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Abstract

A data warehouse is an integrated database
whose data is collected from several data
sources, and supports on-line analytical pro-
cessing (OLAP). Typically, a query to the
data warehouse tends to be complex and in-
volves a large volume of data. To keep
the data at the warehouse consistent with
the source data, changes to the data sources
should be propagated to the data warehouse
periodically. Because the propagation of the
changes (maintenance) is batch processing, it
takes long time. Since both query transac-
tions and maintenance transactions are long
and involve large volumes of data, tradi-
tional concurrency control mechanisms such
as two-phase locking are not adequate for a
data warehouse environment. We propose
a multi-version concurrency control mecha-
nism suited for data warehouses which use
multi-dimensional OLAP (MOLAP) servers.
We call the mechanism multiversion concur-
rency control for data warehouses (MVCC-
DW). To our knowledge, our work is the first
attempt to exploit versions for online data
warehouse maintenance in a MOLAP environ-
ment. MVCC-DW guarantees the serializabil-
ity of concurrent transactions. Transactions
running under the mechanism do not block
each other and do not need to place locks.
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1 Introduction

The aim of a data warehouse is to enable users to
make better and faster decisions [6]. To achieve this,
the data warehouse collects information from several
data sources and integrates them into a single database
that contains historical, summarized and consolidated
data. The data warehouse supports on-line analytical
processing (OLAP) that provides tools for accessing
and manipulating decision support information. The
analysis is typically based on a multi-dimensional data
model, known as a data cube [9].

A data cube is constructed from a subset of at-
tributes in the database. Certain attributes are chosen
to be measure attributes. Other attributes are selected
as dimensions. The measure attributes are aggregated
according to the dimensions. The data cube can be
stored in the special data structures (e.g., array) or in
the tables of the relational system. An analytical pro-
cessing with data stored in special data structures is
called multidimensional OLAP (MOLAP). Relational
OLAP (ROLAP) is an analytical processing with data
stored in a relational system.

As the data at the sources are changed, the data at
the warehouse becomes out-of-date. The data at the
warehouse should be maintained in order to provide
users with up-to-date information. To make the data
at the warehouse up-to-date, the changes to the data
at the sources are propagated to the data warehouse.

Considering the performance, most of the commer-
cial products gather changes to the source data and
propagate the changes to the data at the warehouse pe-
riodically. Because the changes are gathered, the prop-
agation of the changes becomes a large update process-
ing. We call the processing a maintenance transaction.
Since queries do not change the data at the warehouse,
the maintenance transaction is the only transaction
which updates the data at the warehouse.

OLAP systems are quite different from On-line
Transaction Processing (OLTP) systems that execute
a large number of relatively simple transactions. Since



the aim of OLAP is to support the decision making,
a query in OLAP systems tends to be complex and
involves a large volume of data. Normally, users of
OLAP systems execute a sequence of queries interac-
tively, and the data at the warehouse must be consis-
tent during the query transaction.

The differences between OLAP systems and OLTP
systems can be enumerated as follows. The first differ-
ence is the transaction execution time. The length of
query transactions executed in OLAP systems is very
long. It can be of several minutes or hours. If some
transactions are blocked by another transaction in the
system due to the use of locking, the blocked transac-
tions can be delayed for a long time. The second is
that normally while several short update transactions
are executed concurrently in the OLTP system, the
number of update transactions (maintenance transac-
tions) executed in the OLAP system is at most one
at a time. The third is the volumes of data to be
retrieved. Transactions in OLAP systems can access
large portions of data.

By the features of OLAP transactions, if OLAP sys-
tems employ a typical locking mechanism or an opti-
mistic mechanism for their concurrency control mech-
anisms, it induces both a high probability of conflicts
and a high abort rate. The naive method commonly
used in commercial OLAP systems is not to run queries
during the maintenance time. This method propa-
gates the changes at the data sources to the data ware-
house without blocking. However, this method is often
criticized as being too restrictive since a maintenance
transaction and a query transaction cannot run simul-
taneously. As organizations become globalized, the
OLAP systems should be able to respond to the queries
submitted by users in multiple time zones [7, 8, 12, 16].

Some researches have been done to resolve the
problem mentioned above in the ROLAP environment
[10, 12, 15]. However, there is no literature which deals
with the problem in the MOLAP environment. In this
paper, we propose a multi-version concurrency con-
trol mechanism suited for data warehouses which use
MOLAP servers that employ arrays for their storage
structures. In fact, many of the leading OLAP com-
panies use arrays in their multi-dimensional database
systems for their basic storage structures [17]. We call
our mechanism multiversion concurrency control for
data warehouses (MVCC-DW). To our knowledge, our
work is the first attempt to exploit versions to resolve
the concurrency control problem of multi-dimensional
arrays (MDAs) in the MOLAP environment.

Contribution In this paper, we propose MVCC-
DW which is a new concurrency control mechanism for
MOLAP servers. The MVCC-DW has the following
features:

e Non Blocking: Both query transactions and
maintenance transactions do not block each other
and are not aborted, even though they use the

same data items.

e Serializability: Our mechanism guarantees the
serializability of both query and maintenance
transactions, even though they run simultane-
ously.

e No Lock: Transactions do not need to place
locks.

In addition, we implement our MVCC-DW pro-
totype by modifying the Shore storage manager [5]
and conduct an extensive experimental study with the
dataset from the APB benchmark [1].

The remainder of the paper proceeds as follows.
Section 2 introduces a typical MDA implementation
as a background. Section 3 presents the basic idea,
the data structures and the algorithms of MVCC-DW.
Section 4 presents the experimental environment and
the results. Section 5 surveys related works which ex-
ploit versions in ROLAP servers. Finally, Section 6
contains conclusions.

2 Multi-Dimensional Arrays for MO-
LAP

In this section, we describe a typical architecture of
MDAs for MOLAP as a preliminary. The architecture
shown in Figure 1 contains two B+-tree indexes, one
for each dimension, an R*-tree index [2], and a chunked
file.

The chunked file is a file structure that stores a
multi-dimensional array. A large multi-dimensional
array can be stored on disk in row-major or column-
major order as a programming language manages ar-
rays in memory. In this case, logically adjacent cells
can be far apart on disk [17]. In a chunked file, a large
multi-dimensional array is divided into a set of small
multi-dimensional arrays (chunks) which is used as an
access unit. A chunk contains a number of cells. A
chunked file provides better access performance than
a large array in row-major or column-major order [13].

Generally, MOLAP servers use a two-level indexing
method [17] as shown in Figure 1. The B+4-tree index,
one for each dimension, maps dimension values in the
dimension to array index values. In order to retrieve
or update the value of a cell, we first find the chunk
that contains the cell. The R*-tree index maps a se-
quence of index values to an object identifier (OID)
of the object that stores the chunk that contains the
cell. Leaf nodes in the R*-tree index have a set of en-
tries, one for each chunk. An entry contains an OID
and a minimum bounding rectangle (MBR) that is the
boundary of a chunk.

A data cube requires a large disk space. Since the
data cube is very sparse, we can compress the data
cube by omitting the invalid cells of the data cube. We
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Figure 1: 2-Dimensional Arrays

use a form of compression, called “chunk-offset com-
pression” [17]. To prevent waste of disk space, chunk-
offset compression omits those invalid data cells and
only stores a pair, (offset, cellValue), for each valid
cell in each chunk instead of storing cells in row-major
or column-major order. The value of offset is an off-
set from the beginning of the chunk to the cell in an
uncompressed chunk. The value of cellValue is a value
stored in the cell.

Figure 1 depicts an example for the retrieval of a cell
value from a 2-dimensional array. The array in Figure
1 has 48 cells and 12 chunks. The size of a chunk is
2 x 2, so a chunk has 4 cells. The example explains
how to retrieve the sales volume with dimension values
of store identifier “s003” and product identifier “p004” .
We can get index values, 7 and 5, from the dimension
values, “s003” and “p004”, through the B+-tree in-
dexes. Now, index values (7, 5) becomes the address
of the cell that stores the sales volume. Then, we can
obtain the OID of the object that stores the chunk
that contains the cell through the R*-tree index. The
R*-tree index in Figure 1 shows an entry stored in a
leaf node. The entry contains index values (6,5) and
index values (7,4), representing an MBR. Since the in-
dex values (7, 5) is contained in the MBR, we use the

OID in the entry. Now, we can get the object that con-
tains the cell, and get the value in the cell addressed
by index values (7, 5) by computing the offset value
with index value 7 and 5.

3 Multi-Versioned Multi-Dimensional
Arrays

3.1 Motivation and Idea

As mentioned in Section 1, using a conventional lock-
ing mechanism results in a high blocking rate. Since
query transactions and maintenance transactions tend
to be long and complex, blocking could induce a signifi-
cant delay. Also, optimistic concurrency control mech-
anisms are not adequate for the data warehouse envi-
ronment because they can have a high abort rate. The
high abort rate of long transactions induces a degra-
dation in performance.

Our basic idea is to use a version mechanism. Since
the maintenance in OLAP is done by the batch pro-
cessing, a large unit of version control is adequate.
Therefore, a chunk instead of a cell is used as the unit
of version control. Typically, as mentioned earlier, a
two-level indexing mechanism is used to retrieve and
update the data in MOLAP servers. Thus, we devise
a new index mechanism which supports the version-
ing concept. The technique we propose is inspired by
the historical R-tree that was proposed as an access
method for moving objects [11].

3.2 Revisions and Transactions

A query transaction should retrieve a consistent data
set of the data warehouse. We use a revision as a con-
sistent data with respect to query transactions. The
state of a revision is either frozen or active. If a revision
is frozen, the revision will not be updated any more.
An active revision is one that is being updated and is
the most recently created revision. The state of a revi-
sion can be changed only from active to frozen. While
the number of frozen revisions is not limited, the num-
ber of active revisions is at most one at a time since
we assume that the number of maintenance transac-
tions (update transactions) is at most one at a time.
We call the most recently frozen revision the current
revision and call the least recently frozen revision the
oldest revision.

Each revision is assigned a revision number, a num-
ber increased monotonically, when it is created. To
prevent the waste of disk space, two revisions having
adjacent revision numbers share chunks that are not
changed between those two revisions. We call the re-
vision number of the current revision the current re-
vision number, call the revision number of the oldest
revision the oldest revision number, and call the revi-
sion number of the active revision the active revision
number.



A transaction in MOLAP servers is either a query
transaction that is read-only or a maintenance transac-
tion that updates a revision. A query transaction first
selects the current revision to be used before executing
a query, and then uses only the revision throughout its
lifetime. This guarantees the serializability of concur-
rent transactions.

A maintenance transaction builds up a new revi-
sion. When the maintenance transaction starts, it
first creates a new active revision, and then updates
only the revision throughout its lifetime. . When the
maintenance transaction finishes, it freeze the active
revision.

Table 1 summarizes operations on a revision.

Table 1: Operations on a revision

Operations

[ Who [ When |

maintenance transaction | begin
maintenance transaction end
query transaction begin
query transaction end

Create the active revision
Freeze the active revision
Open the current revision
Close a revision

3.3 The Architecture and Data Structures

As illustrated in Figure 2, the MVCC-DW architecture
consists of two B+-tree indexes, a Multi-ReVision-tree
(MRV-tree) index, and a chunked file. For each di-
mension of the MDA, a B+-tree index is used to map
a dimension value to an index value. A sequence of in-
dex values, one for each dimension, addresses a cell in
the MDA. Because the architecture uses a chunked file
instead of a large array, the sequence of index values
also specifies a chunk that contains the cell.

The MRV-tree index is used to map a sequence of
index values to a chunk. The MRV-tree is composed of
a sequence of RVn-trees (RV stands for ReVision and
n represents a revision number). An RVn-tree index
manages the mapping information from a sequence of
index values to a chunk in revision n. The RVn-tree
index for the current revision is called the current RVn-
tree index. Similarly, the tree for the oldest revision is
called the oldest RVn-tree index. If the revision n is
frozen (active), the RVn-tree index is also frozen (ac-
tive). Adjacent RVn-tree indexes share nodes if the
nodes are not changed. This feature is similar to the
HR-tree [11]. The chunked file stores chunks that are
small multi-dimensional arrays. Each chunk has an
OID, a chunk number, and a revision number. The
OID specifies an object that holds the chunk. The
chunk number specifies a chunk in a revision. If two
chunks have the same chunk number and they belong
to different revisions, one chunk is a version of the
other. The revision number specifies a revision which
was active when the chunk was created or versioned.
Here, the change of an MDA is represented by a revi-
sion, while that of a chunk is represented by a version.

In the architecture shown in Figure 2, there are
three RVn-tree indexes. The RVi-tree index, the RV2-
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Figure 2: Multi Versioned 2-Dimensional Array

tree index, and the RV3-tree index correspond to the
revision 1, the revision 2, and the revision 3, respec-
tively. The RVi-tree index has information about
three chunks stored in the object 1, the object 2, and
the object 3. The RV2-tree index manages information
about three chunks stored in the object 2, the object
3, and the object 4. The RVi-tree and the RV2-tree
share information about the object 2 and the object 3.
This indicates that chunks stored in the object 2 and
the object 3 are not changed during the maintenance
transaction that builds up the revision 2. However,
some cells in the chunk stored in the object 1 were
changed during the maintenance transaction. There-
fore, a new object was created, and the chunk stored
in the object 1 was copied to the new object whose
OID is 4.

The RV2-tree index and the RV3-tree index have
the same chunks stored in the object 3 and the object
4. The RV2-tree index has the chunk stored in the
object 2 that is not owned by the RV3-tree index, and
the RV3-tree index has the chunks stored in the object
5 and the object 6 that are not owned by the RV2-
tree index. The chunk stored in the object 5 has the
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Figure 3: Root Node of the MRV-tree

same chunk number 2 as the chunk stored in the object
2, which indicates that the chunk in the object 5 is
a version of the chunk stored in the object 2. The
chunk stored in the object 6 has the chunk number
4 that no other chunk has. This indicates that the
chunk is created during the maintenance transaction
that builds up the revision 3.

Figure 3 shows the root node of the MRV-tree. The
root node of the MVR-tree has information needed to
manage several RVn-tree indexes. It contains a flag
field, a current field, an oldest field, and an array of
triple values. The flag field (T or F) indicates whether
a maintenance transaction is running or not. The cur-
rent field specifies the current revision. The oldest field
indicates which RVn-tree index is used for the oldest
revision for the garbage collection.

Each triple values, (revNum, openCnt, rootOid),
in the array stores information for a revision. The
revNum field denotes the revision number, the openCnt
field is an open count that indicates the number of
transactions that are accessing the revision, and the
rootQid field stores an OID which represents an ob-
ject that contains the root node of the RVn-tree corre-
sponding to the revision. The openChnit field is used for
the garbage collection. If the oldest revision is not the
current revision and openCnt for the oldest revision is
zero, then the oldest revision is garbage-collected.

In Figure 3, Value “3” in the current field means
that the RV7-tree index which is denoted by the
revNum 7 in the third entry of the array is the current
RVn-tree index. Value“2” in the oldest field means
that the RVeé-tree index is the oldest RVn-tree in-
dex. The oldest RVn-tree index is a candidate for the
garbage collection. Value “T” in the flag field means
that a maintenance transaction is currently running.

The RVn-tree is a modified version of the R*-
tree [2]. One difference between the RVn-tree and
the R*-tree is that each node in the RVn-tree in-
cludes a field (rNum) for a revision number. A di-
rectory node (internal node) of the RVn-tree consists
of (rNum, Ly, Lo, ...,L,). rNum stores the revision

rev-num offsetl cellValuel offset? cellValueZ
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Figure 4: An Example of a Chunk

number of a revision that was active at node creation
time. L; is the tuple for the ith child node C; and
has the form of (¢p;, M BR;) where c¢p; is the address
of C; and M BR; is the MBR enclosing all the en-
tries in C;. A leaf node in the RVn-tree contains
(rNum, Dy, Do, ...,Dy). D; is the tuple for the ith
data entry and has the form of (P;, M BR;) where P;
is an OID which indicates an object that contains a
chunk and M BR; is the MBR enclosing all the cells
in the chunk.

A chunk contains a revision number and an array
of pairs, (offset, cellValue). An example of a chunk
is depicted in Figure 4. Assume that the size of the
chunk is 10 x 10 x 10 x 10, the revision number is 8, and
the chunk has two valid cells. If the first valid cell has
array indexes (12, 23, 34, 45 ) and value 7. The offset
2345 is computed by expression ((((((12%10) x 10) +
(23%10)) x 10) + (34%10)) x 10) + (45%10). The %
symbol represents the remainder operator and value
10 represents a dimension size of the chunk. If the
second valid cell has array indexes (23, 34, 45, 56) and
value 8. The offset 3456 is computed by expression
((((((23%10) x 10) + (34%10)) x 10) + (45%10)) x 10) +
(56%10).

3.4 Algorithms
In this section, we explain the algorithms of the MV-
MDA mechanism.

3.4.1 Algorithms for revisions

As mentioned earlier, when a maintenance transaction
starts, it first creates a new active revision. Figure 5
shows the CreateRevision algorithm. Line 1 sets the
flag field of the root node of the MRV-tree to “T”
to indicate that a maintenance transaction is running.
Lines 2-3 find the array index value for the current
revision and the current revision number. Line 4 com-
putes the revision number for the created revision.
Then, the algorithm creates an RVn-tree index for the
created revision. At first, the new RVn-tree shares all
nodes but the root node of the current RVn-tree. The
root node of the new RVn-tree has the same entries as
the root node of the current RVn-tree. Next, the al-
gorithm initialize the triple values, revNum, openCnt,
and rootOid. The revNum field is initialized to the re-
vision number of the created revision. The openCnt
field is initialized to 0. The rootOid field stores the
OID of the object that contains the root node of the
new RVn-tree.

The active revision is frozen at the end of the main-
tenance transaction so that query transactions can re-



Algorithm CreateRevision()
input : rootOfMRV(root node of the MRV-tree )
Begin
1. r00otOfMRV.flag = “T”
curlndex = rootOfMRV.current
curRevNum = rootOfMRV.array| curIndez].revNum
activeRevNum = curRevNum + 1 ;
newRoot = new node
Initialize rNum of newRoot to activeRevNum
curRootOID = rootOfMRV .array|curIndex].rootOid
oldRoot = the node stored in the object
whose OID is curRootOID
9. Copy the contents of oldRoot into newRoot
10. Initialize the triple values for the new revision.
11.  revNum = activeRevNum
12.  openCnt =0
13.  rootOid = OID of newRoot
End.
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Figure 5: The CreateRevision Algorithm

trieve the updated data in the revision. The FreezeRe-
vision algorithm is described in Figure 6. To freeze
the achieve revision, the algorithm updates the cur-
rent and flag fields in the root node of the MRV-tree.
The current field is updated to the index value of the
array which corresponds to the active revision. The
flag field is set to “F” which indicates that there is no
running maintenance transaction.

Algorithm FreezeRevision()

input: rootOfMRV (root node of the MRV-tree)
Begin

1. r00tOfRMYV.current = the index value of the array

2. for the active revision.
3. rootOfMRV .flag = “F”
End.

Figure 6: The FreezeRevision Algorithm

A transaction opens a revision at the beginning,
uses the revision throughout its life time, and closes
the revision at the end. Maintenance transactions
open the active revision, and query transactions open
the current revision. Figure 7 shows the OpenRevi-
sion algorithm that opens the current revision. The
algorithm increases the value of the openCnt field by
one, and returns the root node of the current RVn-
tree. The value of the openCnt field indicates how
many transactions open the revision, and it is used to
check whether the revision can be garbage-collected.
Then query transactions retrieve the values stored in
the MDA through the root node as if the MDA is not
versioned. The CloseRevision algorithm decreases the
value of the openCnt field by one.

3.4.2 Insert Algorithm

In this section, we explain the Insert algorithm that
is used by maintenance transactions. We omit some

Algorithm OpenRevision()
input: rootNodeOfMRV (root Node of the MRV-tree)
output: 7 (index value in the array of the root node
of the MRV-tree)

output: rootNodeOfRV (the root node of the RVn-tree)
Begin
1. Increment the openCnt field of the current

revision by one
2. Return the root node of the RVn-tree and the

array index value corresponding to the current revision
End.

Figure 7: The OpenRevision Algorithm

detailed explanation for parts that are specified in the
R*-tree.

Algorithm Insert()
Input: addr (address of a cell)
Input: val (value to be inserted)
Begin
1. Find an appropriate chunk C1 that contains the cell
whose address is equal to addr
2. If found Then
3. If rev-num of C1 =
the active revision number Then

4. Insert wal into the cell specified by addr
5. Else
6. C2 = new chunk
7. Cc2=C1
8. Initialize rev-num of C2
to the active revision number
9. Insert val into C2
10. Call Propagate
11. Else

12. C2 = new chunk
13.  Initialize rev-num of C2
to the active revision number
14.  Insert wal into C2
15.  Call Propagate
End.

Figure 8: The Insert Algorithm

The algorithm shown in Figure 8 considers two
cases. The first case is that a chunk that contains
the cell to be inserted already exists. If the chunk
has the same revision number as the active revision,
the Insert algorithm simply inserts the value into the
cell, and returns. Lines 1-5 in Figure 8 process this. If
the revision number of the chunk is different from that
of the active revision, the chunk cannot be updated.
Therefore, lines 6-10 create a new version of the chunk
and insert the value into the new version. An entry
for the new version of the chunk is inserted into the
RVn-tree index so that transactions can find the chunk
through the RVn-tree index. The Propagate algorithm
explained below will do the job.

The remainder of the Insert algorithm processes the
second case, in which there is no chunk that contains



the cell. In that case, the algorithm creates a new
chunk, and inserts the value into a cell in the chunk.
An entry for the new chunk is inserted into the RVn-
tree index so that transactions can locate the chunk
through the RVn-tree index. The algorithm does this
by calling the Propagate algorithm.

The Propagate algorithm shown in Figure 9 inserts
an entry for a chunk into an RVn-tree index. The
newEntry input parameter is the entry for the chunk
to be inserted. If the chunk is versioned, the oldEntry
stores the entry for the previous version of the chunk.
If the chunk is created, the oldEntry stores null.

Lines 1-10 process the case in which the revision
number of the RVn-tree node is equal to the active
revision number. In that case, the node does not need
to be versioned. When the value of oldEntry is not
null, the algorithm simply exchanges the oldEntry with
the newEntry. When the value of oldEntry is null, the
value of newFEntry is inserted into the node. If the node
has rooms for an entry, the value of newEntry can be
inserted. Otherwise, the algorithm calls the Overflow
algorithm, and then it calls the Insert algorithm.

The next part of the algorithm processes the case
in which the node needs to be versioned. In this case,
a new node is created and the contents of the node are
copied into the new node. The insertion is performed
in the new node. If the oldEntry is not null, it should
be removed from the new node because it is for the pre-
vious version of the node, node. When the new node
has rooms for an entry, the entry for the newEntry is
inserted into the new node and the Propagate algo-
rithm is called again with the entry for the new node
so that the update on the leaf node is propagated to
the root node. When the new node has no rooms for
a new entry, the algorithm calls the Insert algorithm
after overflow processing is done.

The Overflow algorithm shown in Figure 10 deals
with the overflow problem of a node. The algorithm is
the same with that of the R*-tree.

The Relnsert algorithm shown in Figure 11 deals
with the overflow problem. The algorithm removes
some entries from the overflowed node, and inserts
them into the RVn-tree. The algorithm sorts all the
entries of the overflowed node using the method of the
R*-tree to determine which entries are removed from
the node and are re-inserted into the RVn-tree. If the
revision number of the overflowed node is equal to the
active revision number, some entries of the node can
be removed and re-inserted. If not, the algorithm can-
not modify the node. In that case, a new version of
the node is created.

Lines 2-5 in Figure 11 treat the case that the revi-
sion number of the overflowed node is equal to that of
the active revision. In this case, 30 % of the entries in
the overflowed node are removed from the node. After
some entries are removed, the bounding rectangle of
the node is adjusted and it is propagated to the root

Algorithm Propagate()
Input: newEntry
Input: oldEntry
Input: node(node of the RV n-tree)
Begin
1. If rNum of node =
the active revision number Then
If oldEntry # null Then
Remove oldEntry from node
Insert newEntry into node
Else
If node has room for newEntry Then
Insert newEntry into node
Else
Call Overflow
10. Call Insert
11. Else
12. newNode = make a new node
13.  Initialize rNum of newNode to
the active revision number
14. newNode = node
15.  If oldEntry # null Then

OO O W

16. Remove oldEntry from newNode

17.  If newNode has room for newEntry Then
18. Insert newEntry into newNode

19. Call Propagate algorithm

20. Else

21. Call Overflow algorithm

22. Call Insert algorithm

End.

Figure 9: The Propagate Algorithm

node. Finally, the algorithm calls the Insert algorithm
for each entry that is removed.

Lines 7-12 in Figure 11 deal with the case that the
revision number of the overflowed node is not equal to
that of the active revision. In this case, the algorithm
should make a new version of the node and update the
new version instead of the overflowed node. After the
new version is created, all the entries in the overflowed
node are copied into the new version. Then, the algo-
rithm attaches the new version into the RVn-tree by
calling the Propagate algorithm. 30 % of entries in
the new version are removed, and the bounding rect-
angle of the new version is adjusted, and is propagated
to the root node. The removed entries are re-inserted
into the RVn-tree by calling the Insert algorithm for
each entry.

The Split algorithm shown in Figure 12 makes a
new node, distributes some entries in the overflowed
node into the new node. The algorithm consists of
two parts. The first part that is from line 1 to line
6 deals with the case that the revision number of the
overflowed node is equal to that of the active revision.
The remainding part treats the case that the revision
number of the overflowed node is not equal to that of
the active revision.

In case that two revision numbers are equal, a new
node is created and all the entries in the overflowed



Algorithm Overflow()

Begin

1. If the level is not the root level and this is the first
call of Overflow in the given level during
the insertion of one data Then

2. Call Relnsert

3. Else
4. Call Split
End.

Figure 10: The Overflow Algorithm

Algorithm Relnsert()
input: oid (oid of a chunk)
input: thisNode
Begin
1. Sort the entries of thisNode in
descending order of their distances computed
by the method of the R*-tree

2. If rNum of thisNode =

the active revision number Then
3 Remove the first 30% of the entries from thisNode
4 Adjust the bounding rectangle of thisNode
5 Call Insert to insert the removed entries
6. Else
7. newNode = new node
8 newNode = thisNode
9 Initialize rNum of newNode

to the active revision number

10.  Call Propagate
11.  Remove the first 30 % of the entries from newNode
12.  Adjusts the bounding rectangle of newNode
13.  Call Insert to insert the removed entries

Figure 11: The Relnsert Algorithm

node are distributed into the overflowed node and the
new node. After the distribution of entries, the bound-
ing rectangle of the overflowed node is adjusted and
the adjusted bounding rectangle is propagated to the
root node. Then, the new node is attached into the
RVn-tree by calling the Propagate algorithm.

In case that two revision numbers are not equal,
two new nodes are created. All the entries in the over-
flowed node are distributed into two new nodes. After
that, the new nodes are attached into the RVn-tree by
calling the Propagate algorithm for each new node.

3.4.3 Garbage Collection Algorithm

In this section we explain the garbage collection al-
gorithm which reclaims both the RVn-tree nodes and
the chunks that are no longer used by any transac-
tions. A query transaction opens the current revision,
uses only the revision throughout its life time. The
oldest revision that is not the current revision can be
released for the space reallocation. However, the oldest
revision can be used by some transactions that have
opened the revision when it was current. We can re-

Algorithm Split()
input: thisNode
Begin
1. If rNum of thisNode =
the active revision number Then
2. Determine the axis to be splited
3. newNode = new node
4. Initialize rNum of newNode
to the active revision number
5. Distribute the entries in thisNode
into thisNode and newNode
Adjusts the bounding rectangle of thisNode
Call Propagate
Else
newNodel = new node
newNide2 = new node
Initialize rNum of newNodel
to the active revision number
12.  Initialize »Num of newNode2
to the active revision number
13.  Distribute the entries in thisNode into newNodel
and newNode2
14.  Call Propagate for newNodel
15.  Call Propagate for newNode2
End.

=

= o

Figure 12: The Split Algorithm

lease the oldest revision only when no transactions use
it. Since the adjacent revisions share some tree nodes
and chunks, a careful selection for the nodes and the
chunks to be released is required.

Figure 13 shows the GarbageCollection algorithm
that reclaims the tree nodes and the chunks contained
in the oldest revision except for those shared with
other trees and revisions. The algorithm scans the
oldest RVn-tree and the second oldest RVn-tree from
the root nodes to leaf nodes. Lines 1-4 check to see
whether the algorithm can proceed. The algorithm
can proceed when there are at least two frozen revi-
sions and no query transactions use the oldest revision.

Next, the algorithm makes two lists, L1 and L2,
stores the OIDs of the root nodes of the oldest RVn-
tree and the second oldest RVn-tree into L1 and L2,
respectively. The algorithm repeats the steps between
line 10 and line 16 for each level of the trees from the
root level to the leaf level. For each level, the steps
make a list of nodes belonging to the oldest RV n-tree
but not belonging to the second oldest RVn-tree, and
reclaim nodes in the list.

Finally, the algorithm makes a list of chunks be-
longing to the oldest revision but not belonging to the
second oldest revision, and reclaims chunks in the list.

3.5 Correctness

In this section, we prove the correctness of MVCC-
DW using the serializability theorem [4]. Let H be a
history over transaction T4, ---, transaction 7). The
serialization graph (SG) for H, denoted SG(H), is a



Algorithm GarbageCollection()

input: rootNode(root node of the MRV-tree)

Begin

1. If there are some transactions that open
the oldest revision Then

2. return

3. If the oldest revision is
the same as the current revision Then
4. return.
5. o0idl = the OID of the root node of the oldest RVn-tree

6. 0id2 = the OID of the root node
of the second oldest RVn-tree
7. L1 = alist containing oid1
L2 = a list containing 0:id2
9. For each level from the root level
to the level 2 (just above of the leaf level)
10.  DiffList1 = L1 - L2
11.  DiffList2 = L2 - L1
12.  Read all the nodes whose OIDs are in DiffList!
and write the OIDs stored in the nodes into List1
13.  Read all the nodes whose OIDs are in DiffList2
and write the OIDs stored in the nodes into List2
14. L1 = Listl
15. L2 = List2
16.  Reclaim all the nodes whose OIDs are in DiffList!
17. Process chunks
18. ChunkList = L1 - L2
19. Reclaim all the chunks whose OIDs are in ChunkList
End.

*®

Figure 13: The GarbageCollection Algorithm

directed graph whose nodes are the transactions that
are committed in H and whose edges are all T; — T (i
# j) such that T reads the value of a data item that
T; wrote, or T; updates the value of a data item that
T; read, or T updates the value of a data item that T;
wrote.

Lemma 3.1 Let T; use the revision R, and T; use the
revision R,, where n and m are the revision numbers
of Ry, and Ry, and n # m. If there is an edge T; — T}
in SG(H), then n < m.

Proof) Suppose n > m. There are three cases. In the
case that Tj; is a maintenance transaction and 7} is a
query transaction, R,, does not contains the updates
that T; performs. This contradicts 7; — Tj. In the
case that T; is a query transaction and 7} is a main-
tenance transaction, when T} is running R,, does not
yet exists because R,, is the most recently created re-
vision. This contradicts T; — 7. In the case that Tj
and T; are maintenance transactions, T; should cre-
ate revision R,, after T} freezes R,,. This contradicts
T; = T;. Thus,n < m. O

Lemma 3.2 If there is an edge T; — T; in SG(H)
and both T; and T; use the same revision, then SG(H)
should not contain T; — T;.

Proof) In the case that T; is a maintenance trans-
action and T} is a query transaction, 7; should start

after T; commits. This contradicts T; — T;. The case
that T; is a query transaction and 7 is a maintenance
transaction contradicts our assumption that a query
transaction can open a revision frozen by a mainte-
nance transaction. The case that T; and T} are main-
tenance transactions contradicts our assumption that
a revision is built by one maintenance transaction. O

Theorem 3.1 An SG(H) for a history H produced by
MVCC-DW is acyclic.

Proof) by Lemma 3.1 and Lemma 3.2 O

Consequently, by Theorem 3.1 we can conclude
that MVCC-DW produces serializable executions.

3.6 Clustering cells into chunks

The number of chunks to be versioned has a significant
impact on the performance of MVCC-DW. The unit of
the version control is a chunk. Although only a cell in
a chunk is updated during a maintenance transaction,
anew version of the chunk is created and all the cells in
the chunk are copied into the new version. Therefore,
it is important to cluster cells that are to be updated
during a maintenance transaction into a small number
of chunks.

3.6.1 Assigning index values

A dimension value must be translated into an index
value (integer) before it is used as a component of the
address of a cell. The mapping from a dimension value
to an index value is maintained by a B+-tree index
for a dimension. When assigning an index value for
each dimension value, it is important that the index
value should be unique for a dimension. However, it is
irrelevant that which index value is assigned to which
dimension value.

The dimension values for each dimension are hier-
archically configured. For example, for the time di-
mension, there are some year values at the top level,
and some quarter values belonging to a year value, and
some month values belonging to a quarter value. All
dimension values for a dimension are translated into
index values in the same way, regardless of their lev-
els.

The dimension values of the higher levels in the di-
mensional hierarchy represent summary information,
and these values are more frequently updated than di-
mension values in the lower levels. If the values that
are frequently updated are clustered into some chunks,
the number of chunks to be versioned will be reduced.
The clustering of the values in the higher levels can
be achieved by allocating adjacent index values to the
adjacent dimension values in the higher levels.



3.6.2 The shape of chunks

One of the methods to achieve good clustering of cells
is to adjust the shape of chunks. The shape of chunks
is determined by a sequence of lengths, one for each
dimension. Assume that X x Y is the shape of 2-
dimensional chunks. X (V) denotes the length of the
first (second) dimension of the chunks. When a main-
tenance transaction is periodically executed, the main-
tenance transaction usually updates only the values of
cells that have a specific value for the time dimension.
For example, a maintenance transaction maintaining
the sales volumes in January 15, 2002 does not update
the sales volumes for other dates.

A chunk having cells addressed by several index val-
ues for the time dimension should be versioned several
times. If all the cells in a chunk have only one value of
the lowest level for the time dimension, the chunk does
not need to be versioned. However, some chunks hav-
ing summary information should be versioned since the
summary information aggregates several data items of
lower levels. We can reduce the number of chunks to
be versioned using an appropriate shape of the chunks.

For example, assume that there is a two-
dimensional array whose dimensions are the product
and the time, the maintenance transaction is executed
for each day, and there are two shapes of chunks, 5 x 5
and 25 x 1. Although both shapes contain the same
number of cells, the number of chunks to be versioned
during a maintenance transaction is quite different. A
chunk whose shape is 5 X 5 contains sales volumes of
5 products for 5 days. In this case, the chunk is ver-
sioned each day for 5 days. A chunk whose shape is
25 x 1 contains sales volumes of 25 products for a day.
In this case, the chunk is created during a maintenance
transaction, and the value of any cell in the chunk is
not changed during another maintenance transaction.

4 Experiments

In order to evaluate our mechanism, we implemented
a prototype on top of the Shore storage manager [5]
which provides the common database services such
as B+-tree index, R*-tree index, transaction, concur-
rency control, recovery, and buffer management. We
implement the RV n-tree by modifying the R*-tree code
in the Shore storage manager. The prototype is based
on a client-server architecture. Remote procedure calls
are used for the communication between client pro-
cesses and server processes. A server is multi-threaded,
and a thread is invoked whenever a client is connected
to the server.

In our experiments, we employed a dataset from
the APB benchmark [1]. Figure 14 shows the schema
of the dataset. The numbers in parentheses of Fig-
ure 14 represent the number of data items for each
level of the dimensions. The dataset is composed of
historical data and incremental data. A maintenance

CUSTOMER PRODUCT |CHANNEL TIME
Top(D)
Divigon(él)
Line(15)
4
Family(75)
4
Top(D) Group(300) Year(2)
4 4
Retailer(99) | Class(605) | Top(1) |Quarter(8)
A A A
Store(900) | Code(9,000) | Base(9) |Month(24)

Figure 14: The hierarchical structure of the dimen-
sions of the APB dataset

Table 2: Chunk Sizes

[ [ Customer [ Product | Channel | Time |
Size A 10 10 10 1
Size B 20 20 20 1
Size C 30 30 30 1
Size D 40 40 40 1
Size E 50 50 50 1

transaction adds the incremental data, which was a
accumulated for the past one month, to the historical
data. The size of historical data is 1,239,300, and that
of incremental data is 72,900.

All the experiments have been conducted on a Pen-
tium computer with 500MHz CPU, 256M main mem-
ory and 10G hard disk. We first built up a data
cube with the historical data, and the incremental data,
were loaded into the data cube through a maintenance
transaction. We observed the status of the MVR-tree
and the chunked file after the historical data were
loaded and after the incremental data were loaded.
The experiments were conducted with variable chunk
sizes. Table 2 exhibits the several chunk sizes. For
example, “Size A” is 10 for the customer, the product,
and the channel dimensions, and 1 for the time dimen-
sion. “Size A” has 1000 cells. The reason why the size
of the time dimension size is 1 is to reduce the num-
ber of chunks to be versioned during a maintenance
transaction.

Table 3: Status of the MVR-tree and the chunked file
after the historical data is loaded

Chunk [ RVo-tree Nodes | Num. of [ Valid cells in chunks |
Size [ 3] 2 1] chunks [ Min. [ Max. [ Avg. |
A 1 103 13,522 1,603,000 2 765 13
B 1 40 5,097 600,525 2 2,669 36
C 1 17 2,381 281,100 2 5,304 7
D 1 9 1,318 156,250 2 8,669 139
E 1 7 862 100,000 10 13,205 218




Table 4: Status of the MVR-tree and the chunked file
after the incremental data is loaded

Num. of RVi-tree nodes
Chunk [ revision 0 ] revision 1 Num. of Chunks
Size T 73] 2 ] 1 revision 0 | revision T
A 7419 | 1 | 108 | 6,652 | 1,474,674 192,360
B 2,044 | 1 12 | 2,368 552,418 73,025
C 1,477 | 1 18 998 258,612 33,732
D 812 1 9 553 143,750 18,750
E 550 1 8 350 92,000 12,000

4.1 Experimental Results

Table 3 shows the status of the RVo-tree index and the
chunked file after the historical data was loaded. The
table exhibits the number of nodes of the RVo-tree for
each level, the number of chunks created in the chun-
ked file, the maximum number of valid cells in a chunk,
the minimum number of valid cells in a chunk, and the
average number of valid cells in a chunk. As the size of
a chunk increases, the number of nodes decreases and
the number of chunks also decreases. We can compute
the approximate percentage of valid cells using the av-
erage number of valid cells in a chunk and the size of
a chunk. When the chunk size is 10 x 10 x 10 x 1, the
percentage of valid cells in a chunk is 1.3%. However,
when the chunk size is 50 x 50 x 50 x 1, the percentage
of valid cells in a chunk is 0.17%. Therefore, we can see
that as the size of a chunk increases, the percentage of
valid cells in a chunk decreases.

Table 4 shows the status of the RVi-tree index
and the chunked file after the incremental data were
loaded. The table presents the number of nodes of the
RVi-tree index for each level and for each revision. In
the table, the numbers of the RVi-tree’s nodes whose
revision numbers are 0 are not displayed, except the
numbers for level 1. The reason is that there is no
node that is shared in the RVo-tree in level 3 and level
2. Let’s consider the case that the size of a chunk is
10x10x 10 x 1. The RVi-tree has 14,071 leaf nodes, in
which 7,419 nodes are shared with the RVo-tree and
the remaining 6,652 nodes are created or versioned.
The number of chunks in the chunked file is 1,667,034,
in which 192,360 chunks were created or versioned.
The number of chunks created or versioned during the
incremental load is relatively small. This is very de-
sirable because making a version of a chunk requires
disk space and processing time.

We examined the execution time of query transac-
tions that concurrently run with a maintenance trans-
action. To do this, we loaded the historical data, and
then created one client process that executes a mainte-
nance transaction loading the incremental data. While
the maintenance transaction is executed as a thread,
we created another client process that executes a query
transaction. The aim of this experiment is to show
that transactions do not block each other, and to ex-
amine the performance variation of query transactions
among different chunk sizes. A query transaction in
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Chunk Size

Figure 15: The performance of query transactions

the experiment executes 1,000 queries. A query re-
trieves 126 values (the combinations of levels in Fig-
ure 14) that consist of the value of a cell as well as
all the values that aggregate the value of the cell and
the values of other cells. A query transaction ran-
domly selects cells to retrieve from the historical data.
Figure 15 shows the performance result of the experi-
ment. The result indicates reasonable response time
when queries and a maintenance transaction are exe-
cuted concurrently, and that the response time varies
depending on the chunk size.

5 Related Work

While no technical study to exploit versions in MO-
LAP servers has been reported, some papers that
deal with the issues in ROLAP environments have
been published. [12] proposed a two-version no-locking
mechanism (2VNL). The mechanism permits a query
transaction to continue reading a view while the main-
tenance transaction is writing the new version of the
view. To support two-version, the schema, of a relation
must be extended to include some attributes that store
the old images. Queries issued by users are rewritten
to fit into the extended schema. The number of ver-
sions is fixed to two. When the query transactions
are too long or maintenance transactions occur fre-
quently, two versions may not be enough and query
transactions may be aborted.

In the DYVER mechanism proposed by [15], the
number of versions is variable as needed rather than
fixed. As 2VNL, DYBER requires the extended table
schema. If a tuple is updated, a new version of the
tuple is created and inserted into the table. Although
one attribute is updated, all the other attributes are
also copied. This leads to demand of a large disk space.
As the number of tuples increases, the cost of query
processing increases.

[10] presents another multi-version mechanism. In
this mechanism, a maintenance transaction creates a
new table for the future version, then it inserts new
versions of tuples into the new table. Query transac-
tions should search several tables to find an adequate
version of the tuple.



6 Discussion and Conclusion

In this paper, we implemented the RV n-tree by modi-
fying the R*-tree [2] of the Shore storage manager [5].
Thus, the RVn-tree inherits most of the properties of
the R*-tree. The R*-tree is often criticized as having
poor performance when the dimension of the tree is
high [3]. The poor performance is due to the over-
lap of MBRs in directory nodes. The overlap of MBRs
leads to several paths to visit when the tree is traversed
from the root to a leaf. However, for the RVn-tree, the
property can be avoided. The RVn-tree can be imple-
mented with any other multi-dimensional access meth-
ods based on the tree architecture. In the past, there
has been much research on the high-dimensional access
methods, and many methods have been proposed. We
can use them instead of the R*-tree.

We proposed a multi-version concurrency control
mechanism, MVCC-DW that exploits versions for on-
line data warehouse maintenance in MOLAP servers.
MVCC-DW permits updates of the data at the ware-
house while query transactions read the data. MVCC-
DW has the following features. The first feature is
that the MVCC-DW guarantees the serializable ex-
ecution of both query and maintenance transactions
running concurrently. The second is that both query
and maintenance transactions do not block each other.
The third is that all the transactions do not need to
place locks. The fourth feature is that the number of
versions of a data item is not limited to a fixed number,
and is flexible as it is needed.

We developed a prototype that implements a multi-
dimensional array with a chunked file and employs the
MVCC-DW as its concurrency control mechanism. We
conducted experiments with a dataset from the APB
benchmark to check the practical feasibility of MVCC-
DW. We found that query transactions run concur-
rently with a maintenance transaction without any
conflicts, and the number of chunks that are versioned
during a maintenance transaction is reasonably small.
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