations with those communities. 

4 ROC People 
ROC includes faculty at Stanford and Berkeley, 

graduate and undergraduate students at both institutions, 
and an industrial “advisory panel” that includes 
representation from Hewlett-Packard Laboratories, IBM 
Research, Microsoft, Microsoft Research, Intel, VMware, 
and Yahoo! Inc.  Financial support is provided by an NSF 
ITR grant, an NSF CAREER award, various student 
fellowships and scholarships, and research grants from 
Allocity, Hewlett-Packard, IBM, Microsoft, Usenix, and 
NASA. 

The success of ROC is critically dependent on 
participation from industry: we must develop benchmarks 
that are realistic and that we can all agree on, base our 
work on real failure data in real-world environments and 
at realistic scales, and work on problems that have not 
already been “solved” by industrial R&D. 

Similarly, we expect that great ideas will come from 
cross-pollination.  We hope to add to the excellent work 
done in fault tolerance to date, and we ask the cooperation 
of researchers from those areas to help us better inform 
and guide our own contributions. 
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