
A One-Pass Aggregation Algorithm
with the Optimal Buffer Size in Multidimensional OLAP

Young-Koo Lee†, Kyu-Young Whang†, Yang-Sae Moon†, and Il-Yeol Song††

† Department of Computer Science and
Advanced Information Technology Research Center (AITrc)

Korea Advanced Institute of Science and Technology (KAIST), Taejon, Korea
{yklee,kywhang,ysmoon}@mozart.kaist.ac.kr

†† College of Information Science and Technology,
Drexel University, Philadelphia, Pennsylvania, USA

song@drexel.edu

Abstract

Aggregation is an operation that plays a key role in
multidimensional OLAP (MOLAP). Existing aggre-
gation methods in MOLAP have been proposed for
file structures such as multidimensional arrays. These
file structures are suitable for data with uniform dis-
tributions, but do not work well with skewed dis-
tributions. In this paper, we consider an aggrega-
tion method that uses dynamic multidimensional files
adapting to skewed distributions. In these multidi-
mensional files, the sizes of page regions vary accord-
ing to the data density in these regions, and the pages
that belong to a larger region are accessed multiple
times while computing aggregations. To solve this
problem, we first present an aggregation computation
model, called the Disjoint-Inclusive Partition (DIP)
computation model, that is the formal basis of our ap-
proach. Based on this model, we then present the one-
pass aggregation algorithm. This algorithm computes
aggregations using the one-pass buffer size, which is
the minimum buffer size required for guaranteeing one
disk access per page. We prove that our aggrega-
tion algorithm is optimal with respect to the one-pass
buffer size under our aggregation computation model.
Using the DIP computation model allows us to cor-
rectly predict the order of accessing data pages in ad-
vance. Thus, our algorithm achieves the optimal one-
pass buffer size by using a buffer replacement policy,
such as Belady’s B0 or Toss-Immediate policies, that
exploits the page access order computed in advance.
Since the page access order is not known a priori in
general, these policies have been known to lack practi-
cality despite its theoretic significance. Nevertheless,
in this paper, we show that these policies can be ef-
fectively used for aggregation computation.

We have conducted extensive experiments. We first
demonstrate that the one-pass buffer size theoretically

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission
of the Very Large Data Base Endowment. To copy otherwise, or to re-
publish, requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

derived is indeed correct in real environments. We
then compare the performance of the one-pass algo-
rithm with those of other ones. Experimental results
for a real data set show that the one-pass algorithm re-
duces the number of disk accesses by up to 7.31 times
compared with a naive algorithm. We also show that
the memory requirement of our algorithm for process-
ing the aggregation in one-pass is very small being
0.05%∼0.6% of the size of the database. These re-
sults indicate that our algorithm is practically usable
even for a fairly large database. We believe our work
provides an excellent formal basis for investigating fur-
ther issues in computing aggregations in MOLAP.

1 Introduction

On-line analytical processing (OLAP) is a database applica-
tion that allows users to easily analyze large volumes of data
in order to extract the information necessary for decision-
making [4]. OLAP queries make heavy use of aggregation
for summarizing data since summarized trends derived from
the records are more useful for decision-making rather than
individual records themselves. Since computing aggregation
is very expensive, good aggregation algorithms are crucial for
achieving performance in OLAP systems [1, 10, 14, 24].

OLAP is based on a multidimensional data model that
employs multidimensional arrays for modeling data [4]. The
multidimensional data model consists of measures and dimen-
sions: measures are the attributes that are analyzed; dimen-
sions are the attributes that determine the values of the mea-
sures. A dimension is mapped to an axis of the multidimen-
sional array. A measure is mapped to a value stored in a cell.
This model allows OLAP users to analyze changes in the val-
ues of the measures according to changes in the values of the
dimensions.

OLAP systems are categorized into two classes according
to their storage structures: relational OLAP (ROLAP) and
multidimensional OLAP (MOLAP) [4]. ROLAP, built on top
of the relational database system, stores OLAP data in tables.
In contrast, MOLAP uses multidimensional files that can ef-
ficiently store and manage multidimensional data. Recently,
as the effectiveness of the multidimensional files on OLAP
is recognized, there have been attempts to use them even in
ROLAP [10, 24].

While aggregation methods for ROLAP have been exten-
sively studied, the corresponding work for MOLAP has been
rare. MOLAP primarily uses static methods that material-

ize precomputed aggregates [10, 20]. However, these methods
suffer from storage and periodic update overheads caused by
storing the precomputed aggregate results; thus, precompu-
tation is limited only to the frequently asked queries. There-
fore, we need dynamic methods that can compute aggregates
on the fly even for the queries whose results have not been
materialized.

Dynamic methods for computing aggregates in MOLAP
have been limited to a few kinds of multidimensional file
structures. Earlier methods use either multidimensional ar-
rays [24] or compressed multidimensional arrays [14]. How-
ever, these structures have shortcomings. Multidimensional
arrays are inadequate for data with a skewed distribution.
Compressed multidimensional arrays degrade performance for
non-aggregate OLAP operators such as range queries by de-
stroying multidimensional clustering.

In this paper, we present a dynamic aggregation method
using a multidimensional file that can maintain multidimen-
sional clustering and that adapts to skewed data distributions.
We first present an aggregation computation model that em-
ploys the new notion of the disjoint-inclusive partition for
multidimensional files. We will formally define this notion in
Section 4.1. We then present a one-pass dynamic aggrega-
tion algorithm based on this model. Our algorithm computes
aggregations using a one-pass buffer size, which is the min-
imum buffer size required for guaranteeing one disk access
per page. We formally derive the one-pass buffer size and
prove that our aggregation algorithm is optimal with respect
to the one-pass buffer size under our aggregation computation
model. Consequently, any algorithm under our computation
model, regardless of buffer replacement policies and page ac-
cess orders, cannot have a one-pass buffer size smaller than
our algorithm can have.

We implement the algorithm using the Multilevel Grid File
(MLGF) [21, 23], which is a dynamic multidimensional file
having a balanced tree structure. Through experiments, we
demonstrate that the one-pass buffer size theoretically derived
is indeed correct. We also show that performance of our al-
gorithm is superior to those of other algorithms. We further
show that the memory requirement of our algorithm is only
a small fraction (0.05%∼0.6%) of the size of the database,
making our algorithm practically usable.

The rest of the paper is organized as follows. Section 2
briefly reviews multidimensional files and buffer replacement
policies. Section 3 presents the motivation for this research
and describes a general method for computing aggregations
using multidimensional files. Section 4 proposes our aggre-
gation computation model. Section 5 presents the one-pass
aggregation algorithm based on our model. Section 6 presents
the results of the experiments. Finally, Section 7 concludes
the paper.

2 Preliminaries

2.1 Multidimensional Files

We first define some terminology used for multidimensional
files [21]. A file is a collection of records, where a record
consists of a list of attributes. A subset of these attributes
that determines the placement of the records in the file is
called the organizing attributes. A file has a multidimensional
organization if it contains more than one organizing attribute.
A domain of an attribute is a set of values from which an
attribute value can be drawn. We define the domain space
as the Cartesian product of the domains of all the organizing
attributes. We call any subset of the domain space a region.

We call the region allocated to a page P a page region and
denote it by P̃ .

Multidimensional files have the multidimensional cluster-
ing property. The property enables efficient multi-attribute
accesses, which retrieve qualified records using multiple at-
tributes. The multidimensional clustering means that similar
records, whose organizing attributes have similar values, are
stored in the same page. To support the multidimensional
clustering, multidimensional files partition the domain space
into regions and store the records in each region on the same
page. Thus, the directory represents the state of the domain
space partition.

Multidimensional files can be classified into two categories
according to the way the boundary value for splitting the
region is determined [12]. One uses record-oriented splitting;
the other uses region-oriented splitting. Record-oriented split-
ting divides the region into two subregions so that each sub-
region has the same number of records. Thus, the boundary
value for splitting the region depends on the record distribu-
tion. Region-oriented splitting bisects the region regardless of
the record distribution. Thus, the boundary values for split-
ting the region are predetermined independent of the record
distribution.

In this paper, we perform experiments using the MLGF
[21][23][12], a dynamic multidimensional file structure that
uses region-oriented splitting and that adapts well to skewed
distributions. The MLGF is a balanced tree consisting of a
multilevel directory and data pages. A distinct characteris-
tic of the MLGF is that it uses the local splitting strategy,
which splits only the region where splitting is required rather
than across the entire hyperplane. As a result, the directory
growth is linearly dependent on the growth of the inserted
records regardless of data distributions, data skew, or corre-
lation among different organizing attributes [23]. This char-
acteristic is shared by other multidimensional files such as the
buddy tree, LSD tree, and k-d-B-tree, that use the local split-
ting strategy [7]. Thus, the MLGF gracefully adapts to highly
skewed and correlated distributions that frequently occur in
OLAP data.

2.2 Buffer Replacement Policies

A buffer replacement policy is the strategy used for choosing
a page, called the victim, that will be removed from the buffer
in order to make space available for a new page [6]. Typical
replacement policies include LRU [5], CLOCK [6], and LRU-k
[17]. A common strategy of replacement policies for minimiz-
ing the buffer fault rate is to select the page that has the
longest expected time until the next access. LRU estimates
the time of the next access to a page using the time of the last
access to that page. LRU-k, a generalization of LRU, uses the
time of the last k-th access. CLOCK is a simple and widely
used approximation of LRU. These policies are effective when
the page access order is not known in advance.

When the page access order is known in advance, we can
increase the effectiveness of buffers by taking advantage of
the order. Belady’s B0 [5] and the toss-immediate policies
[9] are such examples. In order to use Belady’s B0 policy,
we must know the complete page access order in advance. It
selects as a victim the page that has the longest time till the
next access. This policy has been proven to be the optimal
replacement policy [5]. On the other hand, in order to use
the toss-immediate policy, it is sufficient to know pages that
will no longer be accessed at a given time. Upon each page
access, it immediately invalidates the page that will not be
used further. When all pages in the buffer are to be accessed

further, the victim should be selected among themselves. In
order to handle this situation, the toss-immediate policy is
usually used together with a general replacement policy such
as LRU or CLOCK. Since the page access order is not known
a priori in general, these policies have been known to lack
practicality despite its theoretical significance. Nevertheless,
in this paper, we show that these policies can be effectively
used for aggregation computation.

3 Computing Aggregates Using Multidi-
mensional Files

In this section, we present our motivation for using multi-
dimensional files in aggregation computation. Section 3.1
defines necessary terminology. Section 3.2 presents a gen-
eral method for computing aggregates using multidimensional
files. Section 3.3 discusses the necessity of buffers in aggrega-
tion computation.

3.1 Terminology

Aggregation is an operation that classifies records into groups
according to the values of the specified attributes and deter-
mines one value per group by applying the given aggregate
function [8]. An aggregate is the summarized value per group
obtained through aggregation. We call the attributes used for
grouping records the grouping attributes, and the attribute to
which the aggregate function is applied the aggregation at-
tribute. We define the grouping domain space as the Cartesian
product of the domains of all the grouping attributes. We call
any subset of the grouping domain space a grouping region.
When we partition the grouping domain space into group-
ing regions to compute aggregation, we call them aggregation
windows. We define a partial aggregation as aggregation for
an aggregation window.

We define the page grouping region of a page P , denoted
by R =

∏
G P̃ , as the projection of the page region P̃ onto

the grouping domain space consisting of a set G of group-
ing attributes. When a page region P̃ and a region Q over-
lap, we simply say that the page P and the region Q overlap.
Likewise, when a page grouping region

∏
G P̃ and an aggre-

gation window W overlap, we say that the page P and the
aggregation window W overlap. We define aggregation win-
dow pages of an aggregation window W as the pages that
overlap with W .
Example 1: Figure 1 shows an example of computing ag-
gregation in a multidimensional file with three organizing
attributes X, Y , and Z. The domain space has been di-
vided into six regions with the records in each region be-
ing stored in pages A, B, C, D, E, and F . In the fig-
ure, the grouping attributes are X and Y , and the group-
ing domain space is X:[0,99]×Y :[0,99]. An example of the
grouping region is X:[0,49]×Y :[0,49]. The four grouping
regions forming a partition of the grouping domain space
X:[0,49]×Y :[0,49], X:[0,49]×Y :[50,99], X:[50,99]×Y :[0,49],
and X:[50,99]×Y :[50,99], represented by dashed lines in the
figure, are the aggregation windows. Finally, A and E are
the aggregation window pages of the aggregation window
X:[0,49]×Y :[0,49]. ¤
3.2 A General Method for Aggregation Computa-

tion

A simple method to compute aggregation is to use one aggre-
gation window that is equal to the grouping domain space.
We first create a result table consisting of entries <values of
grouping attributes, aggregate value> in the main memory.

E

C

BA

D

F

0 50 75 99

99

50

0

99

50

0

X

Y

Z

Organizing attributes: X, Y, Z

Grouping attributes: X, Y

E

C

BA

D

F

0 50 75 99

99

50

0

99

50

0

X

Y

Z

X

Y

Z

Organizing attributes: X, Y, Z

Grouping attributes: X, Y

Figure 1. Computing aggregation in a multidimensional file.

We then scan the file and retrieve the records. For each record
retrieved, using the values of the grouping attributes, we lo-
cate the corresponding entry from the result table, aggregate
the value of the aggregation attribute, and store the result
in the entry. If there is no corresponding entry, insert a new
entry. This method can compute aggregates by scanning a
file only once. However, this method would not be effective
for a large volume of data because of limited availability of
main memory.

An alternative method to compute aggregation is to use
multiple aggregation windows that form a partition of the
grouping domain space. The rationale behind this method is
that computing aggregates for an aggregation window is inde-
pendent of those for other aggregation windows. This is be-
cause records in different aggregation windows have different
values for the grouping attributes forming different groups.
If the size of an aggregation window is small, so is the size
of the partial aggregation result. Thus, we can choose ag-
gregation windows in such a way that the size of a partial
aggregation result can fit in the result table. We call the re-
sult table to contain the result of an aggregation window a
window result table.

The structure of a multidimensional file allows us to effi-
ciently retrieve the records in an aggregation window. This
is because multidimensional clustering renders range queries
efficient. In contrast, in a relational database, it is not ef-
ficient to retrieve the records that belong to an aggregation
window since the table structure does not support multidi-
mensional clustering. Our algorithm exploits the clustering
characteristic of the multidimensional file.

Figure 2 shows the algorithm, General Aggregation, de-
rived from the above principles. Step 1 partitions the group-
ing domain space into aggregation windows. Step 2 computes
the partial aggregation for each aggregation window. Step
2.1 forms the range query for the partial aggregation. In the
query, for the grouping attributes, the intervals correspond to
the aggregation window; for other organizing attributes, the
intervals correspond to the whole domain of each attribute.
In Steps 2.2 and 2.2.1, the partial aggregation is computed
using the records via the range query. The intermediate re-
sult for the partial aggregation is stored in the window result
table residing in the main memory.
Example 2: We explain General Aggregation uisng the
example shown in Figure 1. First, the algorithm par-
titions the grouping domain space X:[0,99]×Y :[0,99] into
aggregation windows X:[0,49]×Y :[0,49], X:[0,49]×Y :[50,99],
X:[50,99]×Y :[0,49], and X:[50,99]×Y :[50,99]. Then, the algo-
rithm computes the partial aggregation for each aggregation
window using the range query. For example, the range query
for the aggregation window X:[0,49]×Y :[0,49] is X:[0,49],
Y :[0,49], and Z:[0,99], which is represented by the shaded
bar in Figure 1. ¤

Algorithm General Aggregation
Input: (1) Multidimensional file md-file that contains

OLAP data
(2) Set G of grouping attributes
(3) Aggregation attribute A

Output: Result of aggregation
Algorithm:
1 Partition the grouping domain space into aggregation

windows.
2 For each aggregation window, DO

2.1 Construct a range query. Here, the query region
consists of the intervals corresponding to the ag-
gregation window for the grouping attributes and
the entire domain of each attribute for the other
organizing attributes.

2.2 Process the range query against md-file.
2.2.1 For each record retrieved, using the values of

the attributes in G, find the corresponding
entry from the window result table, aggre-
gate the value of the attribute A, and store
the result into the entry.

Figure 2. The general aggregation algorithm Gen-
eral Aggregation that uses a multidimensional file.

When we partition the grouping domain space in Step 1
of General Aggregation, it is desirable to select aggregation
windows so as to make the resulting sizes of partial aggre-
gations similar to one another. This partition reduces the
(maximum) size of the window result table that must reside
in the main memory. We propose a method in Appendix A
that selects aggregation windows using a histogram. In the
remaining part of this paper, we assume that the aggregation
windows are given, and focus on Step 2.

3.3 The Role of the Buffer in Aggregation Compu-
tation

Computing an aggregation with General Aggregation may
cause multiple disk accesses for the same pages. This is be-
cause, in Step 2.2 of the algorithm, a page in the multidimen-
sional file is accessed once for each aggregation window that
overlaps with the page. In multidimensional files, the sizes of
page regions vary because they are determined by the data
density in these regions. Hence, the pages that belong to a
larger region are more frequently accessed since they tend to
overlap with more aggregation windows.

In general, we use the buffer to reduce disk access. So can
we for the General Aggregation algorithm. In order to maxi-
mize the effectiveness of the buffer, a page should be accessed
in such an order that it resides in the buffer until the next
access. Thus, it is desirable to traverse the aggregation win-
dows overlapping with a particular page contiguously. At the
same time, a buffer replacement policy plays a critical role in
effective use of the buffer. Buffer replacement policies such
as LRU or CLOCK are typically used when we do not know
the order of accessing pages a priori. A very interesting ob-
servation is that, when we compute aggregations using a mul-
tidimensional file, we have a way of computing the order of
accessing pages a priori. We compute this order by using the
relationships among aggregation windows and page grouping
regions. Once we know the access order, we can obtain the
theoretically optimal performance by using Belady’s B0 pol-
icy or the toss-immediate policy. We discuss these issues in
Sections 4 and 5.

4 Aggregation Computation Model Based
on Disjoint-Inclusive Partition of Multi-
dimensional Files†

The page regions in multidimensional files have various
shapes, and thus, the topological relationships among page
regions and aggregation windows are complex. When these
relationships have certain properties, we can improve the per-
formance of computing aggregation by taking advantage of
them. In this section, we first define the notions of the
disjoint-inclusive relationship and the disjoint-inclusive parti-
tion. We then define our aggregation computation model that
employs these notions for a multidimensional file. We then
derive a lower bound of the one-pass buffer size under our
aggregation computation model. We next discuss controlling
the page access order such that pages to be accessed multiple
times are accessed in contiguous partial aggregations.

4.1 Disjoint-Inclusive Partition (DIP) Multidimen-
sional Files

Definition 1: Two regions S1 and S2 satisfy the disjoint-
inclusive relationship if they satisfy Eq. (1).

S1 ∩ S2 6= ∅ ⇒ (S1 ⊇ S2 ∨ S1 ⊆ S2). (1)
Definition 1 states that if two regions overlap, one includes
the other. ¤
Definition 2: Let D be the domain space with the organiz-
ing attributes A1, A2, . . . , An. A disjoint-inclusive partition
(DIP) of D is a set of regions Q = {Q1, Q2, . . . , Qk} satisfy-
ing the following conditions:
(1) (

⋃k
i=1Qi = D) ∧ (Qi ∩Qj = ∅, i 6= j).

(2) (∀G ⊆ {A1, A2, . . . , An}∀i, j(1 ≤ i, j ≤ k)) (
∏
GQi and∏

GQj satisfy the disjoint-inclusive relationship). ¤
We call a multidimensional file whose page regions form a DIP
a DIP multidimensional file. Condition (1) of Definition 2 is
a necessary and sufficient condition for Q to be a partition of
D. Condition (2) indicates that, when two regions in Q are
projected onto any

∏
G D space, the projected regions must

satisfy the disjoint-inclusive relationship.
Example 3: Figure 3 illustrates two examples of possible
partitions of the domain space in a multidimensional file hav-
ing three organizing attributes X, Y , and Z. Figure 3(a)
satisfies Condition (1) of Definition 2 since the domain space
has been partitioned into six regions A ∼ F . Furthermore,
the projected regions of any two regions in Figure 3(a) onto
the space

∏
G D, where G = {X,Y }, satisfy the disjoint-

inclusive relationship. Since the disjoint-inclusive relation-
ship also holds for any other combination of attributes for
G, Figure 3(a) is a DIP. Figure 3(b) also satisfies Condition
(1) of Definition 2. As shown in this figure, however, in the
space

∏
G D where G = {X,Y }, ∏GA and

∏
GD(also

∏
GA

and
∏
GE) overlap without satisfying the disjoint-inclusive

relationship. Therefore, Figure 3(b) is not a DIP. ¤
Lemma 1 presents a sufficient condition for a multidimen-

sional file to have a DIP.

Lemma 1: If a multidimensional file satisfies the following
splitting rules (1) and (2), the set of regions in the domain
space resulting from the splits forms a DIP.
†Due to the VLDB policy, we prominently cite our earlier work in

the following:
The notion of disjoint-inclusive partition in this section and the page

access order (in Section 4.4) have appeared in an earlier paper [13]. The
current paper significantly extends the preliminary work with the one-
pass nature on the optimal buffer size (which is the main focus of the
paper) newly introduced in Sections 4.3, 5, 6, and 7.

E

C

B
A

D

F

A C

B

E

D

(a) A DIP. (b) A non-DIP.

X

Y
Z

Organizing
attributes: X, Y, Z

ΠGA ΠGB

ΠGE
ΠGA ΠGB

ΠGC

ΠGD

ΠGE

ΠGF

ΠGC
ΠGD

G = {X, Y}

E

C

B
A

D

F

A C

B

E

D

(a) A DIP. (b) A non-DIP.

X

Y
Z

X

Y
Z

Organizing
attributes: X, Y, Z

ΠGA ΠGB

ΠGE
ΠGA ΠGB

ΠGC

ΠGD

ΠGE

ΠGF

ΠGC
ΠGD

G = {X, Y}

Figure 3. A DIP and a non-DIP.

(1) The multidimensional file uses region-oriented splitting.
(2) Let Qi and Qj be regions in the domain space and Spli-

tAxes(Qi) and SplitAxes(Qj) be multisets of split axes
used in obtaining Qi and Qj , respectively. Then, ei-
ther SplitAxes(Qi) ⊆ SplitAxes(Qj) or SplitAxes(Qi) ⊇
SplitAxes(Qj).

Proof : See Appendix B. ¤
We identify a special case satisfying the splitting rule (2)

of Lemma 1. Let SplitAxesSeq(Qi) be a sequence of split-
ting axes used in obtaining Qi. Then, a condition that
SplitAxesSeq(Qi) is a prefix of SplitAxesSeq(Qj) or vice versa
is a sufficient condition for the splitting rule (2). The cyclic
splitting strategy [12], which selects the splitting axis cycli-
cally, is a typical example that satisfies the condition. Exam-
ple 4 shows a non-cyclic splitting strategy that satisfies the
splitting rule (2).
Example 4: Figure 4 shows a multidimensional file having
two organizing attributes X and Y . To achieve better perfor-
mance in query processing, it is known to be desirable to make
the shape of the page regions to have an interval ratio similar
to that of query regions [12]. Figure 4 illustrates an example
partition when the interval ratio of the page region X : Y is
2 : 1. To obtain such a partition, we use a splitting strategy
that selects the Y axis as the splitting axis twice as frequently
as the X axis. The sequences of the splitting axes for the
page regions A ∼ E are as follows: SplitAxesSeq(A) = X,
SplitAxesSeq(B) = XY , SplitAxesSeq(C) = XY Y , and
SplitAxesSeq(D) = SplitAxesSeq(E) = XY Y X. For any two
regions, the sequence for a region is a prefix of that for the
other. Thus, the partition shown in Figure 4 is a DIP. ¤

Y

X

A
C

B

D E

Y

X

A
C

B

D E

Figure 4. A non-cyclic splitting strategy that produces a DIP.

4.2 The Aggregation Computation Model

Definition 3: The DIP computation model for computing
aggregations using a multidimensional file is the one that sat-
isfies the following four conditions:
(1) A DIP multidimensional file is used.
(2) The aggregation with respect to the grouping domain

space is computed as the union of partial aggregations,
each of which is computed with respect to an aggregation
window. Here, aggregation windows form a partition of
the grouping domain space.

(3) Disjoint-inclusive relationship is satisfied among aggre-
gation windows and page grouping regions.

(4) Each partial aggregation is computed by retrieving
records through a range query against the multidimen-
sional file. ¤

The DIP computation model computes aggregations using
a DIP multidimensional file. Conditions (2) and (4) allow
us to compute aggregates by taking advantage of multidi-
mensional clustering. We have discussed such an aggregation
method in Section 3.2. Conditions (1) and (3) allow us to
use the DIP property as examplified . They provide the ba-
sis for developing an efficient aggregation algorithm and for
analyzing the algorithm formally.

We note that it is always possible to partition the group-
ing domain space into aggregation windows that have the
disjoint-inclusive relationship with page grouping regions as
required by Condition (3). Page grouping regions of a DIP
multidimensional file mutually satisfy the disjoint-inclusive
relationship. Thus, if we select each aggregation window as a
union of multiple page grouping regions, aggregation windows
have the disjoint-inclusive relationship with the page grouping
regions. This is examplified in the algorithm in Appendix A.

4.3 A Lower Bound on the One-Pass Buffer Size

In this section, we obtain a lower bound of the one-pass buffer
size when computing aggregations under the DIP computa-
tion model. A lower bound is a buffer size that is at least
required by any algorithm to guarantee one disk access per
page. It is used in Section 5.1 to prove the optimality of our
algorithm with respect to the one-pass buffer size.

Definition 4: Let R =
∏
G P̃ be the page grouping region

of a page P . We say that P is an L-page (a large page) if R
properly includes the least one aggregation window. We also
say that, for an aggregation window W , P is an L-page of W
if R properly includes W (W ⊂ R). ¤
Theorem 1: Consider computing aggregations
under the DIP computation model. Let W =
{W1,W2, . . . ,Wk} be a set of aggregation windows. Then,
maxWi,1≤i≤k{(the number of L-pages of Wi) + αi} is a lower
bound of the one-pass buffer size. Here, αi is 1 if at least
one aggregation window page of Wi is a non-L-page and it is
accessed after all the L-pages of Wi have been read into the
buffer; αi is 0 otherwise.
Proof : Intutively, the buffer should contain as many pages
as the number of L-pages. In addition, one page is needed to
fetch a non-L-page into the buffer if it exists. See Appendix
C for a detailed proof. ¤

The DIP computation model does not impose any con-
straint on buffer replacement policies and page access orders.
Therefore, we can develop a variety of aggregation methods
based on the DIP computation model by adopting different
buffer replacement policies and page access orders. Theorem
1 states that the one-pass buffer size for any possible aggre-
gation method cannot be less than the lower bound obtained.

4.4 Page Access Order

Our algorithm controls the page access order so that repeat-
edly accessed pages (L-pages) are accessed in contiguous par-
tial aggregations. The objective is to let an L-page to be
accessed all at once while it remains in the buffer so that it
does not have to be accessed and loaded into the buffer any
further. In Section 5.1 we prove that our algorithm, con-
trolling the page access order in this way, has the optimal
one-pass buffer size. To achieve this objective, we need to
contiguously traverse the aggregation windows that overlap
with those L-pages. To obtain such a traversal order, we use

the notion of a space filling curve [7] induced from a given set
of regions. Space filling curves have been used as the page
access orders to increase the buffering effect in other appli-
cations (such as multidimensional spatial join [11]) as well.
But, the selection of the space filling curve has been based on
heuristic methods. In contrast, we use the optimal space fill-
ing curve selected based on the formal properties of the DIP
multidimensional file.
Definition 5: For a given set S = {S1, S2, . . . , Sn} of re-
gions in the multidimensional space D, where elements of S
satisfy the disjoint-inclusive relationship, we define the in-
duced space filling curve (ISFC) as a space filling curve satis-
fying the following condition:
Condition [contiguous interval]: Let the ISFC value,

ISFC(p), is the value allocated to a point p in D by the
ISFC. For any region Si, points in Si map to a contigu-
ous interval of ISFC values. Formally, for any region Si
and any ISFC value v such that minp∈Si{ISFC(p)} ≤
v ≤ maxp∈Si{ISFC(p)}, a point p satisfying ISFC(p) = v
must be in Si and vice versa.

Here, we call S the ISFC basis. We define the ISFC value of
a region Si, ISFC(Si), as maxp∈Si{ISFC(p)}. ¤
Lemma 2: For a given set S = {S1, S2, . . . , Sn} of regions in
the multidimensional space D, where elements of S satisfies
the disjoint-inclusive relationship, there exists at least one
ISFC with S as the ISFC basis.
Proof : See Appendix D. ¤

Definition 5 indicates that, in an ISFC order, all smaller
regions included in a larger region Si are traversed first, and
then, those that are not included in Si are traversed. We
take advantage of of the notion of the ISFC in our aggrega-
tion algorithm: when there are smaller aggregation windows
overlapping with a larger page grouping region for a page P ,
we use an ISFC order to make those aggregation windows
traversed contiguously, so that the page P may reside in the
buffer without swapping.

We now present a method that uses an ISFC as the traver-
sal order of aggregation windows and discuss its characteris-
tics. Let R be a set of page grouping regions in a DIP multi-
dimensional file and W a set of aggregation windows, where
elements of R and W satisfy the disjoint-inclusive relation-
ship. We define the ISFCR∪W as the ISFC in the grouping
domain space using R∪W as the ISFC basis.
Example 5: Figure 5 illustrates examples of an ISFCR∪W
and a non-ISFCR∪W . Figures 5(a) and 5(b) show page group-
ing regions (Ri’s) and aggregation windows (Wi’s), respec-
tively, used in Example 1. Figures 5(c) and 5(d) show the
overlay of page grouping regions shown in Figure 5(a) on top
of aggregation windows shown in Figure 5(b). Figure 5(c)
satisfies the definition of the ISFCR∪W : the order in which
the regions are traversed is R1(W1 → W2) → R6(W4(R3 →
R4) → W3(R2)). Figure 5(d) does not, however, because
points in region R1 are traversed while those in region R6

still are. ¤
If we use the ISFCR∪W as the order of traversing aggrega-

tion windows, the algorithm has a characteristic described in
the following Lemma 3. Lemma 3 is used to prove Lemma 4.
Lemma 3: Consider computing aggregations under the DIP
computation model. LetW =< W1,W2, . . . ,Wk > be a list of
aggregation windows, where Wi’s are ordered in an ISFCR∪W
order, i.e., if i < j, then ISFCR∪W(Wi) < ISFCR∪W(Wj).
Then, the aggregation windows that overlap with an L-page
are contiguous, i.e., they are Wl,Wl+1, . . . ,Wh(1 ≤ l ≤
h ≤ k).
Proof : See Appendix E. ¤

(c) An ISFC����� . (d) A non-ISFC����� .

(b) Aggregation windows (Wi’s).

R1=ΠGA
R2=ΠGB

R3=

ΠGC

R5=ΠGE

(a) Page grouping regions (Ri’s).
X

Y

R4=

ΠGD

R6=ΠGF

X

Y

W3W1

W4W2

R1 R2

R3

R5

X

Y

R4

R6

R1 R2

R3

R5

X

Y

R4

R6

(c) An ISFC����� . (d) A non-ISFC����� .

(b) Aggregation windows (Wi’s).

R1=ΠGA
R2=ΠGB

R3=

ΠGC

R5=ΠGE

(a) Page grouping regions (Ri’s).
X

Y

R4=

ΠGD

R6=ΠGF

X

Y

W3W1

W4W2

R1 R2

R3

R5

X

Y

R4

R6

R1 R2

R3

R5

X

Y

R4

R6

Figure 5. An ISFCR∪W and a non-ISFCR∪W (G = {X,Y}).

By Lemma 3, if we compute aggregations traversing ag-
gregation windows in the ISFCR∪W order, the aggregation
windows that overlap with an L-page are processed contigu-
ously. In other words, repeatedly accessed pages are accessed
in contiguous aggregation windows.

In an actual implementation, a specific ISFCR∪W is deter-
mined by the intrinsic characteristics of a multidimensional
file. We present a way of determining an ISFCR∪W order
based on the splitting rules of Lemma 1. All page grouping
regions inR have been created according to the splitting rules
of Lemma 1. In addition, since the set of aggregation win-
dows W must satisfy the disjoint-inclusive relationship with
the page grouping regions, we select the aggregation windows
from the regions that can be created according to the splitting
rules. These regions are the ones resulting from splitting the
domain space recursively. Under these circumstances, we can
use as the ISFCR∪W a space filling curve having the recursive
property that accords with the order of splitting axes selected.
For example, when a multidimensional file uses the cyclic
splitting strategy, we can use Z-order [7] as the ISFCR∪W .
We use Z-order in our experiments.

5 One-Pass Aggregation Algorithm

In this section we present the one-pass aggregation algorithm
based on the DIP computation model and prove that the al-
gorithm is optimal with respect to the one-pass buffer size
under the model. Section 5.1 derives the one-pass buffer size
when using the toss-immediate policy as the buffer replace-
ment policy.3 Section 5.2 presents the one-pass aggregation
algorithm.

3With the DIP computation model, we can compute the complete
page access order in advance so that we can use Belady’s B0 policy, which
is more efficient than the toss-immediate policy. But, since computing
the complete access order is complicated and is not the focus of this
paper, we present this aspect in a future paper. The toss-immediate
policy can be easily used because it only requires identifying pages that
will no longer be accessed, i.e., it requires only partial information on
the page access order. Both policies have the same one-pass buffer size.
For the sizes smaller than the one-pass buffer size, Belady’s B0 policy
has better performance than the toss-immediate policy.

5.1 One-Pass Buffer Size when Using the Toss-
Immediate Policy

To use the toss-immediate policy, we need to know which
pages will no longer be accessed at a given time. We can
identify such pages using the following Lemma 4.
Lemma 4: Consider computing aggregations under the DIP
computation model. Let W = {W1,W2, . . . ,Wk} be a set of
aggregation windows. Suppose we compute partial aggrega-
tions in an ISFCR∪W order. Then, a page Pcurr accessed
during the partial aggregation for Wcurr will no longer be
accessed if ISFCR∪W(

∏
G P̃curr) ≤ ISFCR∪W(Wcurr).

Proof : See Appendix F. ¤
In the following Theorem 2, we derive the one-pass buffer

size when using the toss-immediate policy as the buffer re-
placement policy.
Theorem 2: Consider computing aggregations under the
DIP computation model. Let W = {W1,W2, . . . , Wk} be
a set of aggregation windows. Suppose we compute partial
aggregations in an ISFCR∪W order and use toss-immediate
as the buffer replacement policy. Then, the one-pass buffer
size is equal to the lower bound of the one-pass buffer size
(maxWi,1≤i≤k{(the number of L-pages of Wi)+αi}) obtained
in Theorem 1. Thus, this size is the minimum.
Proof : See Appendix G. ¤
5.2 Aggregation Algorithm Using One-Pass Buffer

Size

Figure 6 shows the algorithm One Pass Aggregation that
extends the algorithm General Aggregation by using the
ISFCR∪W order and the one-pass buffer. Step 1 partitions
the grouping domain space into aggregation windows satisfy-
ing the disjoint-inclusive relationship with page grouping re-
gions. Step 2.1 computes the one-pass buffer size, BUFSIZE,
derived in Theorem 2. A multidimensional file contains in-
formation about the regions in its directory. Accordingly, we
can compute BUFSIZE by just reading its directory.4 Step
2.2 allocates the memory of BUFSIZE. Step 3.1 constructs
the range query for the partial aggregation for an aggrega-
tion window Wcurr. Step 3.2 evaluates the range query, and
checks whether the current page Pcurr will no longer be used
when its processing has been completed. If the ISFCR∪W
value of the page grouping region of Pcurr is smaller than
or equal to that of Wcurr, it will no longer be accessed by
Lemma 4, and the page is removed from the buffer accord-
ing to the toss-immediate policy. Step 3.3 computes aggre-
gates using the records retrieved from the range query and
stores them in the window result table. By Theorem 2, the
algorithm One Pass Aggregation has the one-pass buffer size
that is minimum among all the algorithms based on the DIP
computation model.

6 Performance Evaluation

In this section we present the result of the performance eval-
uation for the One Pass Aggregation algorithm. The objec-
tives of the experiments are three fold. First, we validate

4In a real implementation, we do not need to read the directory or

compute BUFSIZE. In Step 2 we do not allocate the buffer. Instead, in

Step 3.2, we dynamically allocate a buffer page for a newly accessed page

when there is none available. This implementation has the same one-pass

buffer size. In addition, this implementation improves the performance

in a multiuser environment because of dynamic (incremental) allocation

of the buffer. However, to help the reader understand the paper more

easily, we have described the algorithm including the step that computes

the one-pass buffer size.

Algorithm One Pass Aggregation
Input: (1) DIP multidimensional file md-file that

contains OLAP data
(2) Set G of grouping attributes
(3) Aggregation attribute A

Output: Result of aggregation
Algorithm:
1 Partition the grouping domain space into aggregation

windows so that aggregation windows and page grouping
regions satisfy the disjoint-inclusive relationship.

2 Initialize the buffer:
2.1 Compute the one-pass buffer size, BUFSIZE=

maxWi,1≤i≤k{(the number of L-pages of Wi) + αi}.
2.2 Allocate the buffer of size BUFSIZE.

3 Traversing aggregation windows in an ISFCR∪W order,
for each aggregation window Wcurr, DO
3.1 Construct a range query. Here the query region

consists of the intervals corresponding to the aggre-
gation window for the grouping attributes and the
entire domain of each attribute for the other orga-
nizing attributes.

3.2 Process the range query against md-file.
3.2.1 While evaluating the range query, when pro-

cessing the current page Pcurr is completed,
if ISFCR∪W(

∏
G P̃curr) ≤ ISFCR∪W(Wcurr),

then remove Pcurr from the buffer.
3.2.2 For each record retrieved, using the values of

the attributes in G, find the corresponding
entry from the window result table, aggregate
the value of the attribute A, and store the
result into the entry.

Figure 6. The One Pass Aggregation Algorithm.
Theorem 2 regarding the size of the one-pass buffer. Second,
we show the performance of the One Pass Aggregation algo-
rithm is superior compared with those of other algorithms
described in Section 6.1. Third, we show that our algorithm
requires a relatively small memory (0.05%∼0.6% of the size
of the database) for processing the aggregation in one pass.
Section 6.1 explains the experimental environment and data
sets. Section 6.2 presents the experimental results.

6.1 The Experimental Environment and Data Sets

Data Sets: We use both synthetic and real data sets for
the experiments. The synthetic data sets have records con-
sisting of six attributes: five are organizing attributes repre-
senting the dimensions, and one is the measure. The data
types of all the attributes are 4-byte integers, whose domain
is [−231, 231 − 1]. To simulate the OLAP data where records
are distributed in many clusters, we use a distribution that
superposes 100 overlapping multivariate normal distributions
for data distributions of the organizing attributes. The i-
th attribute of the multivariate normal distribution has a
normal distribution of N(µi, σ2), where the mean µi is ran-
domly selected within the domain [−231, 231 − 1], and the
standard deviation σ is varied from 220 to 229 (1

212 ∼ 1
23

of the domain). For sensitivity analysis, we generate 5,000,
50,000, and 500,000 records for each distribution. Thus, a to-
tal of 500,000 (29.9MB = 7,667 pages), 5,000,000 (279.3MB =
71,492 pages), and 50,000,000 (2,648.3MB = 677,964 pages)
records are in each data set. We call them SMALL-DATA,
MEDIUM-DATA, and LARGE-DATA, respectively. The
page size used is 4KB.

The real data set that we use is the Forest Cover
Type database from the UCI KDD archive [2]. It has

about 581,012 records consisting of 54 attributes, ten of
which are numerical. We use five-dimensional projection of
the data set (the projected data set has 580,616 records)
and use these five attributes as the dimensions and or-
ganizing attributes. These attributes are Elevation, As-
pect, Slope, Horizontal distance to hydrology, and Verti-
cal distance to hydrology. We use a dummy attribute as the
measure. We call this data set REAL-DATA. The size of
REAL-DATA is 34.3MB (8,784 pages).
Methods of Experiments: We have performed extensive
experiments using the data sets. We have used three grouping
attributes among the five organizing attributes. As the DIP
multidimensional file storing the OLAP data, we have used
the MLGF.5

We have performed five experiments varying the following
parameters: the type of data sets, data set size, window result
table size, and buffer size. Experiments A and B are for the
first and second objectives. We use the number of disk ac-
cesses that occur during aggregation computation as the per-
formance measure. The reason is two fold: 1) disk I/O has a
major effect on the performance of aggregation; 2) we intend
to demonstrate by experiment the correctness of the one-pass
buffer size derived in Theorem 2. Experiments C, D, and E
are for the third objective. In these experiments, we mea-
sure the memory requirement of the One Pass Aggregation
algorithm. Here, the memory requirement is the sum of the
window result table size and the one-pass buffer size.
1) Experiment A: MEDIUM-DATA with σ of 1.25 × 228

is used. The effect of the buffer size is analyzed as it is
varied from five to well beyond the one-pass buffer size,
while the window result table size is set to 0.05% of the
database size. The reason for using σ of 1.25 × 228 and
the window result table size of 0.05% will be explained in
Section 6.2.

2) Experiment B: Experiment A is repeated using REAL-
DATA instead of MEDIUM-DATA.

3) Experiment C: MEDIUM-DATA is used by varying σ
from 220 to 229. The memory requirement is measured
as σ is varied, while the window result table size is set to
0.05% of the database size.

4) Experiment D: The memory requirement is measured
as the window result table size is varied. For sensitivity
analysis experiments are repeated for SMALL, MEDIUM,
and LARGE-DATA with σ of 1.25× 228.

5) Experiment E: Experiment D is repeated for REAL-
DATA.

Algorithms Compared: We compare the performances of
the following four aggregation algorithms.
1) Naive Aggregation This algorithm is a straightforward

one derived from the algorithm General Aggregation in
Section 3.2. It obtains aggregation windows using the par-
titioning algorithm of the equi-depth histogram [15] and
traverses the aggregation windows using the row-major
order. Here, the aggregation windows do not satisfy the
disjoint-inclusive relationship with page grouping regions.
Thus, Naive Aggregation does not conform to the DIP
computation model. In addition, as the buffer replace-
ment policy, Naive Aggregation uses the CLOCK policy.

5We use the MLGF for the experiments here, but our methodology is
applicable to other kinds of DIP multidimensional files. Multidimensionl
files that obey the two rules in Lemma 1 can be DIP multidimensional
files. The buddy tree [19], the quad tree [18], and the grid file [16] are ex-
amples. On the other hand, some cannot be made DIP multidimensional
files. The R∗-tree [3] is an example.

2) DIP Aggregation This algorithm uses the same aggre-
gation windows as those of the One Pass Aggregation al-
gorithm. But, it traverses the aggregation windows using
the Hilbert order [7]. DIP Aggregation uses the CLOCK
policy. We use DIP Aggregation to analyze the perfor-
mance gain obtained by conforming to the DIP computa-
tion model, where we use the aggregation windows that
satisfy the disjoint-inclusive relationship with page group-
ing regions.

3) ISFC Aggregation This algorithm uses the same ag-
gregation windows and the same traversal order as those
of the One Pass Aggregation algorithm. In Step 3.2.1
of the One Pass Aggregation algorithm, however, it uses
CLOCK instead of the toss-immediate as the buffer re-
placement policy. We use ISFC Aggregation to analyze
the performance gain obtained by conforming to the DIP
computation model and by using the ISFCR∪W order.
But, here, the effect of using the toss-immediate policy
is excluded.

4) One Pass Aggregation This algorithm is the one pro-
posed in Section 5.2 using the toss-immediate policy.
However, when the buffer is smaller than the one-pass
buffer, it is not feasible to use the toss-immediate pol-
icy only. Thus, for such buffers, we use the toss-
immediate+CLOCK policy (which we simply call toss-
immediate) instead. That is, if there is no page remain-
ing to remove in Step 3.2.1 of the One Pass Aggregation
algorithm, we use the CLOCK policy to select the victim.

6.2 Experimental Results

Experiment A: Figure 7 shows the results of Experiment
A. The horizontal axis represents the size of the buffer. The
vertical axis represents the normalized I/O access, which
is defined as the number of page accesses normalized by
the total number of pages in the file. The normalized
I/O access of 1.0 represents the theoretically optimal per-
formance, and the buffer size achieving it is the one-pass
buffer size. The experiment shows the one-pass buffer size
for One Pass Aggregation is 94, which turns out to be equal
to maxWi,1≤i≤k{(the number of L-pages of Wi)+αi}6 as pre-
dicted in Theorem 2.

��� � �
��� � �
��� � �

��� � �
��� � �
��� � �
��� � �

� � � �
� � � �
��� � �

�	� �
� ��� � � �
� �� ��� �� ��� ��� � ��� � �

buffer size in pages

no
rm

al
iz

ed
 I/

O
 a

cc
es

s

Naive_Aggregation
DIP_Aggregation
ISFC_Aggregation
One_Pass_Aggregation

9 9 9
3 4 5

one-pass
buffer size
(=94)

Figure 7. Normalized I/O access for MEDIUM-DATA (71,492
pages) with σ = 1.25×228, where the window result table size
is 36 pages.

Figure 7 shows that DIP Aggregation has a far better per-
formance than Naive Aggregation. The result verifies the
effectiveness of our approach using the DIP computation
model. Figure 7 also shows that ISFC Aggregation is bet-
ter than DIP Aggregation over the entire range of the buffer
size. This is a natural result because the ISFCR∪W order,
which is derived from the characteristic of the DIP multidi-

6The number of L-pages has been counted by reading the directory
for each aggregation window to calculate the predicted value.

mensional file, is the optimal order for traversing the aggre-
gation windows. We note that the performance gap between
ISFC Aggregation and DIP Aggregation is not large in this
experiment because the Hilbert order is similar in buffering
effect to the ISFCR∪W order of this experiment, which is the
Z-order.7 Figure 7 also shows that One Pass Aggregation is
better than ISFC Aggregation over the entire range of the
buffer size. This result verifies that the replacement pol-
icy that selects a victim using the page access order known
a priori is very effective. For ISFC Aggregation the num-
ber of disk accesses changes slowly compared with that of
One Pass Aggregation as the buffer size increases. The rea-
son is that the buffer does not help since the numbers of
aggregation window pages are greater than the buffer size. In
this case, the aggregation window pages of one aggregation
window are all replaced with those of the next aggregation
window to be accessed neutralizing the effect of the buffer.
In contrast, for One Pass Aggregation, the number of disk
accesses decreases steadily until the buffer size reaches the
one-pass buffer size since the buffer is much more effectively
used due to the toss-immediate policy.
Experiment B: Figure 8 shows the results of Experiment B
using REAL-DATA. Similar to Figure 7, Figure 8 indicates
that One Pass Aggregation is the best, ISFC Aggregation the
next, DIP Aggregation the next, and Naive Aggregation the
worst over the entire range of the buffer size. The phe-
nomenon is more marked here since there are more random
variation of data distribution in real data. The experiment
shows that the one-pass buffer size for One Pass Aggregation
is 49, which turns out to be equal to the prediction in The-
orem 2. In Figure 8 we observe that One Pass Aggregation
reduces the number of disk accesses by up to 7.31 times com-
pared with Naive Aggregation and up to 1.93 times compared
with ISFC Aggregation.

��� � �

��� � �

��� � �

��� � �

� � � �

� � � �

	�� � �

 � � �

��� � �

��� �� ��� � � � � ��	��
 ������� ��� � ��� � �

buffer size in pages

no
rm

al
iz

ed
 I/

O
 a

cc
es

s

Naive_Aggregation
DIP_Aggregation
ISFC_Aggregation
One_Pass_Aggregation

4 48 9

one-pass
buffer size
 (=49)

Figure 8. Normalized I/O access for REAL-DATA (8,784
pages), where the window result table size is 4.4 pages.

Experiment C: In this experiment, we have measured the
memory requirement of the One Pass Aggregation algorithm
varying σ from 220 to 229. The results show that the memory
requirement is the largest when σ is 1.25× 228; thus, we use
this value as the worst case one for σ in Experiments A and E.
Experiment D: Figure 9 shows the results of Experiment
D. Figure 9(a) shows the memory requirement of the algo-
rithm for SMALL-DATA; Figure 9(b) for MEDIUM-DATA;
and 9(c) for LARGE-DATA. The horizontal axis represents
the window result table size; the vertical one the memory
requirement normalized by the database size. For all three
data sets, the one-pass buffer size decreases as the window
result table size increases. The reason is that, as the win-
dow result table size increases, we can use larger aggregation

7Changing the split strategy, which changes the ISFCR∪W order,
would produce a larger gap. Experiments are currently being done on
this effect.

windows, and the number of L-pages decreases. We observe
that, for all three data sets, the memory requirement of the
One Pass Aggregation algorithm for processing the aggrega-
tion in one pass is approximately 0.05%∼0.60% of the size of
the database and becomes smaller for larger databases. For
the case of MEDIUM-DATA in Figure 9(b), the memory re-
quirement is minimized when the window result table size is
less than 0.1% of the database size. We can use this range
for practical purposes. Thus, we have used the middle value
0.05% of this range for the window result table size in Exper-
iments A∼C.

��� � �

��� � �

��� � �

��� � �

��� � �

� � � �

� � � �

��� � �	�
� � ���
� � ����� � ���
� � ���
� �	�
� � ���
� � ����� � �	�
� � ��� � � �

window result table size as the ratio to the database size

no
rm

al
iz

ed
 m

em
or

y
si

ze

window result table one-pass buffer memory requirement

(a) SMALL-DATA.

��� ���

��� ���

��� ���

��� ���

��� ���

	
� ���

	
� ���

�
� ������� 	 ����� �����
� ����
� �����
� �����
� �����
� � ���
� �����
� ����	�� ���

window result table size as the ratio to the database size

no
rm

al
iz

ed
 m

em
or

y
si

ze

(b) MEDIUM-DATA.

��� ���

��� � �

��� ���

��� ���

��� ���

��� 	��

���
��

��� ��� ��� � � ��� ��� ��� ��� ��� ��� ��� 	��

window result table size as the ratio to the database size

no
rm

al
iz

ed
 m

em
or

y
si

ze

(c) LARGE-DATA.

Figure 9. Memory requirement for SMALL, MEDIUM, and
LARGE-DATA with σ = 1.25× 228.

Experiment E: Figure 10 shows the results of Experiment
E. We can see that the trend is similar to that of SMALL-
DATA (of approximately the same size) in Figure 9(a).

7 Conclusions

Efficient aggregation algorithms are crucial for achieving good
performance in OLAP systems. In this paper, we have pre-
sented a dynamic aggregation algorithm that uses multidi-
mensional files in MOLAP. We have presented the new notion
of the disjoint-inclusive partition and proposed the aggrega-
tion computation model, called the DIP computation model,
using this notion. Based on the model, we have proposed the
aggregation algorithm, One Pass Aggregation, that computes
aggregation using the one-pass buffer size. Our algorithm
achieves the optimal one-pass buffer size by using a buffer

��� � �

��� � �

��� � �

��� � �

��� � �

� � � �

� � � �

� � � �

��� � �	�
� � �	�
� � ���
� � �	�
� � �	�
� ����� � �	�
� � ����� � �	�
� � ��� � � �

window result table size as the ratio to the database size

no
rm

al
iz

ed
 m

em
or

y
si

ze

window result table one-pass buffer memory requirement

Figure 10. Memory requirement for REAL-DATA.

replacement policy, such as Belady’s B0 or Toss-Immediate
policies, that exploits the page access order computed in ad-
vance. Since the page access order is not known a priori in
general, these policies have been known to lack practicality
despite its theoretic significance. Nevertheless, in this paper,
we have shown that these policies can be effectively used for
aggregation computation.

We also have proposed a formal framework for comput-
ing aggregation under the DIP computation model. First, in
Theorem 1, we have formally derived a lower bound of the
one-pass buffer size. The one-pass buffer size is the minimum
buffer size required for guaranteeing one disk access per page.
Then, in Lemma 3, we have proved that we can maximize
the buffering effect by controlling the order of accessing pages
with the ISFC to process repeatedly accessed pages (L-pages)
in consecutive aggregation windows. Next, in Lemma 4, we
have proved that we can identify the pages that are no longer
to be accessed, enabling the use of the toss-immediate pol-
icy. Then, in Theorem 2, we have proved that the one-pass
buffer size becomes minimum if we use the toss-immediate
policy. Finally, we have presented the One Pass Aggregation
algorithm that uses the one-pass buffer.

To verify the performance of One Pass Aggregation, we
have performed extensive experiments with data sets hav-
ing various distributions. The experimental results show that
the one-pass buffer size of the algorithm predicted in Theo-
rem 2 is indeed correct and that One Pass Aggregation us-
ing the toss-immediate policy always has better performance
than ISFC Aggregation using the conventional CLOCK pol-
icy, which is a widely used approximation of LRU. Moreover,
experimental results for a real data set show that our al-
gorithm reduces the number of disk accesses by up to 7.31
times compared with Naive Aggregation. They also show
that the memory requirement of One Pass Aggregation for
processing the aggregation in one pass is a very small frac-
tion (0.05%∼0.6%) of the size of the database. These results
indicate that our algorithm is practically usable even for a
fairly large database.

Our algorithm is effective especially in a multiuser envi-
ronment, where many aggregation queries are requested con-
currently because it uses only those buffer pages that are es-
sential to maintain the normalized I/O access of 1.0. We
believe that our work is commercially implementable and, at
the same time, provides an excellent formal basis for investi-
gating further issues in computing aggregations in MOLAP.

Acknowledgements

This work was supported by the Korea Science and Engineer-
ing Foundation (KOSEF) through the Advanced Information
Technology Research Center (AITrc).

References

[1] Agarwal, S., Agrawal, R., Deshpande, P.M. et al., “On
the Computation of Multidimensional Aggregations,” In
Proc. Int’l Conf. on Very Large Data Bases, pp. 506–521,
Mumbai(Bombay), India, 1996.

[2] Bay, S. D., The UCI KDD Archive, University
of California, Department of Information and Com-
puter Science, Irvine, CA, 1999 (available at URL:
http://kdd.ics.uci.edu/).

[3] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger,
B., “The R∗-tree: An Efficient and Robust Access
Method for Points and Rectangles,” In Proc. Int’l Conf.
on Management of Data, pp. 322–331, ACM SIGMOD,
Atlantic City, NJ, 1990.

[4] Chaudhuri, S. and Dayal, U., “An Overview of Data
Warehousing and OLAP Technology,” ACM SIGMOD
Record, Vol. 26, No. 1, pp. 65–74, Mar. 1997.

[5] Coffman, E.G. Jr. and Denning, P.J., Operating Systems
Theorey, Prentice-Hall, 1973.

[6] Effelsberg, W. and Haerder, T., “Principles of Database
Buffer Management,” ACM Trans. on Database Systems,
Vol. 9, No. 4, pp. 560–595, Dec. 1984.

[7] Gaede, V. and Günther, O., “Multidimensional Access
Methods,” ACM Computing Surveys, Vol. 30, No. 2, pp.
170–231, June 1998.

[8] Graefe, G., “Query Evaluation Techniques for Large
Databases,” ACM Computing Surveys, Vol. 25, No. 2,
pp. 73–170, June 1993.

[9] Korth, H.F. and Silberschatz, A., Database System Con-
cepts, McGraw-Hill, New York, Second Ed., 1991.

[10] Kotidis, Y. and Roussopoulos, N., “An Alternative Stor-
age Organization for ROLAP Aggregate Views Based on
Cubetrees,” In Proc. Int’l Conf. on Management of Data,
pp. 249–258, ACM SIGMOD, Seattle, Washington, 1998.

[11] Koudas, N. and Sevcik, K.C., “High Dimensional Sim-
ilarity Joins: Algorithms and Performance Evaluation,”
IEEE Trans. on Knowledge and Data Engineering, Vol.
12, No. 1, pp. 3–18, Jan./Feb. 2000.

[12] Lee, J., Lee, Y., and Whang, K., “Region Splitting Strat-
egy for Physical Database Design of Multidimensional
File Organizations,” In Proc. Int’l Conf. on Very Large
Data Bases, pp. 416–425, Athens, Greece, Aug. 1997.

[13] Lee, Y., Whang, K., Moon, Y., and Song, I., “An Aggre-
gation Algorithm Using a Multidimensional File in Mul-
tidimensional OLAP,” Information Sciences (accepted
to appear), 2001.

[14] Li, J., Rotem, D., and Srivastava, J., “Aggregation Al-
gorithms for Very Large Compressed Data Warehouses,”
In Proc. Int’l Conf. on Very Large Data Bases, pp. 651–
662, Edinburgh, Scotland, UK, 1999.

[15] Muralikrishna, M. and DeWitt, D., “Equi-Depth His-
tograms for Estimating Selectivity Factors for Multi-
Dimensional Queries,” In Proc. Int’l Conf. on Manage-
ment of Data, pp. 28–36, ACM SIGMOD, Chicago, Illi-
nois, June 1988.

[16] Nievergelt, J., Hinterberger, H., and Sevcik, K.C., “The
Grid File: An Adaptable, Symmetric Multikey File
Structure,” ACM Trans. on Database Systems, Vol. 9,
No. 1, pp. 38–71, Mar. 1984.

[17] O’Neil, E.J., O’Neil, P.E., and Weikum, G., “The
LRU-K Page Replacement Algorithm for Database Disk
Buffering,” In Proc. Int’l Conf. on Management of Data,
ACM SIGMOD, Washington, DC, May 1993.

[18] Samet, H., “The Quadtree and Related Hierarchical
Data Structures,” ACM Computing Surveys, Vol. 16,
No. 2, pp. 187–260, June 1984.

[19] Seeger, B. and Kriegel, H.-P., “The Buddy-Tree: An
Efficient and Robust Access Method for Spatial Data
Base Systems,” In Proc. 6th Int’l Conf. on Very Large
Data Bases, pp. 590–601, 1990.

[20] Vassiliadis, P. and Sellis, T., “A Survey of Logical Models
for OLAP Databases,” ACM SIGMOD Record, Vol. 28,
No. 4, pp. 64–69, 1999.

[21] Whang, K. and Krishnamurthy, R., Multilevel Grid
Files, IBM Research Report RC 11516(51719), 1985.

[22] Whang, K., Vander-Zanden, B.T., and Taylor, H.M.,
“A Linear-time Probabilistic Counting Algorithm for
Database Applications,” ACM Trans. on Database Sys-
tems, Vol. 15, No. 2, pp. 208–229, June 1990.

[23] Whang, K. et al., “Dynamic Maintenance of Data Distri-
bution for Selectivity Estimation,” The VLDB Journal,
Vol. 3, No. 1, pp. 29–51, Jan. 1994.

[24] Zhao, Y., Deshpande, P.M., and Naughton, J.F., “An
Array-Based Algorithm for Simultaneous Multidimen-
sional Aggregates,” In Proc. Int’l Conf. on Management
of Data, pp. 159–170, ACM SIGMOD, Tucson, Arizona,
1997.

Appendix A: A Method for Selecting Aggre-
gation Windows

To select aggregation windows, we need to partition the
grouping domain space into aggregation windows so as to
make the sizes of the results of partial aggregations similar to
that of the result table. To do that, we need to know the num-
ber of records with different values for the grouping attributes
in an aggregation window. For this purpose, we use mul-
tidimensional histograms for the grouping attributes. Since
histograms are used for processing various queries as well as
aggregation, we assume that histograms [23] are maintained
together with the OLAP database. However, maintaining his-
tograms for all the combinations of the grouping attributes
would incur much overhead. To solve this problem, we use
only one histogram for all the organizing attributes and use
the total number of records in a grouping region as an upper
bound of the number of records having unique values for the
grouping attributes.8

Figure 11 shows the algorithm SelectAggregationWindows
that selects aggregation windows using the histogram. The
inputs are a histogram (H) for the organizing attributes, pro-
jection of the sequence of splitting axes onto the grouping
attributes (SplitSequence=A1A2A3 . . .), the result table size
in the number of records (Rmax), and a grouping region to
be partitioned into aggregation windows (S). The output
of the algorithm SelectAggregationWindows is the set of ag-
gregation windows that partition the domain space. Step 1
computes no records(S) by projecting the histogram H onto
the grouping attributes. Here, no records(S) is an upper
bound for the number of records having different values for
the grouping attributes in S. Step 2 selects S as the aggre-
gation window if no records(S) is equal to or less than Rmax.
If no records(S) is greater than Rmax, Step 3 splits S into S1

and S2 using the axis A1 as the splitting axis so that the result
8This estimate is an upper bound of the number of records having

different values for the grouping attributes. To obtain a more accurate

estimate, we need to revise the estimate using the duplication factor [22]

which we maintain as a statistic. However, we do not discuss the details

since it is beyond the scope of the current paper.

table may be able to accommodate the result of aggregation
over S. Step 4 calls SelectAggregationWindows recursively
using S1 for S and (A2A3 . . .) for SplitSequence. Likewise,
Step 5 calls SelectAggregationWindows recursively using W2

and (A2A3 . . .).

Algorithm SelectAggregationWindows
Input: (1) a histogram H for the organizing attributes

(2) projection of the sequence of the splitting axes
onto the grouping attributes SplitSequence=
A1A2A3 . . .

(3) the result table size Rmax
(4) a grouping region S to be partitioned

Output: a set of aggregation windows partitioning S
Algorithm:
1 Get no records(S) using the histogram H.
2 IF no records(S) ≤ Rmax THEN select S as the aggre-

gation window and return.
3 Split S into S1 and S2 using axis A1 as the splitting

axis.
4 Call SelectAggregationWindows using S1 for S and

(A2A3 . . .) for SplitSequence.
5 Call SelectAggregationWindows using S2 for S and

(A2A3 . . .) for SplitSequence.

Figure 11. The SelectAggregationWindows Algorithm.

Appendix B: Proof of Lemma 1

Let A1, . . . , An be the organizing attributes of the multidi-
mensional file and Q = {Q1, . . . , Qk} the set of regions in the
domain space resulting from the splits. Then, for any two
regions Qi and Qj , the following holds:
(1) Since region-oriented splitting bisects the region upon
split, the projections of Qi’s onto the domain of an attribute
Al must be one of those intervals that can be obtained by
bisecting the domain of Al recursively. Thus, the projections∏
Al
Qi and

∏
Al
Qj satisfy the disjoint-inclusive relationship.

Now, let NSAl(Qi) be the number of splits on the attribute
Al necessary for obtaining Qi. If

∏
Al
Qi and

∏
Al
Qj overlap,

one with the smaller value of NSAl(·) includes the other.
(2) Since either SplitAxes(Qi) ⊆ SplitAxes(Qj) or
SplitAxes(Qi) ⊇ SplitAxes(Qj), either ∀Al(NSAl(Qi) ≤
NSAl(Qj)) or ∀Al(NSAl(Qi) ≥ NSAl(Qj)) holds.

Now, consider Qi and Qj such that
∏
GQi and

∏
GQj

overlap, whereG is any subset of {A1, . . . , An}. Then,
∏
Al
Qi

and
∏
Al
Qj must also overlap for all Al in G. This fact along

with Conditions (1) and (2) leads to the conclusion either
∀Al ∈ G(

∏
Al
Qi ⊇

∏
Al
Qj) or ∀Al ∈ G(

∏
Al
Qi ⊆

∏
Al
Qj).

In other words, either
∏
GQi ⊇

∏
GQj or

∏
GQi ⊆

∏
GQj

holds meaning that one region includes the other. Therefore,
Q forms a DIP. ¤
Appendix C: Proof of Theorem 1

First, we prove that every L-page of an aggregation window
Wi is also an L-page of another aggregation window Wj .
Let P1, P2, . . . , Pm be L-pages of Wi and Rl(1 ≤ l ≤ m)
the page grouping region of Pl. Then, by the definition
of the L-page, Wi ⊂ Rl for all Rl. In addition, since the
page grouping regions satisfy the disjoint-inclusive relation-
ship, Rl1 ⊆ Rl2 or Rl2 ⊆ Rl1 (1 ≤ l1, l2 ≤ m). There-
fore, there exists a permutation {al} of {1, 2, . . . ,m} such
that Wi ⊂ Ra1 ⊆ Ra2 ⊆ . . . ⊆ Ram . Then, since the ag-
gregation windows form a partition of the grouping domain
space and Ra1 is larger than Wi, Ra1 must overlap with an-
other aggregation window Wj . Moreover, since the aggrega-

tion windows satisfy the disjoint-inclusive relationship with
the page grouping regions, Wj ⊂ Ra1 must hold. Since
Wj ⊂ Ra1 ⊆ Ra2 ⊆ . . . ⊆ Ram , all L-pages of Wi are also
L-pages of Wj .

Using the above property, we can obtain a lower bound as
follows. To guarantee one disk access per page, a page loaded
into the buffer must remain until the page no longer needs
to be accessed. Therefore, the L-pages of Wi loaded into
the buffer during the partial aggregation for Wi (Wj) must
remain in the buffer until the partial aggregation for Wj (Wi)
is completed. To support this buffering, we need at least as
many buffers as the number of the L-pages of Wi during the
partial aggregation for Wi. In addition, we need one extra
buffer for non-L-pages, which are accessed only within the
partial aggregation for one aggregation window. Thus, αi
becomes 1 if at least one non-L-page exists and it is accessed
after all the L-pages in Wi have been read into the buffer. In
other cases, a buffer for L-pages can be used for the non-L-
page obviating the need for the extra buffer. Finally, since we
consider all the partial aggregations, we need as many buffers
as maxWi,1≤i≤k{(the number of L-pages of Wi) + αi}. ¤

Appendix D: Proof of Lemma 2

Since the regions in S satisfy the disjoint-inclusive relation-
ship, we can partition S into subsets U1,U2, . . . ,Um(1 ≤ m ≤
n) as follows. First, let U1 be {Si ∈ S|∀Sj∈S(Si 6⊂ Sj)}.
That is, a region S1i in U1 is an element of S, but is not
properly included by any region Sj ∈ S. Next, let U2 be
{Si ∈ S − U1|∀Sj∈S−U1(Si 6⊂ Sj)}. That is, a region S2i in
U2 is an element of S − U1, but is not properly included by
Sj ∈ (S −U1). We note that each region S2i in U2 is properly
included in a region in U1; otherwise, it would be contained
in U1 instead of U2. In a similar manner, let Ul(1 < l ≤ m)
be {Si ∈ S − (U1 ∪ . . . ∪ Ul−1)|∀Sj∈S−(U1∪...∪Ul−1)(Si 6⊂ Sj)}.
Then, each region Sli in Ul is properly included in a region in
Ul−1.

Now, we prove the existence of an ISFC with S as the basis
by constructing one ISFC. First, for Smi ∈ Um, we select an
arbitrary order that starts at the lower-left corner of Smi ,
ends at the upper-right corner of Smi , and traverses all the
points in Smi . We use this order as a space filling curve for
Smi(∈ Um) and call it SFCmi . Next, for S(m−1)i ∈ Um−1,
we also select an arbitrary order, which starts at the lower-
left corner, ends at the upper-right corner, and traverses all
regions Smk that are properly included in S(m−1)i . We use
this order as a space filling curve for S(m−1)i . Here, for each
Smk ∈ Um traversed, we insert the order of Smk , SFCmk , into
that of S(m−1)i , SFC(m−1)i . In a similar manner, we select
an arbitrary order SFCli for Sli ∈ Ul(1 ≤ l < m). Here, for
each S(l+1)k ∈ Ul+1 traversed, we insert the order of S(l+1)k ,
SFC(l+1)k , into that of Sli , SFCli . We repeat this procedure
until we reach U1. We now make an SFC by combining all
the SFC1i ’s of S1i ’s in U1. It is trivial to show that the
SFC satisfies the condition of ISFC. Therefore, there exists
an ISFC that use S as an ISFC basis. ¤

Appendix E: Proof of Lemma 3

Let R =
∏
G P̃ be the page grouping region of an L-page P

and W′ =< Wi1 ,Wi2 , . . . ,Wim > (1 ≤ m ≤ k) be a list of
aggregation windows overlapping with R. Then, Wij ⊂ R

by the definition of the L-page. This leads to
⋃m
j=1Wij ⊆

R. In addition, since the aggregation windows in W form
a partition of the entire grouping domain space, R must be
included in the union of the aggregation windows that overlap

with R. This leads to R ⊆ ⋃m
j=1Wij . Thus,

⋃m
j=1Wij =

R. In addition, since ISFCR∪W is an ISFC that uses the
union of page grouping regions and aggregation windows as
the ISFC basis, all the points in Wij ’s have the ISFCR∪W
values between the maximum and minimum of the ISFCR∪W
values in R. Therefore, when the aggregation windows are
ordered in the ISFCR∪W order, Wij ’s are contiguous. ¤
Appendix F: Proof of Lemma 4

Let S be a region and p a point in the multidimen-
sional space D. We denote minp∈S{ISFCR∪W(p)} and
maxp∈S{ISFCR∪W(p)} by ISFCminR∪W(S) and ISFCmaxR∪W(S),
respectively. In addition, let Ri =

∏
G P̃i and Rcurr =∏

G P̃curr. A page Pi must overlap with an aggregation win-
dow Wj if it is to be accessed in a partial aggregation for Wj .
Equation (2) represents the condition that Pi and Wj overlap.
This is because for Pi and Wj to overlap, by the definition of
the ISFC, the two lines [ISFCminR∪W(Ri), ISFCmaxR∪W(Ri)] and
[ISFCminR∪W(Wj), ISFCmaxR∪W(Wj)] must overlap.

(ISFCminR∪W(Ri) ≤ ISFCmaxR∪W(Wj))∧
(ISFCmaxR∪W(Ri) ≥ ISFCminR∪W(Wj)) (2)

Let Wnext be an aggregation window to be traversed af-
ter Wcurr. Then, ISFCmaxR∪W(Wcurr) < ISFCminR∪W(Wnext)
holds. The condition ISFCmaxR∪W(Rcurr) < ISFCmaxR∪W(Wcurr)
also holds since it is equivalent to the assumption
(ISFCR∪W(Rcurr) ≤ ISFCR∪W(Wcurr)) of Lemma 4.
We then obtain the inequality ISFCmaxR∪W(Rcurr) <
ISFCminR∪W(Wnext). Therefore, Rcurr cannot overlap with
Wnext, and Pcurr will not be further accessed. ¤
Appendix G: Proof of Theorem 2

Let NP(t) represent ‘the number of pages that have been pre-
viously accessed and that are still to be accessed in the future
+ β’ at a page access time t. Here, β is 1 if the page to
be accessed at t does not exist in the buffer; 0 otherwise.
To guarantee one disk access per page, once the pages are
read into the buffer, they must remain in the buffer until
they are no longer to be accessed. Since the toss-immediate
policy chooses as the victim a page that will no longer be
accessed, the required one-pass buffer size—the buffer size re-
quired for keeping the pages previously read in the buffer until
they are no longer to be accessed—is equal to the maximum
value of NP(t), where t spans from the first page access to
the last. Now, we note that, in NP(t), the pages that have
been previously accessed and that are still to be accessed are
the L-pages themselves of the current aggregation window.
This is because the pages that are L-pages of the previous
aggregation windows and that are still to be accessed are also
L-pages of the current aggregation window by Lemma 3. We
also note that ‘the page that does not exist in the buffer at
t’ is either a non-L-Page, which is accessed only in the corre-
sponding aggregation window, or an L-page that is accessed
for the first time. Therefore, when NP(t) becomes a local
maximum, all the L-pages in an aggregation window must
have been read into the buffer, and a non-L-page, if any, is
about to be accessed. At this time, β has the same value as αi
in Theorem 1. Thus, the maximum value of NP(t) becomes
maxWi,1≤i≤k{(the number of L-pages of Wi) + αi}, which is
equal to the lower bound identified in Theorem 1. ¤

